o-2 trolley system
Final Internship Report

Matteo Bartolini

September 25, 2015

Contents

Introduction to g-2 experiment
Evaluation of q, with SM

1 Introduction to g-2 experiment
2 Evaluation of q, with SM

3 Experimental method
3.1 Producton of muons
3.2 Muons in the magnetic field
3.3 Measurement of w,
3.4 Measurment of the magnetic field

4 Storage Ring
4.1 Inflector

5 Trolley System
5.1 Galil board
5.2 MIDAS

1 Introduction to g-2 experiment

We know from physics that the magnetic moment of a particle is related to
its spin by the following equation:

fi=9(5-)8 (1)

2m

where q and m are the charge and the mass of the particle and g is the gy-
romagnetic factor which, for a structurless % spin particle, is expected to be
2 from Dirac’s equation.
The difference g-2 is due to radiative corrections in QED and has been de-
termined with increasing precision in the last decades both theoretically and
experimentally. The Standard Model of particle physics makes a very precise
prediction to the value g-2, accurated to 400 ppb. The most recent measure-
ment was performed at Brookhaven National Laboratory (experiment E821)
and achived a precision of about 540 ppb.The final result is:

a1 = (11659208.0 + 6.3) * 10~° (2)

"

QED calculations give:

a;™ = (11659182.8 + 4.5) % 107" (3)

The difference Aa,, is 3.30. In order to be confident that this is not a statis-
tical fluctuation, a difference of 50 is required.

The purpose of Fermilab g-2 experiment is to achive a precision of 140 ppb.
With this increased precision we can better compare the difference between
the theoretical and the experimental value and this should provide an answer
to the question whether there are new forces and particles which may exist
in nature.

In all the experiments that have been performed so far muons have been
used. In the SM effects on the magnetic moment scale with power of m?
which makes muons more suitable for this purpose, since they are 207 times
heavier than electrons. For this measure, muons are injected into a storage
ring where they follow a circular orbit with a lifetime of about 64 microsec-
onds before decaying into electron and neutrinos.

2 Evaluation of ¢, with SM

According to the Standard Model the anomaly can be described as a sum of
the hadronic and the elecroweak terms:

_ QED EW Hadronic
ay=a;"" +a," +a, (4)

2

v

Figure 1: ged loop

The QED and EW terms have been calculated with very high precision using
perturbation theory, thanks to the small value of the coupling costant ;-. The
hightest uncertanty in this theoretical calculation comes from the hadronic
term, since it cannot be calculated using perturbation theory at low energy.
The QED contribution includes photonic loop and is calculated analitically
up to the third order.

The EW term includes contribution from Z and W bosons. It is calculated
up to the second order.

Figure 2: Weak contribution to the muon anomalous magnetic moment. This
figure shows a one-loop diagram with virtual W bosons

Hadronic __

The hadronic term includes quarks and gluons loops and gives a,,

(6945 + 62) * 10~

Figure 3: Feynman diagram for an hadronic loop

3 Experimental method

3.1 Producton of muons

Muons are produced by sending a proton beam into a target material. This
gives origin to positive and negative pions whose primary decay, with a prob-
ability of 0.999877, is purely leptonic and creates muons and neutrinos:

™ — T+, (5)
T — e+, (6)
Since in nature there are almost only left-handed neutrinos and right-handed
antineutrinos, due to momentum and spin conservation law, the produced
muons will all have a defined polarization (projection of the spin S along the

momentum p’ direction). These muons are injected into a storage ring where
a magnetic field is present.

