## 或Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

## Evidence for Low $\mathrm{p}_{\mathrm{T}} \mathrm{D}+$ Production in the 900 GeV Run of CDF

Andrea Sciandra
09/25/2014

## Training Program

" The intern will be conducting CDF data analysis aimed at the measurement of the production cross section of the $D+$ meson a the Tevatron energy. The intern will review the existing $D+$ cross section analysis and be introduced to charmed meson reconstruction and identification. Reproducing the analysis will develop CDF analysis software and Root skills. Updating and enhancing the analysis will impart C++ programming and Root macro writing skills and help the intern become familiar with Grid computing.
Major Equipment to be used: C++ programming language, CDF software environment.
Major Computer Software to be used: C++ Compiler, Root analysis software, PowerPoint, LateX"

## My goal

My goal was to search for D+ production in the data from the special 900 GeV run for the first time and explore the possibility of extending to that energy the cross section analysis, already in an advanced state, for the 2 TeV data.

## Outline

- Motivations
- The Tevatron and CDF
- Description of the analysis
- 900 GeV vs. 2 TeV comparisons
- Results
- Conclusions


## Motivations

- QCD at Low Energies

$$
\alpha_{s}\left(\left|q^{2}\right|\right)=\frac{\alpha_{s}\left(\mu^{2}\right)}{1+\left(\frac{33-2 N_{f}}{12 \pi}\right) \alpha_{s}\left(\mu^{2}\right) \ln \left(\frac{\left|q^{2}\right|}{\mu^{2}}\right)}
$$

- Previous CDF cross section measurements at $\mathrm{p}_{\top}>6 \mathrm{GeV} / \mathrm{c}$
- Extending measurements to $\mathrm{p}_{\mathrm{T}}<6 \mathrm{GeV} / \mathrm{c}$




## Tevatron

- Ring Interaction points: CDF \& D0

| Run | Luminosity |
| :---: | :---: |
| 1.96 TeV | $\approx 10$ |
| 900 GeV | $\approx 1$ |

FERMILAB'S ACCELERATOR CHAIN


带Fermilab

## CDF

## - CDF = Collider Detector at Fermilab

- CDF II detector was a large multi purpose solenoidal magnetic spectrometer surrounded by $4 \pi$, fast, projective calorimeters and fine-grained muon detectors



## Silicon Detector

- Components: LOO, SVX II, ISL (going from the center to the outside)
- SVX II active surface $\longrightarrow$ Double-sided silicon sensors
- Three different strips orientations for each sensor
 Axial
Small Angle Stereo (SAS) $90^{\circ}$ Stereo

- Crucial for D+ decay vertex reconstruction


## COT

## Central Outer Tracker $\longrightarrow$ coaxial cylindrical detector


between the radius of 40 cm and 138 cm

96 radial layers arranged into 8 superlayers


9

## Tracker

| Tracker characteristics |  |
| :---: | :---: |
| $\sigma$ | $\sigma_{d o}$ |
| 1.510 | $\mathbf{3 0} \mu \mathrm{~m}$ |



## Low $\mathrm{p}_{\mathrm{T}} \mathrm{D}^{+}$production analysis

- Data collected by CDF
- Special run at 900 GeV performed on September 2011 (just before Tevatron shut down)
- Low $\mathrm{p}_{\mathrm{T}} \longrightarrow$ Zero and Minimum bias triggers
- $2 \mathrm{TeV}^{0}$ and $\mathrm{D}^{+}$productions analyses are already in an advanced state

$$
\begin{array}{l|l}
D^{0}->K^{-} \pi^{+} & D^{+}->K^{-} \pi^{+} \pi^{+}
\end{array}
$$

- My goal is to find $\mathrm{D}^{+}$signal at 900 GeV


Is it possible to do a similar analysis as for the 2 TeV sample?

## Triggers used for this analysis

## Zero Bias

- Any bunch crossing
- No trigger request


## Minimum Bias

- Any bunch crossing
- CLC signals coincidence



## Signal \& Background

- Studied decay

$$
D^{+} \rightarrow K^{-} \pi^{+} \pi^{+} \quad(+ \text { c.c. })
$$

- Background

Combinatorics

## Kinematical Variables



$$
\overrightarrow{x_{\mathrm{sec}}}-\overrightarrow{\mathrm{x}_{\mathrm{pri}}}
$$



## D+ Candidate Construction

- Construct D+ candidates with all possible combinations of three tracks
- Charge combinations: $(++-)(--+)$
- $L_{x y}>0$
- Track $\mathrm{d}_{0}<1 \mathrm{~mm}$
- Vertex $\chi^{2}$ / NDF < 10
- Pion mass assigned to tracks with equal sign
- Kaon mass assigned to track with different sign


## No-cut plot

- No signal is visible
- Need to apply cuts on kinematical variables
- Is it possible to apply the same cuts as for 2 TeV ?

900 GeV bare invariant mass

- $L_{x y}$
- $\chi^{2}$
- Track do
- Track pt
- Pointing Angle

Candidate raw mass distribution

## 900 GeV vs. 2 TeV comparisons

$$
L_{x y}
$$

Signal [-2б,+2б]


KS pValue: 0.21

Sideband $[-7 \sigma,-5 \sigma][+5 \sigma,+7 \sigma]$


KS pValue: 0.019

## 900 GeV vs. 2 TeV comparisons

$$
\chi^{2}
$$

Signal [-2б,+2б]


KS pValue: 0.013

Sideband $[-7 \sigma,-5 \sigma][+5 \sigma,+7 \sigma]$


KS pValue: 0.28

## 900 GeV vs. 2 TeV comparisons

Signal [-2б,+2б]


KS pValue: 0.98

Sideband $[-7 \sigma,-5 \sigma][+5 \sigma,+7 \sigma]$


KS pValue: 0.70

## 900 GeV vs. 2 TeV comparisons

## Track $\mathrm{p}_{\mathrm{T}}$

Signal [-2б,+2б]


Sideband [-7б,-5б] [+5б,+7б]


KS pValue: 0.59
KS pValue: 0.12

## 900 GeV vs. 2 TeV comparisons

## Pointing Angle

Signal [-2б,+2б]


KS pValue: 0.019

Sideband $[-7 \sigma,-5 \sigma][+5 \sigma,+7 \sigma]$


KS pValue: 0.43

## Results

Since all distributions appear to be reasonably similar, we apply the same cuts as optimized for the 2 TeV data



Number of $\mathrm{D}^{+}=47 \pm 14$

## Conclusions

- Despite the low statistics the invariant mass spectrum shows a > 3 (sigma) excess at the $\mathrm{D}^{+}$mass
- A measurement of the production cross section might be possible at the (circa) $30 \%$ percent level although subtraction of secondaries might be problematic




## Backup

## Cuts

## $\cdot L_{x y}>900 \mu m$

- $\chi^{2} /$ NDF $<4$
- $D_{0}<110 \mu \mathrm{~m}$
- At least two Track $p_{T}>0.8 \mathrm{GeV} / \mathrm{c}$
- $\gamma<15$ deg


## $L_{x y}$

2 TeV sample


900 GeV sample


## $\chi^{2}$

2 TeV sample


900 GeV sample


## $\mathrm{d}_{0}$



## Tracks $\mathrm{p}_{\mathrm{T}}$

2 TeV sample


900 GeV sample



