Fermilab **ENERGY** Office of Science

v_{τ} appearance optimization

Letizia Parato Final presentation 23 September 2016

Outline

- DUNE experiment design
 - Target hall
 - Magnetic horns
 - Different targets
- v_{τ} physics
- v_{τ} appearance optimization
 - Target and the second horn placement
 - v_{μ} fluxes
 - Second horn rescale
 - Target optimization
- Work left to do toward optimization
- Conclusions

DUNE experiment

DUNE experiment design

Target hall

DUNE experiment design

Magnetic horns

PARABOLIC HORN

- Focuses a given momentum for all possible angles of entry into the horn.
- For a given shape and current the focal length of the horn is proportional to the particle momentum.
- High energy particles could be under focused (not fully strengthen) while low energy particles could be over focused.

DUNE experiment design

Different targets

4.049e+002

Graphite damage factor = 4 Graphite thermal conductivity at operating temp = 23.3595 [W m^-1 K^-1] Maximum core temperature = 706.326 [K] Maximum surface temperature = 706.326 [K]

辈 Fermilab

6 9/22/16 Letizia Parato I Final presentation

v_T physics

Neutrino oscillation probability

In the theory of oscillations flavour states are superpositions of mass eigenstates

$$|
u_{lpha}
angle = \sum_{i} U_{lpha i} |
u_{i}
angle$$

where α = e, μ , τ .

Here the computation of the oscillation probability is made by OscProbability.C implemented in the LBNF code.

Parameters are updated to 2016 and the distance at which oscillations are observed is 1294 km (DUNE far detector).

v_T physics

v_{τ} : why, how and what we already know

WHY

To test the unitariety of PNMS matrix.

HOW

- ν_τ are only distinguishable in CC interactions, when they produce a tau lepton.
 Since tau is heavy, neutrino should have a minimum energy of 3.5 GeV to interact with the detector.
- High energy pions are needed to produce high energy neutrinos.
- Is necessary to move the target far from horn 1 to cut low energy neutrinos out of the beam and to improve the focusing system.

WHAT WE KNOW

Not too much...

5 events from Opera (from oscillations) and 12 from DONUT (from D_s decay)

v_T physics

v, appearance probability at DUNE far detector

Cross section evaluated by GENIE included in the LBNF code

🞝 Fermilab

Reference vs. optimized design

Optimized design

128 v_{τ} CC events at FD per 40kton per year Standard deviation = 8 Mean error = 1

Reference design

225 v_{τ} CC events at FD per 40kton per year Standard deviation = 55 Mean error = 3

Reference vs. optimized design

Target and second horn placement

Setups for the simulation

- Buffle not installed
- Shield not installed
- Decay pipe snout not installed
- Horns
 - 230 kA current
 - 1.2 MW
- Beam
 - 120 GeV proton momentum
 - Beam sigma X = 1.7 mm
 - Beam sigma Y = 1.7 mm

- NuMI target
 - Graphite
 - \bigcirc Fin width = 10.0 mm
 - Target length = 1 m

100 jobs with 100k POT each for different distances of the target and of horn 2 from the zero point. For each set I looked for the number of v_{τ} CC events per year per 40 kton (fiducial LArTPC detector mass)

Target and second horn placement

 ν_τ cc events over target and horns distance

	95 05	16	17	17	18	17	17	19	20	19	20	21	21	_	700
	65 05	101	102	103	102	114	105	112	114	112	121	126	126		
stan	.35 05	380	380	382	384	389	392	398	424	426	436	443	453		600
sip 4	75	463	471	470	482	484	503	507	530	519	539	555	565		
horr °	15	478	487	488	497	508	510	521	540	542	561	587	584		500
irst °	40	503	506	516	524	533	541	553	565	578	590	612	614		
jet-f	05	527	534	546	550	554	579	584	596	612	632	632	653		400
tarç ∽	00 55	526	550	568	600	593	603	617	624	634	651	667	680		
2	.55 05	570	575	580	600	607	614	636	652	670	677	685	707		300
2	23	568	580	599	600	618	633	649	668	677	691	709	725		
1	95 65	566	574	592	605	619	638	652	672	677	708	710	724		200
1	25	529	553	565	585	605	614	635	648	664	682	694	697		200
1	05	471	489	508	535	540	561	582	600	617	626	638	645		100
I	75	383	402	418	435	467	479	497	511	526	532	548	559		100
	/ 5 /5	261	279	302	330	329	366	376	395	412	422	434	440		٥
	⁴⁰ 6	5	7 8	3 9	9 1	0 1	1 1	2 1	3	14 1 first soo	5 1 ond ho	6 1 rp dicto	7 18	3	0
										11151-580		in uisla		- ÷	🕻 Fermilab

Target and second horn placement

 ν_τ cc events over target distance - zoom

- Horn 2 has to be placed as far as possible (17.5 m)
- The target has to be placed about 2 m far from the horn1 beginning.

