牵Fermilab

V_{e} identification in the NOVA Near Detector events

Supervisors: Xuebing Bu and Pat Lukens

September $25^{\text {th }}, 2014$

The NOvA experiment

- NOvA NuMI Off-Axis ve Appearance is optimized for the detection of $V_{\mu} \rightarrow V_{e}$ and $\bar{V}_{\mu} \rightarrow \bar{V}_{e}$ oscillations
- NOvA includes:
- Main Injector now @ 360 kW used to produce the beam
- A 14 kt "totally active" tracking liquid scintillator calorimeter sited 14.6 mrad off the NuMI beam axis at a distance of 810 km (Far Detector, FD)
- A 300 ton Near Detector (ND) identical to the far detector sited 14.6 mrad off the NuMI beam axis at a distance of 1 km and 105 m underground. It is used to study the background compositions and contributions for oscillation analysis

APDs Quality Assurance Test

Visual test

Pressure and flow test

Electrical test

Ve identification in the ND

In order to identify V_{e} events I used Boosted Decision Trees (BDT):

- BDT is a classifier implemented in TMVA;
- The BDT was trained and tested using well known signal and background samples;
- The BDT was applied to 1779 MC files for a total of 8.9 $\times 10^{19}$ POT to identify V_{e} events in ND

List of variables used to train and test BDT and for PID

- $\Sigma \mathrm{E}_{\text {cells }}$ is the summed energy of all cells associated to the slice with the maximum number of associated cells;
- $\mathrm{N}_{\text {cells }}$ is the number of cells associated to the slice with the maximum number of cells;
- $L_{\text {track }}$ is the lenght of the track;
- The ratio of number of cells associated to the longest track over $\mathrm{N}_{\text {cells }}$;
- Number of MIP cells (Nmip defined requiring $100<$ PECorr < 245, PECorr is corrected photo-electrons);
- The ratio $\mathrm{N}_{\text {cells }}$ over $\mathrm{N}_{\text {mip }}$;
- Fraction of energy in first 20 planes;
- Maximal fraction of energy in 2 planes. Reflects the condensity of the longitudinal shower;
- Maximal fraction of energy in 6 planes;
- Fraction of energy in $2 \sigma(\sigma=2 \mathrm{~cm})$ road. The v_{e} should have relatively narrower transverse shower than the π^{0};
- Fraction of energy out 3σ road;
- Number of 2D prongs;
- Number of 3D prongs;
- Energy balance between 2 most energetic 2D prongs;
- Energy balance between 2 most energetic 3D prongs.

Input Variables

maximal fraction of energy in 2 planes

$\mathbf{N}_{\text {cells }}^{\text {mip }} / \mathbf{N}_{\text {collis }}^{\text {silice }}$

maximal fraction of energy in 6 planes

$E_{20 \text { planes }} / E_{\text {total }}$

fraction of energy out 3σ road

\# of 2D prongs

energy balance for 2D prongs

\# of 3D prongs

energy balance for 3D prongs

TMVA Output

Background rejection versus Signal efficiency

Overtraining check plot

Correlation Matrices for signal and background

Some variables are correlated

Some variable are correlated

BDT Output

Significance Vs BDT Output

Significance Vs BDT Output

Requiring BDT Output largest than 0 and II variables

$$
\frac{S}{\sqrt{S+B}}=26 \%
$$

Requiring BDT Output largest than 0 and II variables

$$
\frac{S}{\sqrt{B}}=39 \%
$$

Correlation Matrix

Correlation Matrix (signal)

Reducing the number of correlated variables we can reduce sources of systematic errors

I I Variables

Correlation Matrix (background)

Conclusions

- BDT was been trained, tested and then it are applied to MC files using 15 variables;
- The number of variables are reduced;
- $\frac{S}{\sqrt{S+B}}$ and $\frac{S}{\sqrt{B}}$ are evaluated varying the BDT Output between -I and I;
- Requiring BDT output >0 and using II variable

$$
\frac{S}{\sqrt{S+B}}=26 \% \quad \frac{S}{\sqrt{B}}=39 \%
$$

Thank you for your attention!

