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Abstract
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1 Introduction

1.1 Top quark and SM parameters

The quark top is one of the fundamental particles of
the SM. It was discovered in 1995 at the Tevatron
collider at Fermilab during the Run I by the CDF
and D/0 experiments. This discovery was one of the
key steps for the validation of the quark model for
hadrons and the standard model itself. The quark
top is a fermion with spin =1/2 and electromagnetic
charge = +2/3 |e|; it carries color charge and has a
mass of mt ∼ 173GeV/c2. The quark top interacts
through all the known fundamental forces: gravita-
tional, electromagnetic, weak and strong force. The
only parameter that was not predicted by the the-
ory is its mass, which has been studied since the
discovery and its best determination is one of the
goal of the CDF collaboration.

In the experiment conducted at Tevatron col-
lider, top quarks are produced mainly from strong
processes: qq̄ → tt̄ (85% at Tevatron energies) and
gḡ → tt̄. At energies of

√
s = 1.96TeV those pro-

duction cross sections can be calculated with per-
turbative QCD and are found in agreement with
the measured value of [10]:

σtt̄ = 7.16+0.11+0.17
−0.20−0.12 pb. (1.1)

The other important property of the top quark it
is its decay channels. The top quark can decay in
a down-type quark (d,s,b) and its decay rates are
proportional to the squared CKM matrix element.
The value of |Vtb|2 has been measured [3]:

|Vtb|2 = 1.02+0.29
−0.31. (1.2)

Given that value and the unitarity of the CKM ma-
trix, the fraction of the quark top branching ratio
of decay in b-quark and all down-type quark is:

R =
B(t→Wb)

B(t→Wq)
=

|Vtb|2

|Vtd|2 + |Vts|2 + |Vtb|2
∼ 1

(1.3)
making the b decay channel probability of almost
100%. The top decay width Γt is of order of mag-
nitude of ∼ 1GeV , which is larger that the typical
QCD scale of 200MeV . For that reason the lifetime
is much smaller than the typical time of formation
of QCD bound state hadrons (top-flavoured hadrons
or tt̄-quarkonium), so the top quark decays before
those states can be formed.

1.2 Top mass Measurements

As stated before, the mass of the quark top is the
only parameter which is not predicted by the SM.
Therefore having a good measurement of his mass
it is very important. It has effects on the preci-
sions of the predictions of the SM. The last world
combination of measurement of the Top quark mass
has been performed in 2014 with the latest measure-
ments available at that time from Tevatron (CDF,
D/0) and LHC (ATLAS, CMS). In image 1.1 all the
different measurements are reported. The result
is [2]:

Mt = 173.34± 0.27stat ± 0.71systGeV/c
2 (1.4)

reaching a precision of 0.44%.
The latest single measurement from both the

labs reached an higher precision. In fact the most
recent D/0 measurement is [4]:

Mt = 174.98±0.58stat+JES±0.49systGeV/c
2 (1.5)

with a precision of 0.43%. This measurement was
carried out with the matrix element method. The
most precise result was found by the last CMS mea-
surement [6]:

Mt = 172.44± 0.13stat ± 0.44systGeV/c
2 (1.6)

reaching a precision of 0.28%. In this context, the
aim of the CDF collaboration is twofold. Firstly,
the goal is to reach the highest possible precision
exploiting the full RunII data collected by CDF be-
tween 2001 and 2011. Furthermore, it is interest-
ing to examine the tension between LHC (1.6) and
Tevatron (1.5) measurement which have a separa-
tion greater than 3σ. CDF has already completed a
first measurement of the quark top mass using the
matrix element method that is implemented in this
analysis but with only part of the RunII dataset.
This [5] result is taken as reference for our analysis:

Mt = 173.0± 1.2GeV/c2 (1.7)

In the following sections there is the description of
all the improvements scheduled to be implemented
in this analysis compared to the old one.

1.3 Channel selection and ME method

In order to measure the mass of the top we are in-
terested in events which creates tt̄ couples. Those
events can be selected depending on their signature.
The decay signature can be classified as follows:
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Figure 1.1: Latest world combination performed in 2014 with results from Tevatron and LHC.

