Fermilab **ENERGY** Office of Science

Mu2e DS Tracker – Support systems layout analysis

Student: Gabriele Taddei Supervisor: Giuseppe Gallo Final Review, Summer Student 2016 09/21/2016

Overview

- Tracker existing design
- Task # 1: Conceptual design of electrical and gas system
- Task # 2: Analytical evaluation of mounting planes uncertainty
- Task # 3: Planes pressure contact analysis

Mechanical construction

1 panel contains 96 straws

T1: Conceptual design of electrical and gas system

As the mechanical design is in advanced status, conceptual design and interfaces with electrical and gas systems need to be developed

Panel cables layout

To work, Key needs: # 32 20Ga square wires (s = 0.812 mm each)

6 fiber wires ($Ø_{jacket} = 2 \text{ mm each}$)

HV cable follows radial and axial direction

Panel cables layout – space constraints

- Along Z-axis:
- Plane thickness = 47 mm

Laser tracking spheres encumbrance = 14 mm

Key - HV minimum distance = 17 mm

Fiber connector minimum distance (from panel lateral surface) = 15 mm

Panel cables layout – attempt

Considering the condition of maximum encumbrance, i.e. two bundles belonging to different Key-HV groups, an optimal solution is (section view):

Panel cables layout – attempt

View of plane design (cables in red are not in the true radial position, they are in contact with panel):

Panel cables layout – attempt

17

Axial groove cables layout

Slots on axial groove (temporary design in pictures) have to be created to make room for Key and HV cards

🛠 Fermilab

Axial groove cables layout – attempt

For # 20 stations, maximum radial extension of cables is 56 mm at **downstream** side of the tracker

According to the proposal design, maximum radial encumbrance is 888 mm

Axial groove cables layout – attempt Each color represents # 2 stations (x' - y' section view): Х n 56 32 30 130 56 10S 9S 9D 10D 7D 8D 8S 7S 6S 5S n 5D 6D 4D 3D S = single bundle2S 4S 3S 1S 1D 2D D = double bundle🛠 Fermilab

Axial groove cables layout – attempt

Overlapping simplified scheme (α plane):

D = double bundle

Х

辈 Fermilab

 α plane

- d = downstream
- u = upstream

Axial groove cables layout – attempt

N.B. To make the layout above possible, every 2 stations cables have to follow this sequence (cables in red are not in the true radial position, they are in contact with panel):

Gas pipeline layout

We assume we have:

Gas In |

- # 1 main inlet axial pipe (as shown);
- # 1 main outlet axial pipe;

| Gas Out

 Layout surrounding the plane (radial and circumferential pipes) is still work in progress

Radial pipes (installed inside the panel manifold)

Х

30

56

Axial pipe

Gas pipeline layout

Requirements and specifications: each panel needs to be isolated in case of leakage (independent inlet and outlet gas lines)

Radial pipes

Fermilab

Circumferential pipes

18 09/21/2016 G. Taddei | Mu2e DS Tracker - Support systems layout analysis - Summer Student 2016

Gas pipeline layout – attempt

Kinematic mount (by courtesy of ANL)

Kinematic mount is realized through 3 grooves: 0°, 180°, 270°

Through 3 points of contact, 6 degrees of freedom are removed, the constraint is **isostatic** (no stress due to heat or assembly errors)

21 09/21/2016 G. Taddei | Mu2e DS Tracker - Support systems layout analysis - Summer Student 2016

T2: Analytical evaluation of mounting planes uncertainty

When aligning balls and grooves, errors affect position of both of them; we assume that only grooves direction is affected by errors. The aim is to find the configuration that minimizes misalignment.

T2: Analytical evaluation of mounting planes uncertainty

$$\begin{pmatrix} \overline{x}_i \\ \overline{y}_i \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_i + x_0 \\ y_i + y_0 \end{pmatrix} \approx \begin{pmatrix} 1 & -\theta \\ \theta & 1 \end{pmatrix} \begin{pmatrix} x_i + x_0 \\ y_i + y_0 \end{pmatrix} =$$
$$= \begin{pmatrix} x_i + x_0 - \theta y_i \\ y_i + y_0 + \theta x_i \end{pmatrix}$$
(1)
$$x_0, y_0, \theta R \leq 0.1 mm$$

$$\overline{x}_i = (\cot \alpha_i) \, \overline{y}_i \qquad (2)$$

$$\alpha_i = \theta_i + \frac{\Delta_i}{R_i} \tag{3}$$

$$-x_0 \sin \theta_i + y_0 \cos \theta_i + \theta R = \Delta_i$$

$$\begin{pmatrix} -\sin\theta_1 & \cos\theta_1 & 1 \\ -\sin\theta_2 & \cos\theta_2 & 1 \\ -\sin\theta_3 & \cos\theta_3 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \\ \theta R \end{pmatrix} = \begin{pmatrix} \Delta_1 \\ \Delta_2 \\ \Delta_3 \end{pmatrix}$$

3 variables to consider $(\theta_1, \theta_2, \theta_3)$

T2: Analytical evaluation of mounting planes uncertainty

Assuming that:

- 1 ball is on the lower half and 2 balls are on the upper (more stability)
- a symmetrical configuration is preferable (centroid on vertical axis, if balls 1 and 2 are identical)

there is only 1 variable left, θ_1

 $-\frac{\Delta}{2} \le \Delta_i \le \frac{\Delta}{2}$

🛟 Fermilab

 $0^{\circ} \leq \theta_1 < 90^{\circ}$

T2: Analytical evaluation of mounting planes uncertainty

T2: Analytical evaluation of mounting planes uncertainty

$$A = \frac{3}{2} \cdot \frac{\Delta^2}{(1 + \sin \theta_1) \cos \theta_1} \qquad \qquad \theta_1 = 30^\circ \quad \text{Ideal configuration}$$

T3: Planes pressure contact analysis

Argonne proposed a **sphere - cylindrical groove** as support point (HertzWin software):

 $R_{s} = 9.525 \text{ mm}$ $R_{ca} = 9.600 \text{ mm}$ (both stainless steel) Ŷ um Ζ $\sigma_{eqVM} = 288 \text{ MPa}$ $\sigma_v = 290 \text{ MPa}$ SF = 1.01

T3: Planes pressure contact analysis

Different materials are chosen:

- $R_s = 9.525 \text{ mm}$ (silicon-nitride ceramic ball)
- $R_{cg} = 9.600 \text{ mm}$ (stainless steel, coated with WC)

 $\sigma_{eqVM} = 344 \text{ MPa}$ $\sigma_y = 1000 \text{ MPa}$ SF = 2.91

Pressure contact sensitivity analysis

We may change dimensions:

- $R_s = 4.850 \text{ mm}$ (silicon-nitride ceramic ball)
- $R_{cg} = 4.900 \text{ mm}$ (stainless steel, coated with WC)

Next steps

- Complete the design of electrical and gas system (with all details) and provide final layout drawings
- Refine Argonne proposal design of plane support points along with fabrication drawings

Thank you for your attention!

