Proton reconstruction at Mu2e

Valerio Bertacchi Final presentation, International Summer Student 2016 September 21, 2016 Supervisor: Pasha Murat Co-Supervisor: Gianantonio Pezzullo

UNIVERSITÀ DI PISA

Mu2e Experiment

Goal

Reduce the upper limit for the Charged Lepton Flavour Violation process: $\mu N \rightarrow e N$ with a Single Event Sensibility $< 2.5 \cdot 10^{-17}$

The Tracker

Structure

- 6 panels each plane, 2 planes each station, 18 stations in total
- Plane: 96 straw tubes

Hits

- Straw hits
- Stereo hits

Muon Flux and Intensity fluctuations

- Fluctuations in muon flux >10% affect the sensitivity of the experiment
- Batch by batch fluctuations can reach 50-100%
- Using current method (germanium detector) is difficult to go under 10% of uncertainty

Monitor the flux:

- Need a high rate channel
- DIO electrons have a reconstruction rate of 4.6
 Hz

🗲 Fermilab

impossible to monitor the flux batch by batch (ms time-scale)

Protons

Source

Nuclear disintegration after muon capture

Spectrum

Known with finite accuracy a mainly studied proton above 100 MeV

Signal Properties

- Low energy protons → non relativistic → high energy loss (Bethe-Block 1/β² trend)
- Multiple scattering effect on trajectory
- large TOF
- No calorimeter information
- Delta-rays production

Event Reconstruction, full background

Full background simulation:

- (from MC-truth) proton generate hits
- High occupancy It is not possible to immediately identify protons
- Protons tracks are not reconstructed

Calorimeter cluster

Delta ray

Event Reconstruction – Energy deposition

- By default energy range accepted is from 0 to 3.5 keV (per hits)
- Hit charge distribution:

Set new range: from 3.5 keV to 110 keV proton selection

Single Proton

Selection

Known how select protons (energy deposition tagging) is possible to study the most simple proton event and reconstruct it.

The simulation

Monte-Carlo with "single proton gun": one proton per event, with complete detector simulation

Analysis

We want run the existing reconstruction code on single proton generated events and understand why and where the reconstruction algorithm fails.

🛠 Fermilab

Reconstruction code steps

- Step 1: Hit Preparation see energy flagging
- Step 2: Time Peak Finder (discussed later)
- Step 3: Patter Recognition is helix finder
 - Different energy deposition is different hit distribution
 - Multiple scattering is relaxed constrains on circle pattern
- Step 4.1: Seed Fit starts from helix, simplified fit
- Step 4.2: Kalman Filter Fit is material and field effect, 10 iterations
 - Most of parameter relaxed, no material effect

Time Peak Finder

The algorithm searches for sets of hits close each other **Proton peaks features:**

- Larger width: not negligible TOF (70 ns VS 30 ns of drift time)
- Double peaks

Time Peak Finder (2)

Double peak algorithm behaviour: 2 cloned peak

Example of the results

口 Fermilab

Fast Optimization of reconstruction algorithm General method:

- Single proton simulation analysis and debug of rejected event
- Advantages: every time MC-truth well known (event by event), efficiency under control
- Disadvantages: no purity check

Time Peak Finder: increase efficiency from 40% to 80%

- number of hits give an upper limit to efficiency
- tracks duplicate not easily solvable at configuration level

Helix Finder: efficiency >90%

Fitter: efficiency about 50%

- not solvable at configuration level
- Stronger cut on hit number (20) fitter efficiency >90%

NB: all efficiencies evaluated for 150 MeV/c protons

🛠 Fermilab

Background frame test

Reconstruction of proton tracks on full-background sample of events:

It works, but studies on track quality are necessary:

🛚 🛟 Fermilab

Purity

Method:

- comparing track-ID and generated particle-ID and associate
- evaluate momentum of generated particle in front of the tracker $(p_{\rm front})$
- If generate particle is not a proton set $p_{\text{front}} = -1$

- Negative mean ($\simeq -20~{
 m MeV/c}$) for energy losses
- RMS ($\simeq 18~{
 m MeV/c}$) is the scale of uncertainty in momentum

🚰 Fermilab

16 9/21/2016 Valerio Bertacchi | Proton reconstruction at Mu2e

Tracks duplicate problem

- Easy to study _ statistically using particle ID of tracks
- Are statistically _ relevant: about 20% of tracks are cloned

🚰 Fermilab

Tracks duplicate problem (2) Solution method

- Find best parameters to recognize cloned tracks: T_0, p for tracks duplicate are nearly the same
- Analyze distribution on $\Delta p \times \Delta T_0$ plane, where differences are evaluated between all the tracks of the event

🛠 Fermilab

- Make a cut using MC-truth information of track duplicate too Distribution of differences in Time and Momentum

Tracks duplicate problem (3)

