

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Detector Solenoid Cool Down Analysis for the Mu2e Experiment

Costanza Saletti

Supervisor: Nandhini Dhanaraj Co-supervisor: Richard Schmitt

Final Presentation

Introduction: Mu2e Experiment

- The Mu2e experiment consists of a series of superconducting magnets: Production Solenoid, Transport Solenoid and Detector Solenoid (DS).
- These magnets are made of AI-stabilized NbTi conductor and have to be cooled with liquid helium from 300 K to 4.7 K in order to be superconductive.

Introduction: Training Program

Mu2e cables are composed by various materials that contracts at different rates. The cooling down process has to be controlled to avoid dangerous thermal stresses in the magnets.

Task list:

- Focus on the Detector Solenoid
- Model DS1 and DS2 conductors with different materials and insulation.
- Derive average material properties required for a thermalstress analysis from single conductor model or stack model.
- Perform the 3D FEM thermal-stress analysis for the Detector Solenoid to figure out a safe temperature difference for the cooling down process of the magnet.

Detector Solenoid Cables

 Al-stabilized NbTi Rutherford cables

- Two types: DS1 and DS2
- Two layers of
 insulation each
 made by G10,
 kapton, epoxy.

Mu2e Technical Report

9/23/2015

🛟 Fermilab

DS1 Single Conductor Model

5 Costanza Saletti | Detector Solenoid Cool Down Analysis

• Copper and NbTi are modelled as rectangles of equivalent areas knowing that the Cu/NbTi area ratio is 1:1.

‡ Fermilab

9/23/2015

• G10 is an orthotropic material.

DS1 Stack Model

DS2 Single Conductor and Stack Model

7 Costanza Saletti | Detector Solenoid Cool Down Analysis

- Orthotropic thermal conductivity
 - FEA on single conductor model
 - Steady-state thermal analysis
 - Use of Fourier's law of conduction: $\dot{Q} = kA \frac{dT}{dx}$

A: K azimuth **NSYS** Temperature lime: 1. s 9/21/2015 7:36 P Temperature: 4. Femperature 2: 5.

- Orthotropic thermal conductivity
 - FEA on single conductor model
 - Steady-state thermal analysis
 - Use of Fourier's law of conduction: $\dot{Q} = kA \frac{dT}{dx}$

- Orthotropic thermal conductivity
 - FEA on single conductor model
 - Steady-state thermal analysis
 - Use of Fourier's law of conduction: $\dot{Q} = kA \frac{dT}{dx}$

9/23/2015

k radial

- Orthotropic thermal contraction
 - FEA on stack model
 - Static structural analysis with thermal condition
 - Use of law of thermal expansion: $\Delta L = \beta L \Delta T$

- Orthotropic thermal contraction
 - FEA on stack model
 - Static structural analysis with thermal condition
 - Use of law of thermal expansion: $\Delta L = \beta L \Delta T$

- Orthotropic thermal contraction
 - FEA on stack model
 - Static structural analysis with thermal condition
 - Use of law of thermal expansion: $\Delta L = \beta L \Delta T$

- Density
 - Weighted average method: $\rho = \sum_i \rho_i f_i$ where f_i is the volume fraction of each material.

DS1: 3454
$$kg/m^3$$
 DS2: 3050 kg/m^3

Specific heat

 $-c = \sum_i c_i f_i$

Orthotropic elasticity

Young's modulus: $E_{ii} = \frac{\sigma_{ii}}{\varepsilon_i}$ Poisson's ratio: $v_{ij} = -\frac{\varepsilon_j}{\varepsilon_i}$ Shear modulus: $G_{ij} = \frac{\tau_{ij}}{\Delta x_i/L}$

- FEA on stack model
- Static structural analysis with known force on known area

• Orthotropic **elasticity:** results for **DS1**

9/23/2015

🛠 Fermilab

• Orthotropic **elasticity:** results for **DS2**

9/23/2015

🛠 Fermilab

Preparing the Final Simulation

- Results have been obtained for:
 - ✓ Thermal conductivity
 - ✓ Thermal contraction
 - ✓ Density
 - ✓ Specific heat
 - ✓ Elasticity
- Results can be considered reasonable:
 - DS1 and DS2 are similar,
 - in DS2 aluminum properties are more relevant
- Average properties are imported in Ansys Engineering Data. Computational time will be reduced.

Properties of Outline Row 5: DS1 Conductor			
	A	В	с
1	Property	Value	Unit
2	🔀 Density	3454.3	kg m^-3 🛛 💌
3	Orthotropic Secant Coefficient of Thermal Expansion		
4	🗉 📔 Coefficient of Thermal Expansion	💷 Tabular	
11	🔀 Reference Temperature	300	к 💌
12	😑 🛛 🔀 Orthotropic Elasticity		
13	Young's Modulus X direction	4.389E+10	Pa 🗾
14	Young's Modulus Y direction	5.7571E+10	Pa 💌
15	Young's Modulus Z direction	3.1762E+10	Pa 💌
16	Poisson's Ratio XY	0.37639	
17	Poisson's Ratio YZ	0.30796	
18	Poisson's Ratio XZ	0.28446	
19	Shear Modulus XY	1.193E+10	Pa 💌
20	Shear Modulus YZ	2.9059E+09	Pa 💌
21	Shear Modulus XZ	2.5895E+09	Pa 💌
22	🗉 🔀 Field Variables		
26	😟 📔 Orthotropic Thermal Conductivity	💷 Tabular	
33	표 🛛 Specific Heat	💷 Tabular	

Detector Solenoid 3D Model

DS Transient Thermal-Stress Analysis

9/23/2015

🛟 Fermilab

Transient Thermal Results

Temperature at 2000 s: maximum stress should occur here

Transient Thermal Results

Temperature at 5000 s: the Detector Solenoid cools down completely

Stress Results: coils

- Maximum stress in the coils occurs at 75 s and is 20.34 MPa (2950 psi)
- Allowable stress for Alstabilizer is 30 MPa (4351 psi).
- Temperature difference is SAFE!

Stress Results: welds

- Maximum stress in the welds is 136.6 MPa (19800 psi).
- According to Aluminum Association Specifications, allowable stress for aluminum welds is 75 MPa (10900 psi).

Stress Results: welds

- Reason for high stress is because conservative analysis has been performed.
- Very little area is interested so this is not dangerous.

Stress Result

 Analysis is conservative since a sudden shock of 270 K has been applied as boundary condition.

- To obtain a more realistic result, a convection coefficient should be applied in the cooling tubes.
- This would give a more realistic distribution reducing and pushing farther up in time high stresses.
- Anyway, 30 K deltaT has been verified in the worst case.

🛟 Fermilab

Conclusions

- TD-Design & Drafting
- Mu2e Project

- Computing Division
- Organizers of the Summer Student Program

Thank you for your attention!

Costanza Saletti | Detector Solenoid Cool Down Analysis