3.2 Muons in the magnetic field

In the magnetic field muons move along the ring with the cyclotron frequency

we = ffc given by the equation of motion:
dp’ -
— =qUuXx B 7
i (7)

On the other and the interaction of the muon magnetic moment [with the
magnetic field B gives origin to the Larmor frequency wg = qui +(1— 7)%
The anomalous precession frequency is determined from the difference:

b 2 _ 505 ®)

Weg = Wo — Wg = 9 m m

In order to provide vertical focusing electrical quadrupoles are also used. In
the muon rest frame this is seen as a magnetic field that can affect the Larmor
frequency so a correction to the previous expression for w, must be made:

qB 1 EXE
wazauEJr(%—ﬁ) c

9)

Looking at this equation we can see that the term (a, — ﬁ) vanishes at
the magic momentum of 3.094 % which correspond to v = 29.6. Thus a,

can be obtained by a precision measurement of B and w, As already said,
muons in the ring live, on average, 64 microsecons before decaying via an
electroweak process into electrons and neutrinos:

pt—et+u, +u. (10)

o —e + .+, (11)

We know that parity is conserved in electromagnetic and strong interaction,
but not in a electroweak process. This means that a correlation between the
spin orientation of the muon and the momentum direction of the emitted
electron(positron) exist. In other words there is a preferred direction for the
emission of the electron for each spin orientation of the muon. In the muon
rest frame the differential probability for an electron to be emitted with a
normalized energy y = ﬁ (where E,,., = 52 Mev is the maximum energy
that can be transfered to the electron) at an angle # with respect to the muon

spin is:

% = 217Tn(y)[1 + a(y)cost] with (12)
n(y) =y*(3 — 2y) and (13)
ofy) = 120 (19

ed—2y
Where + is used for positrons and - for electrons. Positrons and electrons
with ¥y > 0.5 tend to emerge in the direction parallel and antiparallel to
the muon spin respectively. In the lab frame the distribution rotates at the
angular frequency w,

Storage
Ring

spin
—
momentum

Figure 4: This figure shows the momentum and the spin precession along the
ring. The muon spin axis changes 12 degrees with respect to the momentum
axis after each rotation

3.3 Measurement of w,

We have already seen from eq (8) that, in order to measure a,, one needs to
know B and w,. Now we will talk about how measure w,. In order to minimize
the uncertanty in the measure of w, only positrons with an energy over Ej,
are selected. Consequently the integrated number of positrons above Ey, is
modulated at the frequency w,. The expression is shown to be:

N(t) = Noe:vp(—;)[l ~ Acos(wat + ¢] (15)
In this experiment positron detection is made with photomultipliers dis-
tributed along the ring. These detectors measure the energy of positrons.
However the trajectory of these particles must also be found to reconstruct
the point where the muon decayed. The muon position information is par-
ticularly important in characterizing the megnetic field felt by the muon at
the moment of its decay.

E821 data (i Data

@ £ k— 5 Param Fit
2 C
3
=10 &
Q 2
a e
o C
510° -
0 =
(8] E
4
10 =
of
10 EY al A
; A A A b i AW ""1 A
't .lut \."\J'rl\f-'. A 3 TV Y Y "\
M VY VVVUVVWAAAA v
102=_ L YN NV W ".yf%" \r,i'n”f""-' ."’ m i
E 'f"‘l"“,f‘\"}i“nw'
C L L L l L 1 1 l 1 L A I L 1 1 l 1 L

o

20 40 60 80 time (us) 100
N(t) = Noe 77 [1 + A cos(wat + @)]

I — .-

Figure 5: proton frequency

3.4 Measurment of the magnetic field

The magnetic field is measured using NMR. A trolley system made of 17
sferical water probes scans the field at 6000 azimutal locations around the
ring to obtain the correspondent proton precession frequency w,. It can be
shown that a, is linked to w), ,the proton precession frequency averaged over
the ring, through the following expression:

R
PON=R

(16)

a

where R = 2 and A\ = Z;ﬂp is the muon to proton magnetic moment ratio,
determined from muonium hyperfine level structur measurments. This last
value is known to 8 ppb. In the Brookhaven experiment sytematic uncer-
tanties for the w, were estimated to be 170 ppb. FNAL goal is 70 ppb. In
the next chapters i will go into detail about how the measure of B is carried

out, since this was part of my work at Fermilab.

