

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

W Asymmetry Production at CDF Experiment

Valentina Vecchio

Supervised by Willis Sakumoto

Fermilab Summer Student Program Final Report

September 22, 2015

Valentina Vecchio Supervised by Willis Sakumoto

(D) (A) (A) (A)

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

- W asymmetry production in *pp* collisions
 - W^{\pm} production and decay
 - Why is an interesting measurement?
 - CDF Experiment
 - Signal vs background selections
 - $W
 ightarrow e
 u_{ heta}$ backgrounds
 - Analysis
 - Results

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

- W asymmetry production in pp collisions
 - W^{\pm} production and decay
 - Why is an interesting measurement?
- CDF Experiment
- Signal vs background selections
 - $W
 ightarrow e
 u_{ heta}$ backgrounds
- Analysis
- Results

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

- W asymmetry production in $p\overline{p}$ collisions
 - W^{\pm} production and decay
 - Why is an interesting measurement?
- CDF Experiment
- Signal vs background selections
 - $W
 ightarrow e
 u_e$ backgrounds
- Analysis
- Results

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

- W asymmetry production in pp̄ collisions
 - W^{\pm} production and decay
 - Why is an interesting measurement?
- CDF Experiment
- Signal vs background selections
 - $W
 ightarrow e
 u_e$ backgrounds
- Analysis
- Results

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

- W asymmetry production in $p\overline{p}$ collisions
 - W^{\pm} production and decay
 - Why is an interesting measurement?
- CDF Experiment
- Signal vs background selections
 - $W
 ightarrow e
 u_e$ backgrounds
- Analysis
- Results

W^{\pm} production and decay

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

Up quarks carry more momentum than down quarks

- *W*⁺ will head in the p direction
- W^- will head in the \overline{p} direction

Differences between the u- and d-quark PDFs will result in different asymmetries in the W boson rapidity distribution.

W asymmetry

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

- Because of V-A decay angular distribution of charged lepton is $F(\theta^*)_{l\pm} = (1 \pm \cos \theta^*)^2$
- What we can measure is charged lepton η (pseudorapidity) $\eta = -\frac{1}{2} \ln(\tan \frac{\theta}{2})$
- Asymmetry definition: $Asy^{obs}(\eta_e) = \frac{N_e^+ N_e^-}{N_e^+ + N_e^-} \rightarrow \text{contains informations on}$ u(x)/d(x)!

CDF Detector

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

General structure of detector is that of collider detectors

- Tracker in magnetic field: COT and SVX
- Electromagnetic Calorimeter
- Hadronic Calorimeter
- Muons detector

(I)

Electromagnetic calorimeter is in both central and plug region so it has high η coverage.

That's why we use W ightarrow e u!

Why is an interesting measurement?

W Asymmetry Production at CDF Experiment

- Valentina Vecchio Supervised by Willis Sakumoto
- Charged lepton asymmetry is a convolution of W asymmetry production and W's V-A decay.
- Without assumptions on neutrino's p_L (necessary in y_W measurement) uncertainty on PDFs is smaller.
- Improvement in PDF uncertainties will reduce total error on W mass!

 $M_W = 80387 \pm 19 MeV/c^2$ Phys.Rev.Lett.108, 151803(2012)

$W \rightarrow e \nu$ (SIGNAL)

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto In general the process we study is W
ightarrow e
u + X

- Experimental signature of $W \to e\nu$ event is high electron/positron E_T associated at high \not{E}_T (Missing Transverse Energy) $\to LO$;
- At NLO one of incoming parton can emit gluons and generate jets;
- Electromagnetic shower in electromagnetic calorimeter has to match at the best with p_T track revealed by COT central tracker;
- In x-y charged lepton and \mathcal{F}_T tend to be back to back(LO).
- Very hard to recostruct because of neutrino!

$W \rightarrow e \nu$ (BACKGROUND)

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

Many processes can simulate a W
ightarrow e
u decay.

