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Notations

rC/N is the vector pointing from N to C
Br is the vector r expressed in the B reference frame
ωB/N is the angular velocity of the B reference frame about the N
one
r ′ denotes the derivate with respect to the time in the body fixed
reference frame
ṙ denotes the derivate with respect to the time in the N reference
frame
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Reference frames

The inertial reference frame N centered in N and oriented freely
in space
The body fixed reference frame B with origin B and versors
{b̂1 , b̂2 , b̂3} oriented in any direction of the space
The nozzle fixed reference frameM with origin Nj and whose axis
m̂1 is oriented as the echausted particles’ velocity
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Objectives

The objectives can be divided in:
Derivation of Equation of Motions (EOMs) without tracking the
exhausted fuel
Formulate tank’s models for the inertia variation and the tank’s
barycenter movement
Evaluation of relevant term in the EOMs
Control of the moving spacecraft
Simulation of concrete cases:

1 Geostationary Hohmann maneuver
2 Spin-stabilized rocket (validation case)
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EOMs’ derivation approach

1 Consider a constant mass
system where equation
Newton equation of motion
are true

2 Use the Reynolds transport
theorem and consider a
moving control volume

3 Write the exhausted gas
dependence using known
nozzles’ propriety

4 Tracking the movement of
the spacecraft’s barycenter
from a fixed point B on the
vehicle

Total system

Exhausted gas

Spacecraft

Tank

Hub

Aexh

~n
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Translational EOM

By considering a moving volume in an non-inertial and rotating frame
and under the hypothesis of no whirling motion:

r̈B/N =
F ext

msc
+

1
msc

N∑
j=1

F thrj−2
ṁfuel

msc

(
c′ + ωB/N × c

)
−c′′−2ωB/N×c′+

− ω̇B/N × c − ωB/N ×
(
ωB/N × c

)
+

2
msc

N∑
j=1

ṁnozjωB/N × rNj/B

where c is defined by the following expression and c′ and c′′ can be
deduced by its derivative in the B reference frame:

c =
mhub rBc/B +

∑M
i=1 mfueli rFci/B

mhub +
∑M

i=1 mfueli
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Rotational EOM
The rotational dynamics can be represented by the following equation:

[Isc, B] ω̇B/N +
[
ω̃B/N

]
[Isc, B] ωB/N +

M∑
i=1

(
mfueli

[
r̃Fci/B

]
r ′′Fci/B+

+ṁfueli

[
r̃Fci/B

]
r ′Fci/B + 2 mfueli

[
r̃Fci/B

] [
ωB/N

]
r ′Fci/B

)
+

+ [K ]ωB/N = LBext, sc +
N∑

j=1

Lthrj + r̈B/N ×msc c

where:
N∑

j=1

Lthrj = Lsc, exh +
N∑

j=1

∫
ṁnozj

rM/B×vexhj =
N∑

j=1

(
Lsc, nozj +

∫
ṁnozj

rM/B × vexhj

)

[K ] =
M∑

i=1

([
Ifueli , Fci

]′
+ ṁfueli

[
r̃Fci/B

] [
r̃Fci/B

]T)− N∑
j=1

∫
ṁfueli

[
r̃M/B

] [
r̃M/B

]T dṁ
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Fuel transport

If a matrix notation is considered:

ṁfuel = [A] ṁnoz

Moreover, from mass flows’
conservation:

M∑
i=0

Aij = 1 ∀ j ∈ (1,N)

Tank n 1

Tank n 3

Tank n 2

Nozzle n 1 Nozzle n 2 Nozzle n 3 Nozzle n 4 Nozzle n 5
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Control feedback law

A Modified Rodrigues Parameter feedback control law has been
chosen as it can always assure global asymptotic stability avoiding
singularities.

u = −K σB/R − P ωB/R

where σB/R is the MRP defining the attitude from the R frame to the B
one and ωB/R is the angular velocity of the B frame about the R one, K
and P are control gains.

From the u control torque the forces providing that torque can be
computed minimizing the applied force in the spacecraft and
considering a general set of thrusters.
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Tank Models

The constant tank’s volume
model.
The constant fuel’s density
model.
The emptying tank model.
The centrifugal burn cylinder.
The uniform burn cylinder.

θ
∗

(a) The emptying tank
model

R
r

dr

L = 2h

Tc

(b) The centrifugal burn cylin-
der

P. Panicucci Project presentation 11 / 15



Thruster Models

The impulsive thruster
model where the thrust
is immediately
generated during the
firing time.
The ramping thruster
model where, once the
valve is opened to
provide thrust, a time
span of response
∆tresp is required to
acquire the steady
state.
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Figure: Impulsive thruster
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Figure: Ramping thruster
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Spin-stabilized rocket

In order to validate the
model, two cases from
”Dynamics of variable mass
systems (F.O. Eke - 1998)”
have been simulated.

In this case an axial
symmetric rocket is
analyzed changing the
shape os the nozzle area
(in the on-axis simulation)
and the length of the tank
(in the out-of-axis one).
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Figure: Centrifugal Burn Cylinder
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Figure: Constant Burn Cylinder
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GEO Hohmann maneuver

Three cases have been
compared for an Hohmann
transfer from 200 km to
36000 km:

Non-controlled case
Update-parameters
case
MRP-controlled case
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Conclusion

The objectives obtained from this project are:
Development and validation of the presented model
Implementation of a control strategy
Importance of considering mass depletion effects in high-fidelity
simulation

The future work to be performed are:

Analysis of the bugs os the simulation environment through tests
Presentation of a paper in February at GNC conference
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