600

NMR-FID beat signal [arb. units]
R N S
8 o 8 8

&
=
S

time [msec]

Figure 6: proton frequency

4 Storage Ring

The ring used in this experiment is the one used at Brookhaven National
Laboratory. It was moved 3200 miles by land and sea to Fermilab from New
York during summer 2013. This C shaped ring has a 7 metres radius and is
designed to have a very homogeneous vertical field of about 1.4 Tesla. A very
uniform field, generated by the superconducting coils,reduces requirements on
the knowledge of the location of the magnetic probes. For the purpose of this
experiment the field should be know to 0.1 ppm. The magnet is also designed
as a shimmable kit. Passive iron shimming is used to correct imperfections
in the initial assembly by a factor of two or three order of magnitude. In the
following picture a cross section of the storage ring is shown:

G. W. BENNETT er al.

360 mm
. !

Through bolt =, f_i Shim plate

Iron yoke —\
Upper push-rod m Inner upper coil
slot . .i'-‘_/’l'_

]

Quter coil -
18T0mm e " <—Muon beam Poles
S N\
] Spacer Plales m‘, Inner lower coil

To ring center

i
P
i
a4 oh i | b
remd | } —_—
i
|
i

""'—"“' 544 mm
——— 1384 mm ——=—

FIG. 7. Cross sectional view of the C magnet.

Figure 7: Cross section of the magnet

4.1 Inflector

The inflector is a superconducting magnet whose vertical fiels cancels the
main storage field allowing muons to pass largely undeflected into the ring.
The muons coming from the inflector require a pulsed kicker to be put into
the phase space acceptance of the ring. The center of the circular orbit for
the just injected muon is offset from that of the storage ring and this would
lead to the particle being lost after one revolution.

Inflector
P &
—1

e
2

Calibration
NMR probe

CLs
[/20

| E Traceback
| £ chambers

| L J271F Fike
f_" [§
||_'9 manilor

18 Fiber

monitor

Figure 8: Cross section of the magnet

5 Trolley System

The trolley is a system that is used to measure the magnetic field around the
ring, as already said. All the 17 probes that it contains must be calibrated
using a very homogeneus magnetic field. In this experiment, for the purpose,
a solenoid of a MRI machine is used. The steps taken for calibration are listed
below:

e Put absolute sferical water probe in MRI solenoid to measure B,
e Measure the field using the trolley system to get Biroiey
e Take the difference between the two to obtain AB = Bgps — Birotiey

During my experience at Fermilab i was involved in the development of an
automated system to bring the water probes in and out of the solenoid upon
request and of an interface with MIDAS, the data acquisition system used for
this experiment. The basic idea is to program a commercial controller called
Galil to control motors movement using C/C++ languages. It is important
to have a stable and precise system in order to reduce systematc errors.
Absolute water probes allow to measure B-field with a precision to 20 ppb,
but grandients in the field may affect the accuracy if an error in the probes

10

dispacement is made: AB = By + %—g - AZ Another crucial improvement
that must be achieved is the resolution in the azimutal position measurment
along the ring. This experiment aims at having a resolution of less than 2mm
compared to the 2cm resolution of the previous experiment at Brookhaven.

LLILLE 37
WL (36
uoifal abeiols yanu

Figure 9: View of the trolley and the probes

5.1 Galil board

This is a commercial controller produced by the company Galil Motion Con-
trol. The one used for this experiment has the following characteristics:

e [t can control up to six exes at the same time
e Each axis has 26 pins to comunicate with the motors

e [t can be programmed using the Galil interface or using c++ libraries
downloaded from the company website

The functions defined in these libraries can be used in any C++ code to send
command or store the output. In particular, this functions will be called by
the software MIDAS at the right time. Here i will report the ones that i used
and a quick explanation of what they do:

e Gopen() which allows the user to set up a communication with the
controller.

e GlInfo() which returns information about Galil

e GCommand() sends commands to galil and stores the answer into the

buffer.

11

e GProgramDownload() allows to download into Galil a sequence of com-
mands

e GProgramDownloadFile() allows to download a text file into Galil.

e GMessage() is used to read outputs from Galil, tipically when using
the command MG in a Galil script.

e GCmd() sends command to Galil but does not store any output coming
from the controller.

