FERMILAB

Mu2e Experiment

Firmware development for Mu2e electronics

Internship Report

Intern student: Supervisor:
lan Biagioni Vadim Rusu

October 2016



Contents

[L  Setting overview| 1
IL1_The tracker] . . . . . . . . . e 1
M2 DRAT . . o o oot e e e 2

[2_Design flow] 3

ication interfacel. . . . . . . . .. L L 3
RTI " SerDed. . . . . . o oo 3
[2.1.2 8b/10bencoding| . . . . . . . . ... 4

2.2 Development plattorms|. . . . . . . .. ... o o 4
.................................... 5
.................................... 5

2.3 Initial simulations] . . . . . . ... oL Lo 5
2.4 On-board tests . . . . . . . . . . 7
241 SRAM interfacel . . . . . . .. Lo 8
2.4.2  Timing costraints|. . . . . . . . . ... Lo 8

25 DRACTtestsl . . . . . . . o 9
5 P < 9

2.5.2 Upgrade| . . . . . . . . e 9
2.5.3 Communication between the FPGAsl . . . . . . . .. ... ... ... ... 11
2.5.4  On-board SerDes clockl. . . . . .. ... ... ... ... ... ...... 11

[3 Solutions and implementation| 12
13. ['wo SerDes on ROCI . . . . . . . . . . . . 12
3.2 FIFOl. . . o e 13
[3.3 Generic timing violations| . . . . . ... ... ... ..o 13
[3.4 Tmplementation in the complete desigh]. . . . . . . v v v v v vt 14




List of Figures

LI _Trackerl . . . . . . oo 1
.2 _Pamel overview] . . . . . . . . . . . . e 2
L3 DRACDboardl . . . . . . . . 2
2.1 SerDes concept| . . . . . . . .. 3
2.2 FlashPro4 programmer|. . . . . . . . . . .. .. 4
2.3 SerDes implementation|. . . . . . . ... L oo 6
[2.4 System design|. . . . . ... 7
2.0 SRAM interfacel. . . . . . . . .. 8
2.6 M25150T footprint constraints| . . . . . . . . .. .. ... ... ... ... ..., 9
2.7 New design| . . . . . . . . 10
[3.1 ROC project without encoder| . . . . . ... ... ... ... ............ 12
[3-2 Footprint geometrical blocks with the two vertical lane of local connection and a |

central global connection|. . . . . . . ... oo o0 oo 13




Abstract

The following document describes the design flow to implement the firmware for the onboard
communication for the electronics used in the tracker in the Mu2e experiment.

A brief overview of the experiment setting, components and interfaces for communication are
given before starting the project development description.

The design process is described step-by-step, understanding the architechture proposed and
discussing the problems encountered during the design.



Chapter 1

Setting overview

1.1 The tracker

The Mu2e experiment is meant to study the conversion processes amongs particles of the same
family, like muons and electrons. To do that, charactestics of the electrons generated from muons
conversion have to be measured. The tracker is used to look for their trajectory. It is composed
by 20 stations supported by a rigid frame. Each station consists in 2 planes which are composed
by 6 panels. Each one of them has two layer of straws that are sensitive to the electrons transit.

Figure 1.1: Tracker

The tracker will operate in a vacuum, with 1 atmosphere of ArCO2 gas (80%/20%) inside
the straws. A charged particle passes through the straws, leaving a trail of ions in its wake. The
inner surface of the straw is at ground, and the sense wire at the center is a 1500V positive
voltage. The electrons then drift toward the sense wire.

The electric field near the sense wire is strong enough that the electrons gain enough kinetic
energy to ionize more atoms of the gas, creating an avalanche, which can be detected by the
electronics.



Each straw is connected to a preamplifier circuit mounted on the AMB (Analog Mother-
Board). The signal is then transmitted to the DRAC through the DMB (Digital MotherBoard)
to be collected.

DMB

AMB and preamps

Figure 1.2: Panel overview

1.2 DRAC

The DRAC (Digitizer Readout and Assembler Controller) is the central unit that digitize and
collect all the signals from the straws. There are two FPGAs that control and receive the signals
from the ADCs and TDCs used to convert the analog signal coming from the straws. These two
FPGAs have been called HV and CAL. The names are unrelated to their function.

