CMS Track Trigger: Tower definition and optimization

Olmo Cerri – September 22th 2016

Supervisor: Luciano Ristori

The Compact Muon Solenoid

General purpose experiment:

- Standard Model (Higgs, top...)
- New physics searches: (BSM, dark matter...)

Collaboration:

- 3500 scientist
- 43 countries

Location:

- Worldwide construction
- Now at LHC IP8

Strength:

- Hermeticity
- Precise measurement of charged tracks momenta
- Particle ID

CMS Tracker

Silicon strip:

- 200 m^2 active area, 9.6 M channel
- $10 \times 10 \text{ cm}^2 \text{ modules}$
- Strip dimensions: $90\mu m \times 5cm$
- 2 strip sensors on top of each other : crude P_T threshold

The challnge: HL-LHC

Machine:

- Same tunnel as LHC
- Installation in 2023
- Physics run in 2026
- from 300 to 3000 fb⁻¹
- 25 nm bunch crossing
- $L_{peak} \ge 5 \ge 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Each event:

- 14 TeV energy
- Up to 200 average simultaneous interactions
- 1000 Tb/s from silicon tracker

Trigger

All data can not be stored at that rate

Trigger: real-time event selection

Phase II upgrade goal:

Implement tracks reconstruction in few μs for L1 trigger use

Extremely challenging goal:

- 40 MHz crossing frequency (one each 25 ns)
- ~ 20,000 hits/crossing
- + ~ 100 tracks to be identified above 2 GeV/c $\rm P_{T}$
- Track parameters to be extracted with quasi-offline precision

AM + FPGA approach

Simulated example

Balancing the workload:

AM Pattern Bank size VS FPGA resources/latency

Divide and conquer

- Detector can be sliced into independent regions (Trigger Towers)
- Each one need its own electronics (ATCA crate)
 - Data collection from front-end modules
 - AM pattern recognition
 - FPGA for track fitting
- 8 region in ϕ and 6 in η
- = 48 towers

TT definition procedure

- Divide parameter space into 48 non-overlapping regions
- Assign one tower to each region
- Define 48 "training samples", one per tower
 - Use single muon sample
 - 2π in ϕ and $\eta = [-2.4, +2.4]$
 - $P_T \ge 2 \text{ GeV}$ and $\sigma_z = 5 \text{ cm}$
 - Select tracks from one of the 48 regions
- Assign modules to a tower
 - Go through the tracks in the corresponding training sample
 - Add all modules hit by at least one track

TT definition problem

- Track parameter space is 4-dim (q/P_T, $\varphi,\,\eta,\,v_z)$
- 4-dim region can be conveniently defined by the intersection of two weakly correlated projections: $(q/P_T, \phi)$ and (η, v_z)
- Disjoint phase-space regions correspond to overlapping physical regions
- Overlap due to track curvature (ϕ) and to finite v_z dimension (η)

<u>One of the goals is to minimize overlap regions</u> <u>without compromizing acceptance</u>

Minimizing the Overlap

Shift positive wrt negative tracks:

Less overlap needed!

Regions are better defined in terms of $\phi(\mathbf{R}^*)$ instead of $\phi(\mathbf{0})$

• Minimize the number of detector modules to be shared among trigger towers

Parameter space regions

- Defined in terms of R*:
 - $\eta^* = \eta(R^*)$
 - $\Phi^* = \Phi(\mathbf{R}^*)$
- 8 equal division in Φ^*
- 6 equal division in η^*

$$R_{\phi}^* = R_{\eta}^* = 58.89 \text{ cm}$$

Might be further optimized

12

Naïve vs New definition

Each tower needs to see 400-500 front-end modules

Intermediate example -TT[5,2]

R^* optimization

- Optimization parameter: total number of connection between TT and modules
- Barrel, intermediate and forward regions treated separately
- Scan R^* in one view for a given R^* on the other

A different R^* optimization

- Number of modules R* optimization:
 - Goal: Minimize the number modules connected
 - High R^*_{phi} are favored because of module dimensions
- First study does not take in account that same modules produce a significant larger number of stubs wtr to other ones
 - E.g. inner or forward modules are more likely to be overcrowded by pileup events
- New different study has been done to take in account this effect
 - Each module has to be weighted using the amount of stubs that produce on average
 - \bullet PU only events can be used to establish weights
 - Minimize the sum of the weights
 - Inner and forward modules are disfavored

R* weighted results

Actual values corresponds also to previous study minimum

- To be compared with slide 15
- Different approach different results
- Minima seems slightly deeper and displaced to lower R^*
- To be understand what will be the real bottleneck and which optimization is more useful

Modules per tower - acceptance trade-off

Target:

- Minimize the number of modules included in each tower:
 - Remove modules less involved
 - Compromise between acceptance and simplicity

Strategy:

- Inclusive simulation: 4π muons shooting
- For each TT: counters of stubs detected in each module
 - Inside layer: modules sorting by the number of stubs detected
 - For each layer: include modules in TT list following the order and stop when the sum reaches a given threshold
- Compute efficiency:
 - Denominator: all tracks whose parameters fall inside the appropriate phase-space region
 - Numerator: tracks that have at least 5(6) stubs in modules belonging to the TT in 5(6) different layers

Efficiency: Barrel

Connection per module – Threshold tradeoff

 $v_z = [-10 \text{ cm}, +10 \text{ cm}]$

 $v_z = [-15 \text{ cm}, +15 \text{ cm}]$

- The distribution remains essentially the same
- Multiple connection can be avoided paying some acceptance