5.2 MIDAS

The g-2 DAQ is being developed using the MIDAS data acquisition software
package, which was first created at PSI and now is widely used in many
another labs. It will process data from 1296 calorimeters channel, 3 straw
tracker station and multiple auxiliary detectors at the expected rate of 18
GB

I\/SHDAS provides a convenient web interface for control of the experiment, as
shown in fig ,as well as the framework for an event builder and data logger,
which will output data in a MIDAS binary format, which can subsequently be
processed into a ROOT tree and analyzed. MIDAS also provides an online
database (ODB) used both for saving the configuration of the experiment
from run-to-run and also for control of the detectors, as settings that are
changed in the ODB are hot-coded to update via the frontend processes in
real time. A frontend application consists of:

e a fixed experiment-independent system framework handling the data
flow control, data transmission and run control operation.

e a user part

The code that i wrote allows to implement a sequence of movement and
to monitor many motors parameters such as position, speed, acceleration,
torque ecc. Data acquired are stored into ROOT files. This code can be
improved to prevent motor from getting damaged if something goes wrong
during a run. I have not been able to do it due to the fact that motor were
under repair for a long time and i couldn’t use them for testing. Here i post
the code written by me that allows to talk to Galil from MIDAS web interface.

/**\

Name: frontend .c

12

Created by:

Contents:

$1d$

Matteo Bartolini

readout code to talk to Galil motion control

********>I<>l<*******>I<****>i<*************>I<****>i<**************************/

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>

<stdlib .h>

"midas.h”

"mestd . h”

7experim . h”

7gclib . h”

"gclibo .h”

<iostream>

<string>

<iomanip>

7 /home/ galil /DAQ/midas/drivers/device/nulldev.h”
” /home/ galil /DAQ/midas/drivers/bus/null.h”
” /home/ galil /DAQ/midas/drivers/class /hv.h”
” /home/ galil /DAQ/midas/drivers/bus/rs232.h”
<termios .h>

<fentl . h>

<unistd.h>

<sys/ioctl.h>

<sys/timeb.h>

<fstream>

<sstream>

#define GALIL EXAMPLE OK GNOERROR //return code for correct code exe
#define GALIL.EXAMPLEERROR —100
using namespace std;

/* make frontend functions callable from the C framework =/

#ifdef

__cplusplus

extern "C” {

#endif

ofstream myfile;

13

// 1 am defining some Galil libraries variables
INT levell=2;

float axes|[3];

INT setaxes[3];

float speed[3];

float acceleration [3];

float torque[3];

INT getaxes[3];

HNDIE hDB, hkeyclient :

char name[32];

int size; //size of axes|[3]

INT sizel; // size of setaxes[3]

INT allow;

int i;

string s;

int sl;

GReturn b = GNO_ERROR;
int rc = GALILEXAMPLE OK; //return code
char buf[1023]; //traffic buffer

char bufl[1024];

//char buf2[1024];

GCon g = 0; //var used to refer to a unique connection. A vali
//

/x—— Globals */

/* The frontend name (client name) as seen by other MIDAS clients

*/

char xfrontend_name = ”Sample Frontend”;
/* The frontend file name, don’t change it x*/
char xfrontend_file_.name = __FILE__;

/* frontend_loop is called periodically if this variable is TRUE
*/
BOOL frontend_call_loop = FALSE;

/% a frontend status page is displayed with this frequency in ms x*/
INT display_period = 3000;

14

/#* maximum event size produced by this frontend x/
INT max_event_size = 10000;

/* maximum event size for fragmented events (EQFRAGMENTED) x/
INT max_event_size_frag = 5 x 1024 x 1024,

/* buffer size to hold events x/
INT event_buffer_size = 100 % 10000;

/*—— Function declarations */

INT frontend_init ();

INT frontend_exit ();

INT begin_of_run (INT run_number, char xerror);
INT end_of_run (INT run_number, char xerror);
INT pause_run (INT run_number, char xerror);
INT resume_run (INT run_number, char xerror);