– Dilepton events: tt̄ → [l, νl + l′, νl′ + jets]
where both W decay into the leptonic chan-
nel. It has the cleanest signature and highest
signal-to-background ratio but occurs only in
∼ 7% of cases and by having 2 undetected νl
it has an unconstrained kinematics;

– Hadronic events: tt̄ → [hadrons] where both
W decay hadronically (at least 6 jets). It has
∼ 55% of decay rate but it presents a large
QCD background;

– Lepton+Jets events: tt̄ → [l, νl + jets] where
one W decays leptonically and the other W
decays hadronically. It accounts for ∼ 38% of
the decays while providing a distinct experi-
mental signature through the isolated lepton
and a good signal-to-background ratio. For
that reason this is the optimal channel for our
measurement.

The event signature that we require for the lep-
ton+jets events is: charged lepton with high pt,
large missing transverse energy /Et and at least 4

jets. Those events can be divided in different cat-
egories. We define a tight jet as a jet with Et >
20GeV and |η| ≤ 2.0 and a loose jet one having Et >
12GeV and |η| ≤ 2.4. A tight event is then an event
with exactly 4 thigh jets while we define the rest as
loose events. Finally we defined a tagged jet if the
jet is identified as resulting from the hadronization
of a b quark coming from the W decay. In this anal-
ysis the following categories are considered: 0Tag,
1TagT, 1TagL, 2TagT, 2TagL (the T and L stands
for tight and loose respectively). In Figure 1.2 there
are all the categories’ selection requirements.

The possible events not coming from tt̄ decay
that can mimic the lepton+jets signature can be
divide as follows:

– W+jets: events with W decaying into leptonic
channel and a number of hadronic jets. This
is the most important background source;

– QCD: multi-jet events which leave a leptonic
signature by ”fake electron” (jets misidentified
as electrons in the electromagnetic calorime-
ter) or secondary electrons (coming from lep-
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Figure 1.2: Selection requirements depending on the number of b-tag and tight and loose jets

tonic decays inside jets);

– Single top: a W and b coming from top de-
cay with other jets. It has a relative smaller
contribution;

– Diboson: WW,WZ,ZZ events that can create
the lepton+jets signature;

– Z+jets: as W+jets can generate a semilep-
tonic event signal.

The Matrix Element method is the optimal me-

thod to measure parameters of the SM, provided
that one have a very robust theoretical model and
detector response model. The measurement is per-
formed on candidate tt̄ events in the channel and
categories already defined. For every event the prob-
ability of observing that event is computed by inte-
grating the matrix element for tt̄ production and
decay over the 32 dimensional phase space variables
(actually reduced to 19 with constraint and assump-
tions). The likelihood for a signal event is defined
as [5]:

Lsgn(~y|Mt,∆JES) =
1

N(Mt)

1

A(Mt,∆JES)

24∑
i=1

wi

[∫
f(z1)f(z2)

FF
TF (~y|~x,∆JES)|M(Mt, ~x)|2dΦ(~x)

]
i

(1.8)

where ~y are the quantities measured in the detec-
tor, ~x are the parton-level quantities that defines the
kinematics of the event, N(Mt) is the global nor-
malisation factor (including σpp̄→tt̄), A(Mt,∆JES)
is the acceptance, f(z1) and f(z2) are the PDFs for
incoming parton momentum fraction zj , FF is the
relativistic flux factor, TF (~y|~x,∆JES) are the trans-
fer functions. M(Mt, ~x) is the Kleiss-Stirling matrix
element [8] for both qq̄ → tt̄ and gḡ → tt̄ production
processes. Because the main source of systematic
uncertainty is the jet energy uncertainty, the likeli-
hood is built as a two dimensional function of Mt

and ∆JES . The ∆JES is a correction factor which
correct jet energies by a factor of 1+∆JESσj , where

σj is the fractional systematic uncertainty on the en-
ergy for a given jet. To have a better modelling and
reduce the systematic uncertainties, a likelihood for
the main background contribution (W+jets) is in-
cluded in the analysis. A background event from a
channel not included in the likelihood will lead to a
shift in Mt. Thus the other background channels are
going to be taken into account with the final calibra-
tion of the method by means of pseudo-experiment.

