

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Serial Communication for Mu2e Tracker Electronics

Tommaso Vincenzi University of Ferrara

> Endterm Presentation 23 September 2015

Introduction

Front-End Electronics

Digitizer

2

direct acquisition, FPGA (Altera Cyclone III) acquires data from ADCs and TDCs

ReadOut Controller : collection, FPGA (Microsemi SmartFusion2) handles data flow from the digitizers (6 boards) to the next stages towards the data center (DAQ).

Tommaso Vincenzi | Serial Communication for Mu2e Tracker Electronics

3

ReadOut Controller

- Flow control needed for streaming data out of the FIFO
- What happens in case of FIFO overflow?
- How fast can the single lane go (Mbit/s)?
- Is this structure resource efficient?

5

Flow control needed for streaming data out of the FIFO

As soon as the FIFO block sends a **NOTEMPTY** signal, the ReadForSerialOut block starts reading the packets out of it and setting the communication towards the ReadOut Controller (ROC)

What happens in case of FIFO overflow?

The packet is composed of 13 bits instead of 12 and the 13th is the **error flag**. As soon as the word number in the FIFO goes over a THRESHOLD, the error flag goes up and the FIFO is **disabled**. It stays disabled (and the error flag is kept high) until the FIFO is empty and every packet written before the error triggering is streamed out towards the ROC.

Tommaso Vincenzi | Serial Communication for Mu2e Tracker Electronics

7

New firmware structure to have intelligent synthesis
Worst path analysis to understand where to change it

-2.006 custommaster:inst3|digi:digi_1|ReadForSerialOut:fifo_handler|my_count_curr[20]

> New firmware structure to have intelligent synthesis > Worst path analysis to understand where to change it custommaster:inst3|digi:digi 1|ReadForSerialOut:fifo handler|my count curr[20] -2.006Std logic vector
Tunable width (log(13)) = 4 bits) not enough! integer _{32 bits} type change incremental pointer Shifter large fan-in or core operation change

> New firmware structure to have intelligent synthesis Worst path analysis to understand where to change it custommaster:inst3|digi:digi 1|ReadForSerialOut:fifo handler|my count curr[20] -2.006Std logic vector
Tunable width (log(13)) = 4 bits) not enough! integer 32 bits type change incremental pointer not enough! core operation large fan-in or change 214 ¹⁶ bits words 16 bits words **FIFO** resyzing Fmax Restricted Fmax Clock Name 142.39 MHz 142.39 MHz dk. inst3|digi 1|b2v inst1|altpll component|auto generated|pll1|clk[0] 2 228.99 MHz 228,99 MHz 🛠 Fermilab

9

23/09/2015

Is this structure resource efficient?

SerialOutBit

SyncOut

SerialClock

Is this structure resource efficient?

SerialOutBit	
SyncOut	
Serial Clock	 8b/10b encoding: data encoding that includes clock information
Example:	
000 (00000 ====> 1011 011000 or 0100 100111
8	bits 10 bits
Advantages:	
 additional unus 	ed words (reserved words for commands, e.g. error)

• DC free signals (very important for differential amplifiers)

Is this structure resource efficient?

• 8b/10b encoding

Is this structure resource efficient?

- 8b/10b encoding
- Packet head and tail bits

All lanes are reserved for information transmission resources saved thanks to intelligent coding are now available for information transmission

23/09/2015

11 Tommaso Vincenzi | Serial Communication for Mu2e Tracker Electronics

Is this structure resource efficient?

- 8b/10b encoding
- Packet head and tail bits
- All lanes for information

SerialOutBit_3

SerialOutBit_1

SerialOutBit_2

PROBLEM:

timing recovery on ROC side

Example

- If s is the maximum speed of the single lane
- Words of 12 bits
- Sending synchronization bits every two words

Radiation tests

Soft error due to radiation-induced particle ionization

 \Rightarrow Serious problem in memories (especially SRAM)

A track in the point shown in the picture could cause a **change of state** and so a permanent error.

Radiation tests

Adequate firmware structure to test the code

Extensive memory usage in the code:

- 92.75% 1st type : 1K18
- 88.89% 2nd type : 64x18

THANK You