There is a third FPGA called ROC (ReadOut Controller) that collects and organizes the datas
from HV and CAL before sending them to an external memory. The purpose of this project is
to develop a firmware for communication between these three FPGAs.

Figure 1.3: DRAC board



Chapter 2

Design flow

2.1 Communication interface

Due to the high number of signals to be digitized, a considerable part of the DRAC is occupied
by the ADCs and TDCs so that serial communication between FPGAs has been prefered instead
of parallel comunication to saves FPGAs pins and to reduce number of tracks on the board.

2.1.1 SerDes

SerDes stands for Serialized/Deserializer and it generally refers to all the interfaces used to send
serial data on a single/differential lane starting from parallel data.

[1]1]ofafaf1]of1]

RlR(o|lR|Rk[R|lo|~

R|lR|o|lR|rR|IFR|[o]|F

Figure 2.1: SerDes concept

On the transmitter side, a PISO block may use an internal or external PLL to multiply the
incoming parallel clock up to the serial frequency. The simplest form of the PISO has a single
shift register that receives the parallel data once per parallel clock, and shifts it out at the higher
serial clock rate.

On the receiver side, a SIPO block collect the serial data and recover the transmitting clock
from the stream received. It then divides the clock down to the parallel frequency at which the
datas will be available.



2.1.2 8b/10b encoding

8b/10b encoding is a line code that maps 8-bit words to 10-bit symbols to achieve long term DC-
balance, bounded disparity and provide enough state changes to allow reasonable clock recovery.
The 10b code is generated splitting the 8 bits and using a 5b/6b and 3b/4b encoding. There is
a special sequence in the 6 bits code that is used to send control characters defined with the 4
bits code.

Due to its characteristics, 8b/10b encoding is commonly used in serial communication like Gi-
gabit Ethernet, PCle and USB 3.0.

2.2 Development platforms

The FPGAs used on the DRAC belongs to SmartFusion2 family from Microsemi Corporation.
Their development environment has been used:

e Libero SoC Design Suite 11.7 SP1.1 for system design
e SoftConsole 4.0 for software development

e FlashPro4 Programmer for FPGAs programming

Figure 2.2: FlashPro4 programmer

For the system testing, two different hardware settings have been used in different design
phases.



2.2.1 M2S150T

The FPGAs mounted on the DRAC are the M2S150T-FC1152. The characteristics relevant for
chosing this model or for the communication firmware are:

e ARM Cortex-M3 Processor

e 4 SerDes interfaces with up to 16 total serial lanes
e SEU protected memories

e 150K LE

e UART lane

The protection from high energy events is needed due to the characteristic of the experiment.
High number of logic elements is relevant for the complete system but is not an important factor
for the part developed in this work.

2.2.2 M2S050T

The high number of LE presents on the M2S150T affects the synthesis time. To speed up the
testing process, first designs have been tested on a smaller FPGA. In particular the M2S050T
mounted on the SF2-STARTER-KIT-ES-2 board. This FPGA belongs to the same family than
the M2S150T so they have similar characteristics except for having 50K LE instead of 150K and
just one SerDes interface instead of four.

2.3 Initial simulations
Microsemi provides two IPs usefull for the purpose of this work:

e High speed serial interface is a configurable IP that permits to transmit and receive data
on the four lanes of a SerDes interface. The configuration consists in chosing the SerDes
interface used, the protocol for the comunication, the reference clock frequency and the
values for the configuration registers

e CorePCS is a configurable IP used for encoding, decoding or both for the 8b/10b code.