The two likelihood are combined to form the to-
tal likelihood:

Lev(y|mt,∆JES) = a(fsig)Lsig(y|mt,∆JES)

+b(fbkg)Lbkg(y|∆JES)
(1.9)
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Once the full definition of the likelihood is imple-
mented in the ME code, several pseudo-experiment
are going to be performed in order to tune the com-
bination factors1. Finally the results for every event
in the data are combined:

L(Mt,∆JES) =
events∏

Lev(y|mt,∆JES). (1.10)

The procedure to extract the value of the Mt is the
profiled likelihood method explained in section 4.
At this point of the analysis the normalisation and
the acceptance are still not included in the ME code.
Thus the results of the integration are not proper
probabilities and are going to be called weights of
integration Wk,ij , where i, j are the indices for∆JES

and Mt respectively; k is a label that identify the
event in the MC samples.

The aim of this measurement is to find the most
precise value for the Mt with the full dataset of the
Run II of Tevatron. The improvement with respect
to the last measurement can be summarised in the
following points:

– Increase of the integrated luminosity: from
5.6fb−1 to 9.0fb−1;

– Inclusion of the new sample categories: 0TagT,
1TagL, 2TagL;

– Modelling of the background in the matrix el-
ement method by the inclusion of the back-
ground likelihood term;

– Refinement of the q-MC integration method
for a faster event probability computation;

– Usage of NLO signal MC samples for a reduc-
tion of systematic uncertainty in the calibra-
tion procedure.

2 Integration methods analysis

In this section I present the preliminary work I did
to validate the integration method used in the ME
code. The Matrix element method heavily rely on
the condition of having a fast integration code. As
explained in the preceding section section, in order
to calculate the probability of a single event, several
integrations has to be performed. The integration
is stopped if one of the following requirements is
satisfied:

1For perfectly normalised likelihood, they should be
a(fsig = f) and b(fbkg) = 1 − f .

– Maximum number of integration points (218);

– Maximum time allowed (7200 s);

– Maximum precision required (0.1).

In brackets are reported the values of the variables
used in the code. The aim of the analysis at this
point is to improve the MC integration code to have
a faster convergence and, consequently, a faster reach
of the precision termination condition. Under this
perspective having faster converging integration is
the key to be able to reach the desired precision in
the determination of the likelihood with a restrained
computational time.

2.1 p-MC: pull distribution

The first step was to analyse the error estimation
for the pseudo MonteCarlo integration code which
is the most reliable and robust integration method.
The p-MC integration is based on sampling the func-
tion in randomly chosen points. The integral of a
function defined on a domain D of dimension d is
estimated then as:

I =

∫
D
f(~x)d~x ≈ 1

N

N∑
i=1

f(~xi) (2.1)

where ~xi ∼ U [D] and N is the number of points of
integration. By the central limit theorem we expect
the relative error of integration to be:

∆I

I
= O(N−1/2) (2.2)

independently of the dimension d of the of the inte-
gral. This method is combined with the importance
sampling, a mathematical trick which allows us to
practically modify the distribution of random points
to select more points in regions where the function
is more important without loosing the MC integra-
tion properties. It is achieved by introducing a well
behaved density function g(~x) in the integral:

I =

∫
D
f(~x)d~x =

∫
D
f(~x)

g(~x)

g(~x)
d~x. (2.3)

This gives the integral estimation defined as:

I ≈ 1

N

N∑
i=1

(
f(~yi)

g(~yi)

)
(2.4)

where the points are now distributed as: ~yi ∼ g(~x).
In order to test the code we run a simulation to build
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the pull distribution. Furthermore this pull distri-
bution will be used as comparison in the testing of
the new code with the quasi-MC. As input file a
sample of MC simulated events has been taken and
converted in a format compatible with ME integra-
tion code. The sample (A.1) contains 956 LO signal
events built with Pythia and the properties shown
in table 2.1:

MC sample properties

Mt,MC 173GeV/c2

∆JES,MC 0σ
category 1TagT

Table 2.1: MC signal events construction properties.

