Mu2e tracker momentum calibration using

$$
\begin{gathered}
\mu^{-} \longrightarrow e^{-} \bar{\nu}_{e} \nu_{\mu} \\
\text { Tommaso Radicioni }
\end{gathered}
$$

University of Pisa

Supervisor: P. Murat
Summer students Final presentation 09/22/15

$1 / 15$

Outline

(1) Introduction
(2) Tracker calibration with muon decay
(3) Parametrization and fit of electrons reconstructed momentum

44 Strategy for the calibration run
(5) Summary and conclusions

Mu2e experiment objective

The goal of Mu2e experiment is the search for the conversion of muons into electrons in the field of a nucleus of Al :

$$
\begin{equation*}
\mu^{-}+N \longrightarrow e^{-}+N \tag{1}
\end{equation*}
$$

After Reco Acceptance $+\Delta E+$ Resolution

Decay-In-Orbit (DIO) electrons, namely electrons originated from muons which decay after being captured in Al meso-atoms, is the single most important background.

Momentum separation between Conversion Electrons (CE) and DIO electrons is fundamental for Mu2e experiment purpose

Tracker calibration with muon decay

Measurement of electron track momentum in the tracker reconstruction is the key measurement in Mu2e experiment \longrightarrow the success of the experiment depends critically on the tracker calibration and resolution:

- Simulated intrinsic momentum resolution is $\sigma \sim 120 \frac{\mathrm{keV}}{\mathrm{c}}$;
- A calibration with an accuracy of $\approx 0.1 \%\left(\approx 100 \frac{\mathrm{keV}}{\mathrm{c}}\right)$ is required \longrightarrow a source of particles with a known momentum is needed, such as DIO electrons momentum spectrum which has a well-known value of the edge.

$4 / 15$

Analysis purpose

In order to use DIO electrons spectrum for calibration purposes, few questions are supposed to be answered first:

- How can we calibrate the tracker with DIO electrons?
- How much statistics is required to calibrate the tracker momentum response with required accuracy?

Reconstructed momentum parametrization

It's possible to express the reconstructed value of the curvature $c_{\text {reco }}$ as a true curvature value $c_{\text {true }}$ Taylor expansion:

$$
\begin{equation*}
c_{\text {reco }}=c_{\text {true }}+\alpha c_{\text {true }}+\beta+\cdots \tag{2}
\end{equation*}
$$

where β is the false curvature and α is the absolute momentum scale. Assuming that false curvature is negligible, the effect of a non-zero momentum scale is reported in the next picture supposing $\alpha=0.1$:

Why α could it be non-zero?

Magnetic field inside the tracker could be slightly different from the expected one $B^{\prime}=(1-\alpha) B$

Reconstructed electron momentum spectrum $\alpha=0.1$

Simulation

Generation of two samples of DIO electrons:

- MC sample (10^{6} events);
- Simulated data sample (2.5 $\cdot 10^{5}$ events).

Same generator code but:

- difference in statistics of events so that statistical error is not a limitation factor;
- magnetic field 0.5% lower wrt MC samples $(\alpha=0.005)$.

In the picture on the right, DIO electrons reconstructed momentum μ is reported after a set of fit quality requirement for reconstructed tracks has been applied.

Parametrization of reconstructed DIO electrons spectrum

In order to fit the
reconstructed momentum spectrum for DIO electrons, a piecewise function $f(p)$ is defined in three different intervals of values:

- a parabola with free parameters is plotted in each of them;
- smooth connection in next plot regions.

This technique is not sensitive to the statistical jitter

Comparisons between data and MC samples

Using a normalization factor N , the plot result is the following:
Simulated data sample fit with MC fit function

Value returned by the fit is $\alpha=0.004284 \pm 0.001708$

This value is compatible within the statistical accuracy with the expected value, that is $\alpha=0.005$

In order to reach the required accuracy is needed 4 times the number of simulated data events.

Strategy for the calibration run

In order to calibrate tracker using DIO electrons, other few questions are supposed to be answered first:

- How much time is it needed to collect that statistics?
- Which limitations could affect the calibration run?

Strategy for the calibration run

Proton beams reduction factor

Mu2e experiment requires a high intensity pulsed proton beam to produce an intense beam of low energy muons:

- a μ Bunch is a bunch of $\approx 10^{7}$ protons delivered to the production target;
- every $\approx 1.7 \mu$ s a μ Bunch is injected into the beamline.

At nominal proton beam intensity, the expected number of the DIO electrons is $\approx 2 \cdot 10^{4}$ per μ Bunch. At 1 T , most of DIO electrons doesn't produce hits in the detector \longrightarrow a reduction of magnetic field up to 0.5 T is needed to detect the spectrum edge.

Strategy for the calibration run

$\approx 5 \cdot 10^{3}$ DIO electrons per μ Bunch is in the acceptance band of the tracker \longrightarrow DIO electrons hit multiple times inner straw tubes causing misreconstruction effects.

A reduction of DIO electrons per μ Bunch is needed in order to improve the momentum reconstruction
The number of protons per bunch could be reduced by a factor of about 10 . An additional reduction of $10 \div 100$ could be achieved by moving and defocusing the extracted proton beam before the production target. The final result is ≈ 5 DIO electrons per μ Bunch.

Strategy for the calibration run

Data acquisition timing

Assuming that no online triggering is needed and all events taken during the calibration run are written to disk, the bandwidth B required for a calibration run at 0.5 T is given by the following formula:

$$
\begin{equation*}
B=N\left(\frac{\text { Bytes }}{\text { hits }}\right) \overline{N\left(\frac{\text { hits }}{\mu B u n c h}\right)} N\left(\frac{\mu \text { Bunch }}{s}\right) \tag{3}
\end{equation*}
$$

to be compared with the maximum data logger rate to read and write the disk array equal to $B \approx 50 \frac{M \text { Bytes }}{s}$.

Strategy for the calibration run

Data acquisition timing

Given that:

- DAQ system transfer data at 128 bits per hit format, that is $\mathrm{N}\left(\frac{\text { Bytes }}{\text { hits }}\right)=16 \frac{\text { Bytes }}{\text { hits }}$;
- the mean number of hits per μ Bunch is ≈ 35;
- the number of μ Bunch per second is fixed and is $\approx 2 \cdot 10^{5}$.

$B \approx \mathbf{1 0 0} \frac{\text { MBytes }}{s}$ is required per μ Bunch so $\approx \mathbf{0 . 5}$ DIO electrons per μ Bunch allows us to efficiently transfer data

$14 / 15$

Summary and conclusions

To summarize:

- There's the possibility to use reconstructed DIO electrons spectrum to calibrate tracker \longrightarrow we can predict a non-zero momentum scale value;
- At half field, a reduced beam intensity is needed to prevent misreconstruction effects and DAQ system difficulties.
There are still unsolved questions such as:
- What if the false curvature is non-zero?
- Which is the maximal beam intensity for the dedicated run at 0.5 T ?