INT frontend_loop ();

INT read_galil_event (char xpevent, INT off);
INT read_trigger_event (char xpevent, INT off);

INT poll_event (INT source, INT count, BOOL test);

INT interrupt_configure (INT cmd, INT source, POINTER.T adr);
INT db_set_value (HNDLE hDB, HNDLE hKeyRoot, const char xkey_name, co
INT db_find_key (HNDLE hdB, HNDLE hKey, const char xkey_name, HNDLE x
INT cm_get_experiment_database (HNDLE «hDB, HNDLE xhKeyClient);

/* device driver list x/
/*DEVICEDRIVER hv_driver [| = {
{"Dummy Device”, nulldev, 16, null},

{""}
bix/

/*—— Equipment list */

15

EQUIPMENT equipment [] = {

{" Galil”, /* equipment name x/

{3, 0, /* event ID, trigger mask x/

"SYSTEM” | /* event buffer x/

EQ_PERIODIC, /* equipment type x/

0, /* event source x/

"MIDAS” | /* format =/

TRUE, /* enabled x/

RORUNNING | RO_TRANSITIONS | /* read when running and on trans
RO_ODB, /* and update ODB x/

1000, /* read every 1 sec x/

0, /* stop run after this event limit =/
0, /* number of sub events x/

L, /* log history x/

””7 ’7”7 7’”7}7

read_galil_event , /* readout routine x/

}

{""}
}s

#ifdef __cplusplus

}
#endif

/*************>|<****>|<>|<>X<>l<********>l<>l<***>l<***>l<>l<***>l<>l<**********************\
Callback routines for system transitions

These routines are called whenever a system transition like start/
stop of a run occurs. The routines are called on the following

occations:

frontend_init: When the frontend program is started. This routine
should initialize the hardware.

frontend_exit: When the frontend program is shut down. Can be used

16

to releas any locked resources like memory, commu—
nications ports etc.

begin_of_run: When a new run is started. Clear scalers, open
rungates , etc.

end_of_run: Called on a request to stop a run. Can send
end—of—run event and close run gates.

pause_run: When a run is paused. Should disable trigger events.

resume_run: When a run is resumed. Should enable trigger events.
>|<>|<*>|<****>|<********>|<****>|<*************>|<*>l<>l<************************/

/*—— Frontend Init */

INT frontend_init ()

{
myfile.open(” /home/ galil /experiment/galilmove .dmec”);
myfile <<"#MOVE\nKIA=0.1\nKPA=103\nKDA=2268\nSPA=400\nACA=20000\nTLA=
myfile. close ();

b=GOpen(” /dev/ttyUSBO —t 1000 —s MG —d”, &g);
//GOpen (”192.168.1.42 —s ALL —t 1000 —d”,&g);
//GOpen(”00:50:4¢:38:19:AA —s ALL —t 1000 —d”, &g);
GlInfo(g, buf, sizeof(buf)); //grab connection string
cout << "buf is” << 7 "<< buf << "\n”;

if (b=GNOERROR){

cout << "connection succesfull\n”;

}

else {cout <<

”"connection failed \n”;}

7

GProgramDownload(g,”” ,0); //to erase prevoius programs
b=GProgramDownloadFile(g,” /home/ galil /experiment /galilmove .dm

GCmd(g, "XQ”);

GTimeout(g,2000);//adjust timeout

17

//int 1 = 0;
//int s;

// end code to communicate with Galil

return SUCCESS;
¥

/*—— Frontend Exit

INT frontend_exit ()
{

}

return SUCCESS;

/*—— Begin of Run

INT begin_of_run (INT run_number, char *error)

{

return SUCCESS;
}

/*—— End of Run

INT end_of_run (INT run_number, char xerror)

{

return SUCCESS;
}

/*—— Pause Run

INT pause_run (INT run_number, char xerror)

{

18

return SUCCESS;
}

/*—— Resuem Run */

INT resume_run (INT run_number, char xerror)