 Only one peak around zero

Momentum not add information => integrated

Distribution of real tracks

Track duplicate peak

Tracks duplicate problem

Monte-Carlo Truth:

- Most of track duplicate has $\Delta T_0 < 20 \ {\rm ns}$
- In used simulation real track has $\Delta T_0 < 20 ~\rm ns$

Distribution of differences in Time and Momentum Tracks, Entries = 246, Overflow(t,p) = (2014,19) MC-Truth, Entries = 202, Overflow(t,p) = (3,0)

Distribution of Cloned Tracks Number of Events 00 Before the cut, Entries = 1519 After the cut, Entries = 1519 10^{2} 0.5 1.5 2.5 3.5 4.5 Number of particle with same ID 9/21/2016 Valerio Bertacchi | Proton reconstruction at Mu2e

The Cut:

- Applied a cut at 20 ns
- Efficiency of the cut >99%

Time difference [ns]

Number of tracks reconstructed

We could monitor the flux every 180 microbunch ($\simeq 300 \, \mu s$) with precision about 4.4%

Monitoring Method

- Absolute normalization: counting DIO muons in a long period T (efficiency stopping and decay fraction well known) $\implies N_{\mu}(T)$
- Assumption: reconstruction efficiency for protons is constant in time
- $\frac{N_p}{N_{\mu}}(t) \equiv f = \text{const} = \frac{N_p(T)}{N_{\mu}(T)}$ from absolute normalization
- Measuring protons in time $N_{\mu}(t) = N_{p}(t)/f$

Flat generator

For further analysis are generated protons with a flat momentum distribution and analyse the result of reconstruction using Monte Carlo truth information

χ^2 distribution

24

🚰 Fermilab

Proton momentum spectrum

🚰 Fermilab

Comparison with flat production:

- Peak at lower momentum
- No significant bump in tail

Input momentum distribution

Purpose:

-consider 4 distributions:

-Generated flat N(p) and generated from background frames N'(p)

-Reconstructed from flat R(p) and from background R'(p)

-We want to obtain N'(p) to check the reconstruction

First try of deconvolution Momentum distribution of generated protons - full background

- similar qualitative shape
- Same width
- different peak (shift)

Useful to make the method iterativeNeeded efficiency studies

Summary and results

- The current reconstruction method of mu2e, with some modification is able to reconstruct protons
- Reconstruction in nominal background: about 3 proton/microbunch
 - an alternative method for monitoring the muon flux intensity
 - adequate for bunch-to-bunch intensity monitoring
- Studied and optimized the purity: there are 10% of deutons
- reconstructed momentum spectrum of protons
- Deconvolution of input spectrum work in progress

Next Steps

- Optimizing the fitting algorithm for protons and understand how to improve χ^2 distribution
- Study and optimize the reconstruction efficiency
- Quantitative study on muon flux and its fluctuations
- Improve a deconvolution method to obtain proton momentum distribution at production level

BACKUP SLIDES

Background of the experiment

Signal

Monoenergetic electron $E_e = m_\mu c^2 - B_\mu - \frac{(m_c^2)^2}{2m_N c^2}$

Background

- DIO electrons: $\mu^- N \rightarrow e^- \overline{\nu}_e \nu_\mu N$
- Radiative muon capture: $\mu^{-}Al \rightarrow \gamma \nu_{\mu}Mg$
- Decay in flight muons: $\mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu$
- Cosmic rays
- Radiative pion capture: $\pi^{-}Al \rightarrow \gamma X$
- Antiprotons: $pp \rightarrow ppp\overline{p}$
- Protons from nucleus disintegration

Singal numbers

Microbunch: $T \simeq 1.7 \ \mu s$ $N_p = 10^7$, duration= 200 ns

Batch: $25 \cdot 10^3$ microbunch, $T_b \simeq 43$ ms

Decay-In-Orbit analysis The Signal

 $\mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu$ in target nucleus orbit is one of the main background with a theoretically calculated spectrum ($\Gamma_0 = \frac{G_F^2 m_\mu^5}{102\pi^3}$)

DIO Reconstruction Efficiency (approx):

Linear from 80 MeV ($\varepsilon = 0$) to 95 MeV, ($\varepsilon = 0.1$), flat above 95 MeV

🛟 Fermilab

Decay-In-Orbit flux analysis (2)

DIO total number $\simeq 9.0 \cdot 10^7$

DIO number (per second) $\simeq 4.6$

Problem:

Rate of reconstructed DIO electrons is less than 1 event/microbunch, so is impossible use DIO to monitor microbunch fluctuations

🛠 Fermilab

History 1 - starting (failing) event reconstruction in full background

History 2 - Event Reconstruction – first try (energy deposition)

• With new energy range protons COULD be reconstructed

But:

 Reconstruction in complete background event doesn't find tracks

So:

- Only proton hits has so high energy
- Needed to modify the code to reconstruct protons

