Magnetic Field Measurement in a Kicker Magnet

ANDREA MERLO Supervisor: LUCIANO ELEMENTI

Fermilab Research Center Technical Division - Magnet System Department

September 23, 2015

イロト イヨト イヨト イ

Kicker Magnet Field

Sac

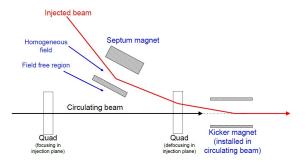
Overview

- ~→ Goal
- ~ Overview
- ~ Kicker Magnet
- ~ Preliminary Analysis
- → Magnetic Field
- ~> Results
- **∼→** Conclusions

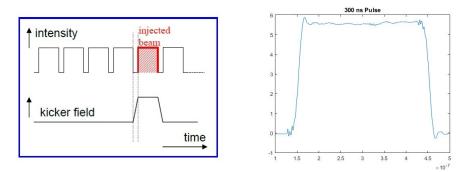
DQC

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Goal of the Project


Measurement of the Magnetic Field inside a Kicker Magnet

Goal

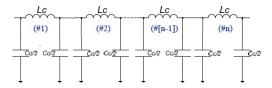

- → Kicker Magnet
- $\rightsquigarrow~$ 50 Ohm Transmission Line Probe
- \rightsquigarrow Integrated Magnetic Field
- \rightsquigarrow Local Modelization of the Field

イロト イボト イヨト イヨト

- ullet Pulsed Dipole Magnet with very fast rise and fall time (50 \sim 100 ns)
- Role of a Kicker System:
 - Beam Injection
 - Beam Extraction
 - Beam Clearing

< ロ ト < 回 ト < 三 ト < 三 ト</p>

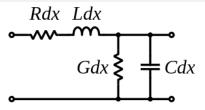

Requirements


- High Time Resolution
- Flatness of the Pulse
- Low Ripple
- Locally identical Cell by Cell

DQA

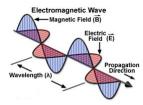
< ロ > < 回 > < 回 > < 回 >

TRANSMISSION LINE KICKER MAGNET



- Many cells to behave as a coaxial cable
- Ferrite C-cores and High Voltage Capacitance Plates sandwiched togheter

< ロ > < 回 > < 回 > <</p>


Sar

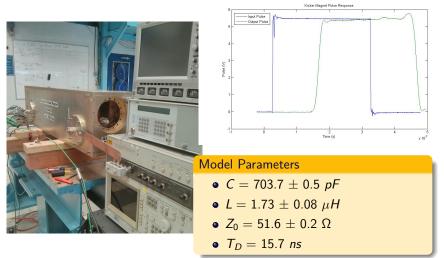
Transmission Line

$$\frac{\partial V(x)}{\partial x} = -(R + j\omega L)I(x)$$
$$\frac{\partial I(x)}{\partial x} = -(G + j\omega C)V(x)$$

 \downarrow

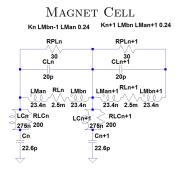
$$\frac{V(x)}{I(x)} = Z_0 = \sqrt{\frac{R+jL}{G+jC}}$$

< ロ ト < 回 ト < 三 ト < 三 ト</p>

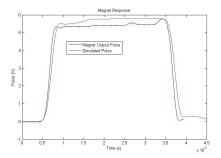

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}, \tau = n \cdot \sqrt{L_c \cdot C_c}$$

2

DQC


Recycler 50 Ohm Kicker Magnet

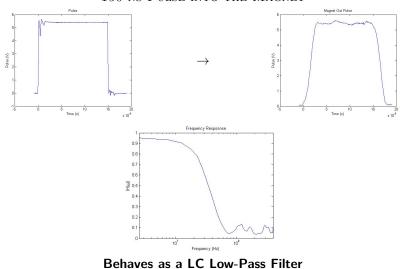
KICKER MAGNET


イロト イロト イヨト イヨト

Kicker Simulation

• Simulated_{Width} = 240.652 ns

< ロ ト < 回 ト < 三 ト < 三 ト</p>


- Pulse_{RiseTime} = 28.8 ns
- Pulse_{Width} = 256.6 ns

End Effects has to be modeled in a more detailed way

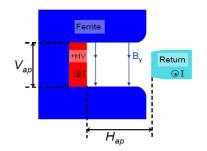
Э

Sac

Pulse Analysis

 $150~\mathrm{ns}$ Pulse into the Magnet

Andrea Merlo (Magnet System Department)


Kicker Magnet Field

Э

DQC

Magnetic Field

Magnetic Field

$$|\mathbf{B}(\mathbf{x,t})| = \mu_0 rac{N \cdot I(t)}{V_{ap}}, N \simeq 1$$

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Angular Deflection

$$\Theta = \frac{0.3}{p} \int_0^l B_y dx = \frac{0.3}{p} \cdot I_{eff} \cdot |B_y|$$

p is the beam momentum, *l_{eff}* is the effectve length

Andrea Merlo (Magnet System Department)