{

return SUCCESS;
¥

/*—— Frontend Loop */

INT frontend_loop ()
{

/% if frontend_call_loop is true, this routine gets called when
the frontend is idle or once between every event x*/

return SUCCESS;
}

/A */

/**\

Readout routines for different events

**/

/x—— Trigger event routines */

INT poll_event (INT source, INT count, BOOL test)

/* Polling routine for events. Returns TRUE if event
is available. If test equals TRUE, don’t return. The test
flag is used to time the polling x*/

19

return 0;

}

/*—— Interrupt configuration

INT interrupt_configure (INT c¢cmd, INT source, POINTER.T adr)
{
switch (emd) {
case CMDINTERRUPT ENABLE:
break ;
case CMDINTERRUPT DISABLE:
break ;
case CMDINTERRUPT ATTACH:
break ;
case CMDINTERRUPT DETACH:
break;
¥

return SUCCESS;
}

/*—— Event readout

INT read_galil_event (char xpevent, INT off){
float xpdata, a;
float =xpspid;
float xpacc;

char buffer [500];

char bufferl [500];

char buffer2 [500];

hkeyclient =0;
cm_get_experiment_database(&hDB, NULL);
int size2 = sizeof(getaxes);

INT size3 = sizeof(allow);

//db_find _key (hDB,0,” /Equipment/ Galil /Variables” & hkeyclient);

20

db_get_value (hDB, hkeyclient ,” /Equipment/Galil /Variables/Setting” ,&ge
db_get_value (hDB, hkeyclient ,” /Equipment/Galil/Variables/Condition” &
//read values from Condition and store it in variable allow

//the variable allow is controlled by the user. Movement only starts
sprintf (buffer ,”"PAAYA" ,getaxes [0]);

sprintf (bufferl , "PAB=%d” ,getaxes [1]);

sprintf (buffer2 , "PACG%d” ,getaxes [2]);

if (allow==1){

//send command to Galil

GCmd(g, buffer);
GCmd(g,”BGA”);
GCmd(g, bufferl);
GCmd(g,”BGB”);
GCmd(g, buffer2);
GCmd(g,”BGC”);

allow=0;
db_set_value (hDB,0,” /Equipment/Galil/Variables/Condition” &allow , siz

}

rc = GMessage(g, bufl, sizeof(bufl));
//cout << bufl << endl;

stringstream iss (bufl);

// output returned by Galil is stored in the following variables
iss >> axes [0];
iss >> axes|[1]
iss >> axes|[2];
iss >> speed [0];
iss >> speed[1]

I

I

21

iss
iss
iss
iss
iss
iss
iss

>>
>>
>>
>>
>>
>>
>>

speed [2];
acceleration [0];
acceleration [1];
acceleration [2];
torque [0];
torque [1];
torque [2];

//upgrade ODB
cm_get_experiment_database(&hDB, NULL);

db_set_value (hDB, 0, ”/Equipment/Galil/Variables/Position” ,&axes, siz
db_set_value (hDB,0,” /Equipment/Galil /Variables/Speed” ,&speed , sizeof (s
(
(

db_set_value

hDB,0,” /Equipment /Galil /Variables/Acceleration” &acceler:

db_set_value (hDB,0,” /Equipment/Galil /Variables /Torque” & torque , sizeof

bk_init32 (pevent);

/* create banks x/
bk_create (pevent, "AXES”, TIDFLOAT, (void *x)&pdata);
for (int j=0;j<3;j++){

}

xpdatat++ = axes|[j];

bk _close (pevent ,pdata);

bk_create (pevent, "SPID”, TID FLOAT, (void *x)&pspid);
for (int j=0;j<3;j++){
xpspid++ = speed[j|;

}

bk_close (pevent , pspid);

bk_create (pevent ,”ACCL” , TIDFLOAT, (void s*x)&pacc);
for (int j=0;j <3;j4++){
xpacc++ = acceleration [j];

}

bk _close (pevent ,pacc);

22

return bk_size (pevent);

23