🚰 Fermilab

36 9/21/2016 Valerio Bertacchi | Proton reconstruction at Mu2e

Step 1 – Hit Preparation (Energy analysis) Flagging:

Define hits in the tracker, for proton main flag is energy deposition

Proton absorber

- Using 100 MeV/c protons po hits
- Generated 150 MeV/c protons

Energy deposition

- Proton simulation include delta rays production
- Energy deposition selection can't reject delta rays

MC Truth:

	I	SHID	Flags	Plane	Panel	Layer	Straw	Time	dt	eDep	PDG	PDG(M)	GENID	ID	p
	0	17	0000240f	0	0	0	34	699.062	-0.641	0.006691	2212	2212	28	1	122.392
Dalta	1	64	0000040f	Θ	0	1	33	689.875	-0.547	0.007895	2212	2212	28	1	125.619
Della	2	539	0000040f	0	5	1	23	692.781	1.297	0.007290	2212	2212	28	1	128.082
	3	1440	0000040f	2	3	0	0	687.484	2.109	0.007954	2212	2212	28	1	119.084
rav	4	1735	0000640f	3	0	0	14	703.531	-1.500	0.007513	2212	2212	28	1	110.236
iay	- 5	1783	0000040f	3	0	1	15	695.859	-1.484	0.008076	11	2212	- 1	28	0.038
-	6	2271	0000040f	3	5	1	31	688.078	0.406	0.008649	2212	2212	28	1	116.652
	7	2796	0000240f	4	5	0	24	699.156	-0.047	0.008109	2212	2212	28	1	106.506
	8	2843	0000040f	4	5	1	23	679.000	-0.094	0.008801	2212	2212	28	1	102.684
	9	3170	0000040f	5	3	0	4	687.984	1.219	0.008913	11	2212	- 1	46	0.053
	10	3218	0000640f	5	3	1	5	701.922	1.266	0.007915	2212	2212	28	1	98.619
	11	10954	0000040e	19	0	0	20	729.125	-0.016	0.009273	2212	2212	28	1	82.308
	12	11001	0000240e	19	0	1	19	748.672	-0.031	0.008379	2212	2212	28	1	88.611
	13	11581	0000040f	20	0	1	27	758.062	-0.422	0.009777	2212	2212	28	1	42.050
	14	12007	0000040f	20	5	0	14	744.344	1.359	0.009124	11	2212	- 1	63	0.047
	15	12055	0000640f	20	5	1	15	758.609	1.375	0.008516	2212	2212	28	1	65.265

🛟 Fermilab

Step 3 – Pattern recognition

Algorithm

- Search for triplet of hits to reconstruct circles
 - Minimum hit distance and radius constrains to avoid divergences
 - Intersection with centre (the target) constrain
- Find centres
- Find helix axis

Proton helix features

- Relaxed constrains on radius
- No constrains on centre (for multiple scattering in absorber)

🌫 Fermilab

Double Peaks: don't give same helix parameters

Step 4 - Fit

Algorithm

- Try to recover hit from pattern recognition
- Seed Fit: from helix of pattern reconstruction make a first simplified fit
 - No material/field effect
 - Big errors
 - 2 iterations
- Final Fit: complete Kalman filter fit
 - Material and field effects
 - 10 iteration with smaller errors
 - Drift radius reconstruction and solved left-right ambiguity
 - Combinatorial station per station, minimum χ^2 on position

🚰 Fermilab

• OR Minimum χ^2 on slope of helix

Step 4 – Fit (2)

Result of fit on protons

 Using default parameters most of helix pass the seed fit but no tracks pass the final Kalman filter

First operative solution:

- Lower hit number requirement
- No material effect
- Larger error, max 3 iterations

The fit converges, first reconstructed protons!

Deconvolution method

Purpose:

- consider 4 distributions:
 - Generated flat N(p) and generated from background frames N'(p)

🛠 Fermilab

- Reconstructed from flat R(p) and from background R'(p)
- We want to obtain N'(p) to check the reconstruction

Method:

- Bin R(p) and obtain slices $R_i(p)$
- Using MC-truth obtain correspondent distribution $N_i(p)$
- Evaluate, bin per bin, the weights: $W_i(p) = \frac{R'_i(p)}{R_i(p)}$
- Correct using weights: $N'_i(p) = W_i(p)N_i(p)$
- Build the distribution N(p) as sum of the slices $N'_i(p)$

Momentum (reco and generated) distribution

🛟 Fermilab

42 9/21/2016 Valerio Bertacchi | Proton reconstruction at Mu2e

Efficiency of Reconstruction – first try

Using flat producer, bin per bin $\varepsilon(p) = \frac{N_{rec}(p)}{N_{prod}} \pm \frac{1}{N_{prod}} \sqrt{N_{rec}(p)(1-\varepsilon(p))}$

- N_{gen} are number of events produced in the bin
- N_{rec} are the integral of reconstructed proton momentum distribution corresponding to the generated bin