The following procedure has been used to build
the pull distribution. For every event, 22 integration
have been calculated on the cluster Fermigrid with
different random seed for the generation of random
points. The mean over the repeated integrations is
defined as:

< Wk,ij >=
1

22

22∑
l=1

Wk,ij,l, (2.5)

where k label the event (∈ [1, 956]); i, j label values
of ∆JES ,Mt ∈ {[−3,+3]σ, [157.5, 187.5]GeV/c2}) of
the output; l labels the different integration of the
event; Wk,ij is the result of the integration as defined
in section 1.3. The standard deviation is defined as
follows:

σk,ij =

√√√√ 1

21

22∑
l=1

(Wk,ij,l− < Wk,ij >)2. (2.6)

The pull variable is then the normalised variable:

δk,ij,l =
Wk,ij,l− < Wk,ij >

σk,ij
. (2.7)

The Plot 2.1 shows the histogram of the pull vari-
able δk,ij,l ∀(k, i, j, l). In the hypothesis that the
integration code doesn’t have any bias, we expect
the pull variable to be distributed as a N(0, 1) and
the total histogram to be as close as possible to that
distribution.

We can clearly see the presence of a spike in
the histogram around ∼ 0.2. Before analysing the
plot, effort has been put to find the source of this
unexpected spike. Two problematic results where
identified. In fact events number 58 and 330 where

Pull
Entries    1.953521e+07

Mean  10− 2.885e

Std Dev     0.977

Underflow       0

Overflow       44

Integral  1.954e+07

Skewness 0.2166− 

Pull
5− 4− 3− 2− 1− 0 1 2 3 4 5

0

10000

20000

30000

40000

50000

60000

70000

80000

Pull
Entries    1.953521e+07

Mean  10− 2.885e

Std Dev     0.977

Underflow       0

Overflow       44

Integral  1.954e+07

Skewness 0.2166− 

Pull distribution

Figure 2.1: Pull histogram for p-MC integration
method. It present a unexpected spike which re-
vealed a problem in the pull calculation.

giving numerical problems in the determination of
the pull. Since the same complication was found in
the q-MC results too, the explanation of the prob-
lem and its solution can be found in section 2.2.
Thus, by removing the problematic results, the pull
for p-MC is obtained (figure 2.2).

It is evident how the pull distribution is very
close to a N(0, 1) with the histogram parameters
mean and standard deviation being:

µp−MC =(3.1020± 0.0002) · 10−10; (2.8)

σp−MC =0.9770± 0.0001. (2.9)

This is a confirmation that the integration code is
well implemented and gives consistent results. Still
there is a negative skewness which could be the re-
sult of some bias in the code. It is not clear if this
will go away with more statistics (more than 22 rep-
etition of the integration). More results are needed
to have definitive responses.

This is a fundamental result at this stage of the
analysis because it give us the opportunity to com-
pare it with the same pull distribution obtained the
q-MC method.

2.2 q-MC: pull distribution

The goal of this analysis is to test the new imple-
mentation of the q-MC method of integration. The
quasi-MC method is very similar to the psedo-MC
method of integration with the only difference being
in the sequence of points used to evaluate the func-
tion and compute the mean value which estimate
the integral.

As already stated in the previous section p-MC
uses a complete random sequence of points where
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Pull
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Figure 2.2: Pull histogram for p-MC integration method without results of events 58 and 330.

every ~xi is independent and identical distributed to
the other. In the q-MC instead it is used a de-
terministic sequence with particular properties. If
we define the star discrepancy D∗ of a sequence of
points PN in Rd as:

D∗N (PN ) = SupB∈A

∣∣∣∣#{PN ∈ B}
N

− λ(B)

∣∣∣∣ (2.10)

A = {~x ∈ Rd : xi ∈ [0, bi) ∀0 < bi < 1} (2.11)

where λ(B) is the Lebesque measure of B. It has
been proven that [9]:∣∣∣∣∣∣ 1

N

N∑
i=1

f(~xi)−
∫

[0,1]s
f(u)du

∣∣∣∣∣∣ ≤ V (f)D∗N (~x1, ..., ~xn)

(2.12)
where ~xi are points of the sequence PN and under
the hypothesis that the variation of the function
V (f) is bounded. This is called the Koksma-Hlawka
inequality. So, by using the so called ”low discrep-
ancy sequences” it is possible to achieve a better
convergence of the relative error of the integral.