- QCD: fake electron in hadron jets comes from e^+e^- pairs, heavy quark decay (bottom or charm) and hadron that fakes electron (π^{\pm}) . Hard to simulate \implies MOST DIFFICULT!
- $Z \rightarrow ee$ in which one of two electrons is miss reconstructed or goes in dead regions of detector OK
- $W \rightarrow \tau \nu$ (small) where $\tau \rightarrow e \nu_e \nu_\tau$ OK
- $Z \rightarrow \tau \tau$ (small) where one τ decays in hadrons and the other in leptons can fake a signal event with a jet OK

Selection of W candidates

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

- General selection criteria
 - Electron Et > 25 GeV
 - Electron must have an associated charge particle track
 - MET > 25 GeV (for the undetected neutrino)
 - Only one electron candidate in the event (removes Z's)
- Central detector region specific selections
 - Data from central single electron dataset with Et >18 GeV
 - Default high purity electron and track selections applied
 - Eiso4/Et < 0.1: W decay electrons are typically isolated from event jet activity</p>
- Forward plug region specific selections
 - Data is from two data sets
 - Single forward electron with Et > 20 GeV (PEM20)
 - Single electron with MET > 15 GeV (*MET*15_*PEM*20)
 - The PEM20 online trigger rate is too large for all events to be written out only 1 in 25 are written
 - Eiso4 < 4 GeV</p>

W Asymmetry Production at CDF Experiment

- Valentina Vecchio Supervised by Willis Sakumoto
- Central electron selections give a relatively background free W sample
- We have found that plug tracks are mostly junk and additional track cleanup is required

(I)

Forward tracking of the plug region

- Electrons going into the forward plug region have limited acceptance in the COT central tracker
- Forward tracking utilizes the pp
 collision vertex, the silicon vertex
 detector, and the plug shower
 maximum position detector
 (PES) for tracking space points
- Forward tracks are required to pass through 3-8 layers of silicon vertex detector sensors

Plug track quality selection

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto Track quality parameters:

- Number of silicon layers the track traverses (nsilfid)
- Number of nhits found for the track (nnhits)
- Track fit χ^2 /number of nhits

$\textit{nsilfid} \rightarrow$	3	4	5	6	7	8
nhits = 3	Х	Х	Х	Х	Х	X
nhits = 4	\checkmark	\checkmark	х	x	х	х
nhits = 5	\checkmark	\checkmark	\checkmark	х	х	х
nhits = 6	\checkmark	\checkmark	\checkmark	\checkmark	х	X
nhits $= 7$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X
nhits \geq 8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

The matrix of is used to assess			
 what to reject, and what to keep and clean-up with <i>χ</i>²/number of nhits cuts 			
Benchmarks distributions			
■ $el_Pem_3x_3\chi^2 \rightarrow \text{Plug } 3x_3$ tower EM shower shape fit χ^2 MET distribution			

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Only events with electrons that satisfy nhits \geq nsilfid AND nhits \neq 3 pass selections. For each of them χ^2 /number of nhits has to be \leq 10

Example of matrix elements

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

As shown in these two examples good quality tracks have a "flat" χ^2/dof distribution if nhits \leq layers. This is the effect of junk tracks.

Benchmark distribution and final cut

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

Valentina Vecchio Supervised by Willis Sakumoto

W Asymmetry Production at CDF Experiment

Befor & After cuts

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

Low Instantaneous Luminosity VS High Luminosity

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

- background subtraction (the MET plots give the qualitative level)
- charge misidentification

Valentina Vecchio Supervised by Willis Sakumoto

W Asymmetry Production at CDF Experiment

Summary

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

- We studied all possible background of $W \to e\nu$ channel and focused on the bigger one: QCD background
- We checked that central region data are really good and they don't need special studies.
- Quality track studies before *Met* ≥ 25 GeV cut
- Raw Asymmetry at High Luminosity seems to fit with Low Instantaneous Luminosity measurement. We succeded!

BACKUP: Charge Misidentification 1

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

Figure: Measured

Figure: Prediction from track helix

BACKUP: Charge Misidentification 2

W Asymmetry Production at CDF Experiment

Valentina Vecchio Supervised by Willis Sakumoto

• • • • • • • • • • • • • •