First goal has been to have a design to be simulated to look for the behaviour of these two
IPs. The CorePCS has been configured as receiver and transmitter. This IP took 16 parallel
bits as input, corresponding to two symbols to be encoded, and two control bits to define if the
input is a data symbol or a control symbol. These inputs are generated using a counter with
some logics to generate control signals. The High speed serial interface is configured to use only
one lane with a custom communication protocol (EPCS) and the reference clock at 125 MHz,
corresponding to a 2.5 GHz serial communication. Setting a bit in the PRBS_CTRL register,
the High speed serial interface has been used in loopback configuration so that the transmitted
bit are also received by the same interface. The data received are decoded by the CorePCS and
used to check if they are correct. Another block is used to simulate the initialization for the High
speed serial interface.



decenc810 0
EPCS_PW
Bb—
EFCS_TxVALRp—
EPCS_RxERRB—
LIGNED|
EPGS EDATAE&EO]
RVALID_K]1:0]
RX DATA[15:0]
mj generator_seq 0 A FSTn coDEjERRﬁl[w]
clc & _out] EPCS_RxDATA[19:0] RXC KﬁCHAR['H]
(SEQESTnW i n  dats oullf5 T DATA[15.0] “B_CERRI1:0]
=] 2B Dk cHarn RD_ERR{1:0]
-~ FORCE_DISP(1
L DISF_SEL1.0]
@
SERDES 0
APB_S_PRESET_N REFCLKO_OUT] W EEECI KD 00T
APE_S_PCLK PADs_OUTHH
EPCS_0_OUTEI®
EPCS_0 READY B—- E
EPCS_0_RX DATA[19:0] T E
“EFCS_0_RX VAL T i
EPCS D RX DLE 1 )
EPCS_0_TK CLCK_STABLE iom|
ERCer pReSErN B
EFCS 0 Rx CLK B— CLKINT_O 2
EPCS_0_ TECLK A ki
<)
L
3
2
o
c
< Fr
—
o
o
ES
=
=
epcs._init 0
INIT RESET.N  INIT_DONE
INITZGLIC
(a) Design
| Wave - Default Ml

“a fbbbbb/prova_serdes_0/S...
“a jbbbbb/prova_serdes_0/5...

--ﬂ-:-‘F‘O-.O:-‘F‘O-D-:-‘B
7773
£§

Cursor 1 20260.2301ns

(b) Simulation

Figure 2.3: SerDes implementation



2.4 On-board tests

Even though the previous design could be successfully simulated, it is still not completed for
on board testing. For simulation purpose, the embedded processor could not be instantiated
into the project but it come to use for on board testing and it is needed for the final system
implementation.

First designs have been tested on the M2S050T FPGA to speed up the testing process.
Costraints for the routes timing have to be taken into account to generate a working design.

Footprint costraints are not needed thanks to the simplicity of the design and the small dimen-
sion of the FPGA.

osco FCCC_0
00825 S, 0Cc_ OuTH nooSC 25 SARE COC N G
!
7o

SYSRESET_0
TN POWER O\ mesET N

CON FLL

my_mss 2.0
> cuense sss mEseT v e
e e B ..F_
e 8 Pt — enmrTEs
:
: +
! =
E‘| ‘ 5. _geverstor_se0 t
CoreAPB3 0 S = PP | sy
- 1 HOR2.0
3 t =

"
]

MY_SERDES_0
are s rececii
ceiga [
e IREres M
Seoame M
R

g

Lo

S .

T

A
9]

AND3_0

Figure 2.4: System design

To achieve a design functional for testing, the processor only needs to provide a link to
commmunicate with the system. In particular it provides an APB bus towards the system and
a UART communication towards a console. In addition to the processor, other functional block
have been added to the project:

e Reset and configuration blocks
e Blocks for buses management

e Some logic for interfacing with a SRAM

Reset, configuration and buses management are provided by Libero along with documentation
and setup examples . Interface with SRAM needs further description.



2.4.1 SRAM interface

FPGAs from SmartFusion2 family provides SRAM blocks for memorization purpose. A memory
is needed to store datas received through the SerDes interface waiting to be read by the user.
To achieve this functionality, the SRAM interface can be splitted in 4 parts (figure :

e ram : SRAM block provided by Libero. Since the reading speed depends on bus clock and
the writing speed depends on receiving clock from SerDes, in the configuration options,
separate clock interfaces for reading and writing have to be set. Word width is 32 bits.

e data_to_sram: A writing block from SerDes to SRAM. It waits for two set of datas to be
received then it generates the address for the SRAM and the logic to enable writing. The
address is simply generated with a binary counter. SRAM dimension can be set so that
the block knows which is the last location in the memory. memory_full signal is asserted
reaching the last address of the SRAM.

o sram_apb_wrp: A reading block from SRAM to processor. It provides a slave interface to
connect the SRAM to the APB bus. Reading from the slave addresses area is translated
into reading from SRAM addresses.

o sram_refresh: A reset block for SRAM contents connected to the APB bus with a slave
interface. Write action to the slave first location triggers the clr_n signal that resets the
counter in the writing block. It checks the memory_full signal to check if the resets has
been done.