September 23, 2015 11 / 22

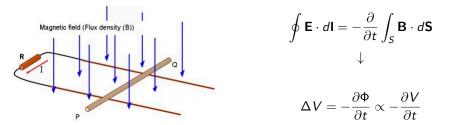
2

DQC

Magnetic Field

Probe

Coil Probe

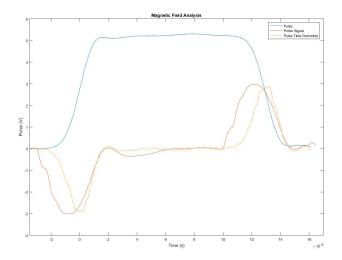

Magnetic Field Pobe

Matched Coaxial Cable Probe

- Not Perfectly Matched Terminance
- $Z_0 = 52.5 \pm 0.2 \ \Omega$
- $T_D = 6.6 \ ns$
- Area = $0.126795 \ m^2$

Coil Probe

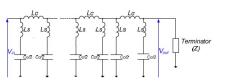
MAGNETIC INDUCTION

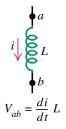

Propagating Pulse through the magnet \rightarrow Forming Pulse through the probe

Andrea Merlo (Magnet System Department)

Sac

イロト イヨト イヨト


Magnetic Field Analysis



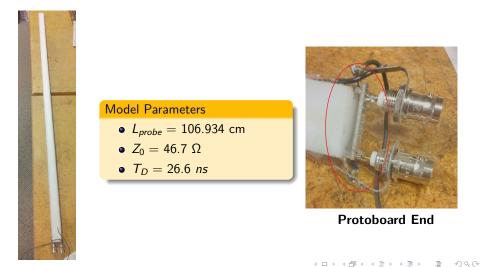
Probe's Signal is mismatched from the Time Derivative of the Pulse

Sac

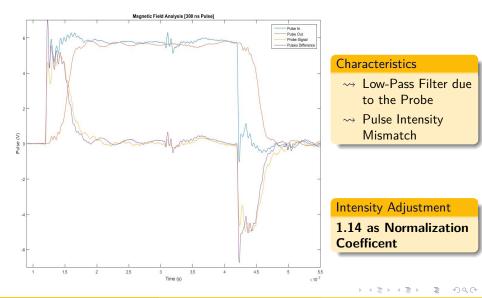
Magnetic Flux

$$V_{in} - V_{out} = L \cdot \frac{\partial i}{\partial t}, \Phi = L \cdot i$$

 $\int (V_{in} - V_{out}) dt = \Phi$

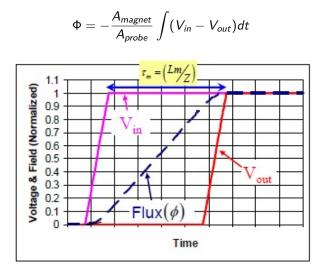

Lossless Transmission Line

$$V_{in} - V_{out} = -\xi(t) \cdot \frac{A_{magnet}}{A_{probe}}$$
Andrea Merlo (Magnet System Department) Kicker Magnet Field September 23, 2015 15 / 22


New Probe

NEW CUSTOM PROBE

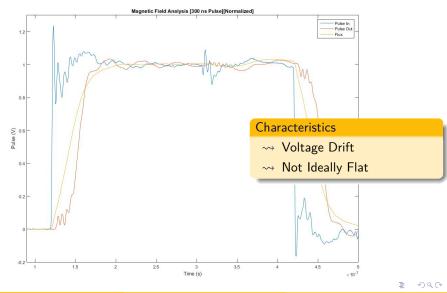
Results



Magnetic Field Analysis

September 23, 2015 17 / 22

Flux



2

DQC

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Flux

Andrea Merlo (Magnet System Department)

Kicker Magnet Field

Further Developments

- Better understanding of the key parameters for the kicker SPICE Simulation
- Model and simulation of the forming pulse throught the probe
- High Voltage Field Measurements (10 KV)
- Two Cell Long Probe in order to model Field Cell by Cell

Sac

イロト イヨト イヨト

Acknowledgment

- \rightsquigarrow Study of the Transmission Line Theory
- $\rightsquigarrow \ \textsf{Impedance Measuremetns}$
- \rightsquigarrow Magnetic Field Measurements
- \rightsquigarrow Probe's Design and Built
- $\rightsquigarrow \ \ \mathsf{Data} \ \ \mathsf{Analysis}$

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Conclusions

Two months of full learnings:

- ~~ RF Applications
- → Accelerrator Magnet
- → Pspice Simulation
- \rightarrow Hands-on

Thanks to

Luciano Elementi

Chris Jensen

< ロ ト < 回 ト < 三 ト < 三 ト</p>

DQC