

3D Visualization of Muon g-2 data and simulation

Student: Marco Di Bella Supervisor: Adam Lyon Final presentation 09/22/2016

Overview

- The experiment Muon g-2
- Why Visualization
- Art framework
- gm2vtk
- Conclusion

Reason for Muon g-2

• For an elementary spin 1/2 particle in Dirac's theory, g=2!

 Until precision measurement was done by Kusch and Foley in 1948 the electron magnetic moment was is good shape with Dirac's new theory, but then:

 $g_e = 2,00238(6)$

- Thus the anomalous magnetic moment was discovered, fractionally g differs from 2 by (g-2)/2 = 0,1%
- This difference was explained supposing that virtual particles continually fluctuate in and out of the vacuum.
- The extent to which g differs fractionally from 2 is what we call the anomalous magnetic moment

$$a_{\mu}=rac{g-2}{2}$$

3

 $\omega_s = g \frac{eB}{2}$

🗲 Fermilab

Reason for Muon g-2

Schwinger takes one look at the anomaly in the g-factor and immediately knows what's up

 $g_e \approx 2\left(1+rac{lpha}{2\pi}
ight) \approx 2,00232$

Calculation agrees well with experiment, and that is how we build confidence in new physics models!

Schwinger term describing 1st Order electron self-interaction

🚰 Fermilab

Principles of Muon g-2 Expt

• The Spin frequency relative to the Cyclotron frequency is the «anomalous precession frequency», ω_a :

$$\omega_a = \omega_s - \omega_c = \left(\frac{g-2}{2}\right) \frac{eB}{mc}$$

- Proportional to g-2 and B!
- For vertical focusing reason it is needed also a E field which looks like a B field to a moving particle:

$$\vec{\omega}_a = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

Choosing $\gamma = 29, 3 \ (p_{\mu} = 3, 094 \ GeV/c)$

Principles of Muon g-2 Expt

- Four key elements:
- Polarized muons
 ~97% polarized for forward decays

• Precession proportional to (g-2)

• P_{μ} magic momentum = 3,094 GeV/c

Parity violation in the decay gives average spin direction

Muon g-2 experiment

 $a_{\mu} = \frac{\omega_a/\omega_p}{\mu_{\mu}/\mu_p - \omega_a/\omega_p}$

In order to have a precise measurement we do not evaluate a_{μ} directly from the equation $\overrightarrow{\omega_{a}} = -\frac{ea_{\mu}\overrightarrow{B}}{m}$ but we use the ratio between the anomalous magnetic moment and the Larmor frequency of the proton.

The g-2 experiment has the goal to obtain a precision of 140 ppb which is much smaller than the previous one obtained by BNL. With such a precision and with the actual theoretical value we can reach a 5.6 or 7σ (a Discovery!)

Why Visualization?

Muon g-2 was facing several problems where visualization could be very helpful

- Validation of our Geant geometry and simulation We had hints of incorrect positions in the geometry
- Debugging of Magnetic fields in Geant
 We have some complicated and time-varying fields (kicker
 magnets) needed verifying
- <u>Debugging Tracking (the usual stuff)</u>
 Comparison of reconstructed hits & tracks to truth hits & trajectories needs to run post-grant

Visualization

Visualization

• A "stuck" Geant events (hard to debug since output never arrives)

Visualization

- An important tool already used in public relations (pretty displays, movies, virtual reality), analysis (event scanning) is the visualization (simulation geometry verification).
- To display event in 3D allows us to very quickly understand what is going on in the data or simulation.
- What I have done is to write an Art VTK translation layer for popular art object.
- I have written codes to connect directly the Art modules with a visualization program called Paraview:
- It is a scientific visualization application with rich capabilities
- Free
- Uses advanced visualization solutions to maintain a good user experience
- Based on established VTK library

Art framework

A framework let you write physics code without worrying about the infrastructure. It is useful because:

- It makes easier to work in group, to share ideas.
- You do not have to write super complicated C++ code
- You can have fun with plots and physics stuff without writing infrastructure code
- It is Modular (you write modules that piece together)

Why using Art?

- It is already <u>used by most of the Fermilab Intensity Frontier Experiments</u> (Nova, Mu2e, MicroBoone, DUNE)
- Built in Root i/o

What does a framework do?