" |
!
o
sram_apb_wrp_0 § data_to_sram_0
PCLK rd_enable BX —Dclk clk_out DX
PRESETN wr_enable X P en w_en D—
mem_data_out[31:0] relk X ®cir n memor&_f_full —— —
INT_OUTB X dafa_in[15:0] data_out[37:0
SELPX addr_out[5:0
raddr[5:0 ™
L
ram_0 =
—BWEN RD[31:0] -
o sram_refresh_|
WDB31:0 clr_n
WADDR(5:0] —
B RADDR[5:0]
g w»

Figure 2.5: SRAM interface

2.4.2 Timing costraints

Libero provides a tool to automatically generate basic timing costraints for the design. Due to
the low complexity of this system, these costraints are sufficient for the synthesis, placing and
routing processes to be correct.



The maximum clock frequency that could be achieved in the implementation has been 100 MHz
for both the processor/bus clock and the SerDes clock. This implies a slower communication
speed, from 2.5 Gbit/s to 2 Gbit/s for the single lane. This issue will be discussed in more details
in the final chapter.

2.5 DRAC tests

2.5.1 Porting
Some precautions have to be taken into account for porting the system to the M2S150T FPGA.

Change the FPGA associated with the project file and update the components

e Revising the timing constraints

Definition of footprint constraints

If needed, revising the design

Figure 2.6: M2S150T footprint constraints

Even after the changes needed to satisfy all the constraints, the tests on the design have had
negative results. It came out that the buses, the initialization block and the reset block were
not working properly. Even though the reason for this behaviour is still not clear, the solution
has been to use a wizard provided by Libero to automatically generate the processor and all the
logics related to the buses, resets and initialization. Since the wizard was not providing some
options needed for the design, the generated logic has been manually modified acording to the
needs.

2.5.2 Upgrade

Each SerDes interface has four differential lane for communication and all of them should be used.
The CorePCS block and the ram with its logics have to be duplicated for each lane. Having
some problems resetting the SRAM, changes to the design have been made. In particular SRAM
logics have been simplified. The memory reset is triggered by a signal from the processor that
can be sent via software by the user.



N

MSS&CONFIG

phEbEE

TRt

C hm_q o)

RCOAR[150)
RCvR-Fisal
ROOUTI

(a) General design

iR eial

ST

(b) SerDes logics

Figure 2.7: New design

10



2.5.3 Communication between the FPGAs

All the designs tested so far, had the SerDes interface set in loopback configuration. Communi-
cation between FPGAs has to be tested.

For HV and CAL the previous design can be used changing the SerDes interface configura-
tion so that the one connected to the ROC is used. For both of them, SerDes_1 is the interface
to be chosen.

Having to communicate with both HV and CAL, ROC needs two SerDes interfaces, in par-
ticular SerDes_1 for HV and SerDes_3 for CAL. Adding one interface to the ROC project causes
timing problems that could not be solved. To test the communication functionality, connections
with HV and CAL have been tested separately.

In loopback configuration, syncronization issues between transmitter and receiver could not be
spotted. Communication test among different FPGAs spotted these issues resulting in malfunc-
tioning connections. 8b/10b encoding uses commas to syncronize the communication. CorePCS
needs at least a certain number of consecutive commas to achieve syncronization but this quan-
tity was not reached in previous communication. Increasing the number of consecutive commas
transmitted, functionality of the communication has been restored.