From Parameters to CSV file

INPUT

- P_T threshold
- v_z acceptance
- R^{*}_{phi}
- R^*_{eta}
- Single Muon sample

OUTPUT

- TT modules list
- TT physical boundaries on each layer
- Whole detector
- Format: ".csv" file

Current setup:

- $P_T > 3 \text{ GeV}$
- $v_z = [-15 \text{ cm}, +15 \text{ cm}]$
 - $R_{phi}^* = 90 \text{ cm}$
 - $R^*_{eta} = 60 \text{ cm}$
- 20M Single Muon event (4π generation)

Tracking trigger simulation

- Only for TT25: [4,2] (Old TT27)
- Using current L1TT simulation code + modification (https://github.com/ocerri/SLHCL1TrackTriggerSimulations)
- Pattern bank generation
 - Raw sample of 1G single muon
 - Stub cleaning and sample shrinking
 - Pattern bank generation
- Performance check
 - New vs Old bank size comparison
 - Average number of roads in TTbar + PU140 events
 - Efficiency and resolution

Training sample generation

Pattern bank generation

- Pattern bank training sample effective size: 134M+66M = 200M events
- Super-strips defined using full simulation boundaries
- Generated for 6 different configurations:
 - L5x2 or $L5x2_L10x2$
 - nz: 4, 6, 8

	NEW		OLD	
SSConfig	Bank size 95%	Popularity	Bank size 95%	Diff
sf1_nz4_L5x2	1.40E+06	13	1.31E+06	6.8%
sf1_nz6_L5x2	3.02E+06	6	2.85E+06	5.9%
sf1_nz8_L5x2	5.53E+06	3	4.95E+06	11.6%
sf1_nz4_L5x2_L10x2	1.07E+06	18	1.00E+06	6.9%
sf1_nz6_L5x2_L10x2	2.31E+06	9	2.18E+06	5.8%
sf1_nz8_L5x2_L10x2	4.22E+06	5	3.77E+06	11.7%

Popularity

- nz4: Very Good (about 15)
- nz6: Good(more than 5)
- nz8: Fine (more than 3)

Increase in PB size given by inconsistency fixing (backup for more infos)

24

Average roads

Old results from Status of Pattern Bank Optimization (2016-05-20 Update), Ristori et al.

Efficiency performance

- Goals
 - Test efficiency
 - Effective TT dimensions and turn-on near edges
- Single Muons Test sample
 - Single muons but with delta rays
 - raw 100k events (effective 20k)
- Denominator definition
 - Global: Tracks inside TT phase-space
 - Binned: TT bound removed in the scanned dimension
 - e.g.: scanning $\epsilon(p_T)$ denominator tracks must be inside TT phase-space in ϕ^* , η^* and v_z , no cut p_T is applied
 - 1 miss allowed: 5 out of 6 efficiency

Efficiency vs P_T

Efficiency vs ϕ^*

- Blind variable ϕ^* (used to define TT)
- nz4 shown (no significant differences for nz6 and nz8)
- ϕ profile in agreement with expectations (see slide 12)

- Very sharp turn on
- Average efficiency inside TT: 99.2 ± 0.1 %
- Null efficiency outside TT borders (no duplicates)

28

Efficiency vs η^*

- Early turn on, effective efficiency wider than definition
- Average efficiency inside TT: $99.2 \pm 0.1 \%$
- Turn on dependence from SS configuration

Outside track roads matching

- Particle outside TT definition match roads:
 - Super strips are defined taking the maximum range of interesting particles on TT
 - A single training particle does not lay on the border of every layer
 - Outside particles can do that!!
- Pattern bank acceptance is broader than training sample
- Dependence from SS dimensions
 - Happens in φ too but it is far smaller

Efficiency vs η^* 6006

- Sharper turn on w.t.r. to 5006
- Average efficiency inside TT: 90.8±0.3 %
 - PB 95% cut
 - Si efficiency = 1
- Module geometry effect
 - Efficiency drops
 - Slope towards high η

Efficiency near borders

Conclusions

What has been done:

- Study of a new definition of trigger towers
- Optimization of the R* value
- Efficiency number of modules trade-off
- Production of new module lists
- Generate AM pattern banks for the new towers
- Make the new towers and the new AM pattern banks available to the full trigger simulation
- Run the full simulation to evaluate new performance parameters
 - Efficiency, Resolutions...

Thank you all!

BACKUP

Out TT track example

- Tracks outside TT definitions may match roads if are near border because of SS finite dimensions
- Intrinsic duplicate generation
- Less impact on 6 out of 6

Resolution

nz8 L5x2

Essentially unchanged!

Focusing on R*

Module fan-out

Number of towers to which stubs from a single module must be delivered

Barrel example -TT[4,2]

Forward example -TT[6,2]

How many modules?

Total number of modules from which each tower must receive information (2GeV vs. 3 GeV)

Triple shared modules

Full r-z projection

- Less than 1% triple sharing
- Order 4% 4sharing
- 16 6-time shared modules only with $|v_z|$ up to 15 cm

$q/P_{\rm T}$ vs ϕ summary plot

Overcoverage possibly due to finite module dimensions?

z_0 vs. η summary plot

How many modules?

- Dark area: modules directly connected to the TT
- Light area: modules connected to the TT via TT2TT connections
- Solid line: total number of modules connected
- 3 GeV/c P_T