Target and second horn placement

 v_{μ} fluxes

🛟 Fermilab

Target and second horn placement

Neutrino parents: how they contribute to the flux

- Almost all neutrinos come from the decay of Pions
- Kaons contribute to the high energy tail of the distribution

Target and second horn placement

 v_{μ} fluxes

v₋ appearance optimization

Target and second horn placement

 v_{μ} fluxes

Oscillated v_{τ} CC event rate at FD

Second horn rescale

Setups for the simulation

- Buffle not installed
- Shield not installed
- Decay pipe snout not installed
- Horns
 - 230 kA current
 - 1.2 MW
- Beam
 - 120 GeV proton momentum
 - Beam sigma = 1.7 mm

- NuMI target
 - Graphite
 - \odot Fin width = 10.0 mm
 - Target length = 1 m
- Target 2 m far from zero
- Second horn 17.5 m far from zero

Second horn rescale

 v_{τ} cc events per year per 40 kton over horn 2 scaling

v_r appearance optimization

Second horn rescale

Is it better to enlarge horn 2 or to make it smaller?

🛟 Fermilab

Target optimization

2.0 m long NuMI target

🞝 Fermilab

 v_{τ} cc events over target and horns distance [2 m target]

8.5 % less events respect to the 1 m target configuration

v₋ appearance optimization

Target optimization

Multi sphere Beryllium target

13 mm vs. 17 mm diameter [1m long target] v_{τ} CC per year per 40 kton $v_{\tau}\,\text{CC}$ per year per 40 kton mm diameter 17 mm diameter target length (cm)

13 mm diameter target - events over target length

Target optimization

Cylindrical simple Graphite target

 v_τ CC events at FD per 40kton per year over cylindrical target scaling

Fermilab

Target optimization

Cylindrical simple Graphite target

Work left to do toward optimization

т decay channels and signal reconstruction

Neutrino's flavor can be detected only in CC events. The following table shows the τ decay channels that the detector is able to resolve and their relative branching ratio.

$ au^- ightarrow \mu^- + ar{ u}_\mu + u_e$	17.4%
$ au^- ightarrow e^- + ar{ u}_e + u_ au$	17.8%
$\tau^- \to \pi^- + \nu_\tau$	10.8%
$\tau^- \to \pi^- + \pi^0 + \nu_\tau$	25.5%
$ au^- ightarrow 3\pi(\pi^0)$	15.2%
total =	86.7%

Every decay channel has his own background which has to be evaluated in order to estimate the reconstruction efficiency.

🛠 Fermilab

Work left to do toward optimization

1. Try target with lower density

For example a cylindrical target composed by many little cylinders separates by thin layers of air.

2. Using a genetic algorithm

Set parameters near to the ones I found and apply a genetic algorithm to find the very best geometry for the v_{τ} appearance.

3. Estimate reconstruction efficiency

Simulate CC events at far detector and evaluate the relevant background for the CC event occurred. Find neutrino energy threshold under whom it is not possible to distinguish the signal from the background.

In LArTPC the reconstruction efficiency can be around 20%;

Conclusions

- The second horn has to be placed as far as possible from the first horn.
- The target has to be placed about 2 m distant from the first horn.
- The second horn has more focusing power if radially rescaled of about 75% (and all proportional configurations).
- A thinner target with low density works better.
- A thinner target can be made longer without reducing (or maybe increasing) the number of events: this is good because longer target means less energy deposited in the absorber.
- I got a maximum of 880 v_τ CC events per 40 kton per year using a (realistic) cylindrical target with 5 mm of radius and 150 cm of length. This means a factor of 4 respect to the reference design and a factor of 8 respect to the optimized three horns design.
- A lot of work has still to be done to
 - find the best geometry,
 - estimate the reconstruction efficiency.

I presented these results twice to the Beam Interface Group during the group meeting.

Thank you