2.5.4 On-board SerDes clock

For all the tests, the clock for the SerDes interface has been generated by a PLL at the wanted
frequency. On the DRAC, a 156.25 MHz crystal should provide the clock signal for the SerDes
interface. The SerDes IP can operate at that frequency only transmitting and receiving 16 bit
words with a data rate of 2.5 Gb/s. This crystal can’t be used with 8b/10b encoding that needs
to send 20 bits per word.

11



Chapter 3

Solutions and implementation

3.1 Two SerDes on ROC

Even if the communication between two board has been achieved, simultaneous communication
from HV and CAL to ROC could not be obtained. Two possible solutions have been proposed:

e Use the 156.25 MHz on-board crystal for the SerDes interface. 8b/10b encoding should
not be used anymore.

e Communication from ROC to CAL and HV is not needed so the link between them can be
unidirectional. Doing that CorePCS can be setted as transmitter or receiver only.

i
Q
o
0
o
@

;_l.U_—A
B
g
s
=r

E]
114

o]
41;

7

:

¥
ag'i
a2
i

uts
45

2
53 A3
5?‘:-;3
fHeai tate
e T
=
H
o2
£

sistsi
£

3
»
I

L T
;
H
o
. -
%i:mﬂq o5 8 e
] EE BT
s &S ﬂua sy ey |
S e
%, B
L el Barmconi
L s, BERGE
BRZEN 3
—‘ Bl Lt ¢
o
=
I T S=acaccl m— AR
C g
| H—SerDes-w
Wit
N
" ah/f0h
8
8

Figure 3.1: ROC project without encoder



The first solution could resolve all the timing problem and could succesfully transmit and
receive datas. Not using a code, syncronization is harder and the system suffered of bit slip.
The second solution had better timing margins than the case without any solution applied but
most of the logic for the CorePCS is used in the decoder. So the ROC still suffered for timing
problems.

3.2 FIFO

Datas arrives from the ADC at a frequency that is different from the one used for SerDes trans-
mission. Moreover, datas are generated by electrons that transit through the straws and the
number of event per second is not constant. A FIFO is needed to connect collected data source
to the SerDes interface. Some logic is needed too because datas generated from the ADCs are
12 bits of lenght but the encoder wants 16 bits. Filling the last 4 bits with control signals or
bits from other datas are both worth options to be implemented depending on the critical issues
that will be found.

In the clock domain transit, timing violation are showed. Splitting the clocks in different group,
solves this problem. This is achieved through the timing constraints file.

3.3 Generic timing violations

Most of the timing violations showed were minimum timing violations. These violations are
automatically solved by the synthetizer going through more iteration of synthesis and adding
specific delays on each lane without violating maximum timing constraints. This can be done
only if there are not maximum timing violations in the design.

The timing violations presented in this report are all maximum timing violations and are caused
by an unexpected behaviour of the synthetizer.

There are 3 type of links inside the FPGA:
e Normal

e Local

e Global

Figure 3.2: Footprint geometrical blocks with the two vertical lane of local connection and a
central global connection

13



First ones are slow lanes with a low fanout. Second ones are high fanout lane that can be
connected only inside the same geometrical block on the FPGA footprint. Global can distribuite
signals everywhere on the FPGA.

The receiving clocks have to charge a lot of different logic element because of the big decod-
ing circuit and the logic to write on the SRAM. To optimize the behaviour of the links, the
synthetizer automatically promote to global the connections with highest fanout. But sending
the clock signal from the SerDes zone to the global connections, adds too much delay to respect
timing constraints. Specifing that these clocks have to be local signals, high fanout has been
taken care of and there was no more delay on the connection.

Solving this issue, make all the previous design works better and faster. The SerDes speed

for all the designs have been increased to 125 MHz transmission clock frequency resulting in 2.5
Gb/s data rate without anymore issues.

14



	Setting overview
	The tracker
	DRAC

	Design flow
	Communication interface
	SerDes
	8b/10b encoding

	Development platforms
	M2S150T
	M2S050T

	Initial simulations
	On-board tests
	SRAM interface
	Timing costraints

	DRAC tests
	Porting
	Upgrade
	Communication between the FPGAs
	On-board SerDes clock


	Solutions and implementation
	Two SerDes on ROC
	FIFO
	Generic timing violations
	Implementation in the complete design


