Design and project of a Surface Impedance Characterization system (SIC) for thin film of advanced superconductors

Marco Graffiedi

Nicolò Riva

What are we doing here in Fermilab?

SRF Cavity: what is it?

For resonant cavity we intend a close space region, limited by perfect conducting walls and filled with a certain linear, homogeneus isotropic and non dispersive medium.

- Store huge amount of electromagnetic energy
- High efficiency in energy transmission
- High quality factor $Q = \frac{Energystored}{Energydissipated}$
- The energy dissipation depend on the surface impedance (AC current) Geometry factor $G = R_s * Q$, doesn't depend on R_s

Why do we need to investigate on those phenomena?

- Development of SRF technology
- Material characterization of advanced SC
- Quantum structural matter properties of SC

SIC with Round disk sample:

-> Easy to build -> Easy to characterize

A SIC is a host cavity that allows to study the impedance properties. There are two method to measure the surface impedance.

1 Quality Factor

2 Power dissipation on Sample

RF Measurments

• With RF techniques we measure $Q_i = \frac{\omega U}{P_{tot}^i}$ of the system

•
$$Q_{TOT} = (\sum \frac{1}{Q_i})^{-1} \Rightarrow All$$

- Q_1 Nb sample $\neq Q_2$ SC sample
- Measuring $Q_{1,2}$ of the whole system you can show that $R_s = \frac{G}{\eta} \left(\frac{1}{Q_2} \frac{1}{Q_1} \right) + \frac{G}{Q_1}$

How does a SIC work?

A SIC is a host cavity that allows to study the impedance properties. There are two method to measure the surface impedance.

1 Quality Factor

 $2\;$ Power dissipation on Sample

Calorimetric Technique

- A thermal circuit takes the heat lost on the sample by RF
- Along this circuit you measure the heat with thermal sensors
- Under the sample there is an Heater
- Meanwhile the RF is ON you insert heat with the heater for reach a steady T
- Repeat the measure disabling the RF. Inserting heat on circuit and reaching the same T will give information on Q and so R_s

Goal of the Summer Internship

- \bullet Simulate the apparatus found in licterature with ${\rm COMSOL}^{\textcircled{C}}$
- Study of a new improved design for host cavities
- $\bullet\,$ Make simulations with ${\rm COMSOL}^{\textcircled{C}}$ of the new cavity

"Standing on the shoulder of giants" Bernard of Chartres, XII A.C.

- Surface Impedance of Superconducting Radio Frequency (SRF) Materials, Bingping Xiao
- RF surface impedance characterization of potential new materials for SRF-based accelerators, B. P. Xiao
- Commissioning of the SRF surface impedance characterization system at JLAB, B. P. Xiao
- A Sapphire Loaded TE011 Cavity for Surface Impedance Measurements–Design, Construction, and Commissioning Status, L. Phillips

Cavity improvement and goals

Specs

Decrease the eigenfrequency

• Increase
$$Ratio = \frac{B_{pk,sample}}{B_{pk,cavity}}$$
 ($R > 1$ is better)

Cost of apparatus

- ${\ensuremath{\, \bullet }}$ Design that allows to machine easily the Nb
- The Sapphire cost! Moreover, it reduces the performance of the cavity

Measurements

- Improve the RF measurements
- Improve the calorimetric technique
- Try to implement new techniques

Radio Frequency Simulation

Two candidate designs for the host cavity

Pillbox Cavity

- ► Xiao's and our cavity:
 - Analitic model, Eigenfrequency;
 - Coupling power sensitivity;
 - Sapphire Losses;
 - Fine simulation with optimized parameters;

$3.9\,\mathrm{GHz}$ based design

- ► Our cavity:
 - Eigenfrequency;
 - Coupling power;
 - Sapphire Losses
 - Fine simulation with optimized parameters;

Intr	പ	110	+10	٦n
	ou	L L L		

A new Cavity: Analitic model TE_{plm} solutions

Maxwell's equations in cylindrical coordinates for a simple pillbox cavity with appropriate boundary/continuity conditions have been solved:

$\vec{\nabla}\cdot\vec{D}=0$	$\vec{\nabla}\times\vec{E}=i\omega\vec{B}$
$\vec{\nabla}\cdot\vec{B}=0$	$\vec{\nabla}\times\vec{H}=-i\omega\vec{D}$

Introduction	Work Plan	Simulations	Conclusions
A new Ca	vity: Analitic model TE_{pl}	m solutions	

Maxwell's equations in cylindrical coordinates for a simple pillbox cavity with appropriate boundary/continuity conditions have been solved:

$\vec{\nabla}\cdot\vec{D}=0$	$ec abla imes ec E = i \omega ec B$
$\vec{\nabla}\cdot\vec{B}=0$	$ec abla imes ec H = -i\omega ec D$

The solution is a function with separate variables $W(\rho,\phi,z)=R(\rho)\Phi(\phi)Z(z)$

