

Beam simulations & target studies for the NOvA experiment using G4NuMI

Marco Del Tutto University of Rome "Sapienza"

> Supervisor: Giulia Brunetti *Fermilab*

September 25, 2014

The NOvA experiment

The NOvA experiment is designed to study electronic neutrinos oscillated from muon neutrinos.

NOvA: NuMI Off-Axis v_e Appearance MuMI: Neutrinos at the Main Injector

Detectors: ND: 300 ton FD: 14000 ton

NOvA near detector

Neutrino production

	NUMI / NOvA		
Distance to far detector	810 km		
Desired v energy	2 GeV		
Detector Off-beam-axis angle	14 mrad		
Beam power (currently)	320 kW		
Beam power (capable of)	700 kW		
Energy per proton	120 GeV		
Number of horns	2		
Target length	1.2 m		
Distance between target downstream end and horn	0.2 m (not in horn)		
Protons/spill	4.9 E13		
Repetition rate	1.33 sec		

- **target**: 50 graphite fins;
- two horns: produce magnetic fields that focus secondaries;
- decay pipe: vacuum or He filled.

‡ Fermilab

Monte Carlo simulations

Two different softwares for the simulation:

- **G4NuMi***: a pure Geant4 simulation;
- Flugg: FLUka with Geant4 Geometry (the Monte Carlo is a combination of Fluka, for physics, and Geant4, to describe its geometry).

This is the first study with the G4NuMI software.

The whole software framework:

A pure Geant4 based simulation of the beamline

Fermilab

G4NuMI

Ntuple unification

Dk2Nu

Is a framework designed to make distributions from Dk2Nu flux files

FluxReader

G4NuMI simulation

G4NuMI VS Flugg

Table 1: FHC, FD. ratio = Flugg/g4numi for [1,3] GeV.

	[1,3] GeV	[1,120] GeV	[1,3] GeV	ratio
	8 ⁴ IIIIII	SHIUIII	Tugg	
$ u_{\mu}$	63.5	99.4	62.1	97.8%
$ar{ u}_{\mu}$	1.1	5.1	1.0	90.9%
TOT	64.6	104.5	63.1	97.7%
$ar{ u}_{\mu}/ u_{\mu}$	1.1%		1.6%	

Table 2: FHC, ND. ratio = Flugg/g4numi for [1,3] GeV. [×10⁶]

	[1,3] GeV g4numi	[0-120] GeV g4numi	[1,3] GeV Flugg	ratio
$ u_{\mu}$	53.8	90.1	52.6	97.8%
$ar{ u}_{\mu}$	1.0	4.5	0.9	90.0%
TOT	54.8	94.6	53.5	97.6%
$ar{ u}_{\mu}/ u_{\mu}$	1.9%		1.7%	

Marco Del Tutto 09/25/2014

‡ Fermilab

G4NuMI VS Flugg

At the end of the FHC run, there will be a run with anti-neutrinos.

Table 3: RHC, FD. ratio = Flugg/g4numi for [1,3] GeV.

Table 4: RHC, ND. ratio = Flugg/g4numi for [1,3] GeV. [$\times 10^6$]

	[1,3] GeV g4numi	[0-120] GeV g4numi	[1,3] GeV Flugg	ratio		[1,3] GeV g4numi	[0-120] GeV g4numi	[1,3] GeV Flugg	ratio
$ \begin{array}{c} \nu_{\mu} \\ \bar{\nu}_{\mu} \\ TOT \\ \dots \sqrt{\overline{n}} \end{array} $	2.6 24.4 27.0	$12.1 \\ 35.8 \\ 47.9$	2.4 22.5 24.9	92.3% 92.2% 92.2%	$ \begin{array}{c} \nu_{\mu} \\ \bar{\nu}_{\mu} \\ TOT \\ \nu_{\mu} \\ TOT $	2.3 20.6 22.9	$10.6 \\ 32.7 \\ 43.3$	2.1 19.1 21.2	91.3% 92.7% 92.6%
$ u_\mu/ar u_\mu$	10.7%		10%		$ u_\mu/ar u_\mu$	11.2%		10%	

Study on π^+ trajectories

Study on π^+ trajectories

The goal is to find out how
many pions need to be
focused, how many need
only 1 horn

G4NuMI simulation with the current target. In the table there are the number of π^+ that cross the horn inside a specific angle, as in the picture.

	Horn 1	ratio H1	Horn 2	ratio H2
< α	137	2.7%	145	6.2%
lpha-eta	2261	44.2%	1814	78.2%
$eta-\gamma$	1957	38.3%	225	9.7%
$\gamma-\delta$	752	14.7%	137	5.9%
sub TOT	5107		2321	
$>\delta$	1503		694	
TOT	6610		3015	

π^{+} born in the target from protons

π^+ from others

z birth position for π^+ form other particles

π^+ decayed

z death position for decayed π^+

z is the position along the beam line

🛠 Fermilab

Conclusions

- The NOvA experiment official flux simulation was done by using Flugg, this is the first study and comparison with G4NuMi, which is very useful.
- Modify the geometry in the simulation can require a lot of time, anyway this first study on the geometry of the target leaves space for further investigation.
- There is the possibility to increase the neutrino flux, but to have a quantitative idea more studies are required.

Thank you to Kuldeep Kaur Maan, Robert Hatcher, Raphael Schroeter, Gareth Kafka, and my supervisors Giulia Brunetti and John Cooper