13

Art Modules

 Types of MODULES:
 Imput Source

 (All modules can read data from the event)
 Imput Source

 o Input source:
 RI

 A source for data. E.g. a ROOT file or
 SI

 Empty for start of simulated data
 Imput Source

o Producers:

Create new event data from scratch or by running algorithms on existing data

o Filters:

Like producers, but can stop running of downstream modules

o Analyzers:

Cannot save to event. For, e.g. diagnostics plots

o Output module:

Writes data to output file (ROOT). Can specify conditions and have many files

15 9/22/2016 Marco Di Bella | Final Presentation

Paraview Language

<u>File Edit View Cmds Tools Options Buffers</u>	<u>File Edit View Cmds Tools Options Buffers</u>	<u>File Edit View Cmds Tools Options B</u> uffers
Den Dired Save Print Cut Copy Pask Undo Speil Replace	Dpen Dired Save Print Cut Copy Paste Undo Spell Replace Intel	Den Dired Save Print Cut Copy Paste Undo Spell Replace III Drug Debug News
XtalArtRecord.hh	XtalArtRecord.hh	XtalArtRecord.hh
#ifndef XtalArtRecord bh	. x(0)	float length.
#define XtalArtRecord bb	v (0)	int nda.
#include <vector></vector>	7 (0)	float. nn.
	, r(0)	float en)
#ifndef ROOTCLING // Don't let ROOT see things it should	, t(0))	turn(n)
#include "CLHEP/Vector/ThreeVector h"	, c(0.) τ(0.)	caloNum (cn)
#endif // BOOTCLING	time(0)	, xtalNum (xn)
	pr(0)	trackID(id)
namespace om2rinosim {	, pr(0.)	, parentID (nid)
struct XtalArtBecord {	, pc(0.)	, x(x)
int turn:	e(0)	. v(v)
int caloNum:	eden(0)	
int xtalNum:	trackLength(0)	, r(r)
int trackID;	, ndaTD(0)	, t(t)
int parentID;	, nphoton(0)	, ν (ν)
float x, y, z;	, ephoton(0,)	, time(time)
float r;	eventNumInFill(1)	, pr(pr)
float t;	{}	, pt(pt)
float v;	virtual ~XtalArtRecord(){};	, pv (pv)
float time;	#ifndef ROOTCLING	, ê(e)
float pr;	XtalArtRecord(int n.	, edep(edep)
float pt;	int cn,	, trackLength (length)
float pv;	int xn.	, pdqID(pdq)
float e;	int id,	, nphoton (np)
float edep;	int pid,	, ephoton(ep)
float trackLength;	float x,	, eventNumInFill(1)
int pdgID;	float v,	()
int nphoton;	float ź,	💁 talArtRecord(const XtalArtRecord& hit, int eventNum)
float ephoton;	float r,	: XtalArtRecord(hit)
int eventNumInFill;	float t,	{eventNumInFill = eventNum; }
	float v,	#endif //ROOTCLING
XtalArtRecord()	float time,	}; //end of XtalArtRecord struct
: turn(0)	float pr,	
, caloNum(O)	float pt,	typedef std::vector <xtalartrecord> XtalArtRecordCollection;</xtalartrecord>
, xtalNum(0)	float pv,	} // end namespace gm2ringsim
, trackID(0)	float e,	
, parentID(0)	float edep,	#endif // XtalArtRecord_hh
UTF8**-L37 CO Top XtalArtRecord.hh (2ringsim/calo	UTF8**-L39 CO 29% XtalArtRecord.hh (2ringsim/calo	UTF8**-L102 C8 Bot XtalArtRecord.hh (2ringsim/calo) (Fundamental)

VTK MultiBlockDataSet

SimSteps2VTK

Properties of the points

Properties of the cells

• Energy dep

- Step lenght
- Delta time
- Parent ID
- Track ID
- Pdg

SimXtalHits2VTK

‡ Fermilab

SimStrawHit2VTK

Conclusions

What I have learned:

- Muon g-2 experiment
- Playing with Art framework
- Using Paraview
- Simulation for Muon g-2 ring and detectors
- To work into a clean room

Thank You for the attention

Extra Slides

‡ Fermilab

Extra Slides

Extra Slides