Solving the differential equation system:

Maxwell's equations in cylindrical coordinates for a simple pillbox cavity with appropriate boundary/continuity conditions have been solved:

$\vec{\nabla}\cdot\vec{D}=0$	$ec{ abla} imes ec{E} = i \omega ec{B}$
$\vec{\nabla}\cdot\vec{B}=0$	$ec abla imes ec H = -i\omega ec D$

The solution is a function with separate variables $W(\rho,\phi,z)=R(\rho)\Phi(\phi)Z(z)$

Solving the differential equation system:

 $\begin{cases} Z(z) = Z_0 sin(\frac{p\pi}{L}z) & - p, \text{I,m integer for } TE_{plm} \\ \Phi(\phi) = \Phi_0 cos(m\phi) & - k_A, k_B \text{ wave number in Sapphire and vacuum} \\ R(\rho) = \begin{cases} A_0 J_m(k_A \rho) & \text{if } 0 \le \rho < R_{sapph} \\ A_1 J_m(k_B \rho) + A_2 Y_m(k_B \rho) & \text{if } R_{sapph} \le \rho \le R_{cav} \end{cases}$

A new Cavity: Analitic model Eigenmodes

With the continuity conditions on EM fields the values of k_A and k_B are calculated by writing a $MatLab^{\textcircled{C}}$ script (non-linear equations)

This provides the analitical eigenmodes!

A new Cavity: Analitic model Eigenmodes

With the continuity conditions on EM fields the values of k_A and k_B are calculated by writing a $MatLab^{\textcircled{C}}$ script (non-linear equations)

This provides the analitical eigenmodes!

$$k_B = \sqrt{\left(\frac{k_A^2}{\epsilon_r}\right) + \left(\frac{p\pi}{L}\right)^2 \left(\frac{1}{\epsilon_r} - 1\right)}$$

 k_A Follows from continuity of solutions and their derivatives

∜

$$f_{plm} = \frac{c}{2\pi\sqrt{\epsilon_r}}\sqrt{\left(k_A(\chi'(l,m))\right)^2 + \left(\frac{p\pi}{L}\right)^2}$$

Where $\chi(l,m)^{\prime}$ are the first roots of the derivative of the Bessel function J_m

Simulations and results with COMSOL[©]: Xiao's Pillbox

Coupled E field

Cavity Diameter	$20\mathrm{mm}$
CavityLength	$22\mathrm{mm}$
Sapphire Diameter	$12\mathrm{mm}$
SapphireLength	$169\mathrm{mm}$

Coupled B field

 $Ratio \approx 0.31$ $f \approx 7.4289 \,\mathrm{GHz}$

Simulations and results with COMSOL[©]: Our Pillbox

Coupled E field

Cavity Diameter	$50\mathrm{mm}$
CavityLength	$60\mathrm{mm}$
Sapphire Diameter	$30\mathrm{mm}$
SapphireLength	$180\mathrm{mm}$

Ratio pprox 0.55 (EM fields in sapphire) $f \approx 2.95 \,\mathrm{GHz}$ 13/18

Conclusions

Simulations and results with $\mathrm{COMSOL}^{\bigcirc}$: 3.9 GHz Based Cavity

Sapphire and cavity Geometry of $3.9\,\mathrm{GHz}$ based cavity

3.9-Cut Geometry			
Inner Iris Diameter	$40\mathrm{mm}$		
Outer Iris Length	$74.77\mathrm{mm}$		
Little Sapphire Diameter	$20\mathrm{mm}$		
Little Sapphire Length	$166.55\mathrm{mm}$		
Big Sapphire Diameter	$44\mathrm{mm}$		
Big Sapphire Length	$13.75\mathrm{mm}$		

Sapphire Losses and quality factors of

f[GHz]	$Q_{Ti,Clamp}$	$Q_{Sapphire}$	Q_{SSteel}	Q_{gap}
3.1375	$1.37\cdot 10^{12}$	$4.80\cdot 10^8$	$4.45 \cdot 10^{12}$	$2.32 \cdot 10^{11}$

16/18

Final Comparison

Pillbox Cavity

- Low $f \approx 2.9586 \,\mathrm{GHz}$ \checkmark
- $Ratio < 1 \times$
- Total-know geometry X
- High cost for Nb bulk \bigstar
- High cost of machinery X
- High Cost sapphire X
- Sapphire limitate accurancy 🗡

Cutted 3.9 GHz

- Low $f \approx 3.1357 \,\mathrm{GHz}$ \checkmark
- $Ratio > 1 \checkmark$
- Well-know geometry \checkmark
- EB welding required 🗡
- Nb parts difficult to build \pmb{X}
- High Cost sapphire X
- Sapphire limitating accurancy X

Introduction	vvork Plan	Simulations	Conclusions
Next steps			

To do list..

- Verification of RF model
- Study of *Multipacting*
- Possible improvment of measurement techniques
- Possible design without sapphire