The Sobol sequence is a well known low discrep-
ancy sequence. It has been proven that it should
give a error convergence of:

∆I

I
= O(N−1+ε) (2.13)

where ε depends on the properties of the integrand
functions as expected.

On top of that, a further scrambling of the points
of the sequence has been implemented in the code.

There are several random scrambling defined in or-
der to preserve the low discrepancy property but
avoiding intrinsic biases of the method and even im-
prove the convergence [7]. Two scrambling methods
are implemented in the code: one proposed by Owen
and one proposed by Faure and Tezuka. Both of
them act as a random scrambling of the point of the
sobol sequence without spoiling the LDS property.
Even though different points of a certain sequence
are not iid, this scrambling ensure us that, with a
different random seed for every different integration,
the points between two different sequences are iid.
So the pull analysis can be performed for the q-MC
in the same way as for the p-MC and the results can
be compared.

In order to build the pull distribution the same
set of events used in the analysis in section 2.1 has
been integrated 22 times with different randomised
sobol sequences (in the code: sequence ”fortsobol”,
option 3 which sets Owen + Faure-Tezuka scram-
bling). The pull is again defined with the defini-
tions (2.5), (2.6), (2.7). In plot 2.3 there is the pull
distribution. Again the detail that needed to be un-
derstood is the presence of that spike at 0.2 which
is completely unexpected and shows the presence
of some bias in the pull calculation or in the ma-
trix element integration code. In order to find the
source of the spike I tried to calculate the pull with-
out some of the 22 output files to see if it was the
consequence of some problem in the submission of
some particular job on Fermigrid. I didn’t find any
problem related with an entire job submission of the
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Figure 2.3: Pull histogram for q-MC integration
method. The same spike seen in p-MC result is
present.

integration. Then I tried to search for some events
with a particular kinematics which could lead to ex-
treme results and so introduce some numerical er-
rors in the pull calculation. I found that there were
2 special events that where triggering the spike. In
particular event number 58 (figure 2.4) and event
330 (figure 2.5).

Figure 2.4: Plot of Wij,ev=58(∆JES ,Mt)

In both cases we can clearly see that the major-
ity of the bins have a value of the weight of the inte-
gration very close to 0 if not exactly 0. That could
be the source of some numerical not well defined cal-
culation which lead the pull variable to form a spike
over that particular bin. The results of the 22nd

integration for the bin with values of ∆JES = 3σ
and Mt = 187.5GeV/c2 are reported in table 2.2.

The fluctuation of only two results of integration
over the minimum result not interpreted as 0 by
the ME code force the mean over that event to be
different from 0. Subsequently, the pull variable for
all those zero results is fixed at that certain bin in

Figure 2.5: Plot of Wij,ev=330(∆JES ,Mt)

the pull histogram. The same happens for the rest
of the bins ij which show an analogous extremely
low value the weight. In fact by looking at the pull
distribution calculated only for event 330 (as shown
in figure 2.6) we can clearly see how the distribution
is extremely picked around ∼ 0.2. Those entries
were creating the spike.

Pull
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Figure 2.6: Pull histogram event 330 of q-MC inte-
gration method.

It is important to understand that for events
with those kind of extreme kinematics the result of
the integration was reliable but there is a numer-
ical limit over which the results are interpreted as
0. For the purposes of the study of the integration
it is not important if we take out one event of the
MC sample since only the integration method was
tested. The aim is to see the integration code be-
haviour in independent integrations. In the context
of the data analysis it is different of course. From
this results we learn that in the MC events as well
as in the data , there can be events for which the
weight returned by the code is exactly zero due to fi-
nite precision of the machine and ME code. Because
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Pev=330 bin[3σ, 187.5GeV/c2]

0 0 0 0 0 0 0 0 0 0 0 0 0 5.4 · 10−13 0 0 0 9.2 · 10−16 0 0 0 0

Table 2.2: Results of the 22 integration of the matrix element for event 330 in the sample in the bin with
∆JES = 3σ and Mt = 187.5GeV/c2]

Pull
Entries     1.52011e+07

Mean  10− 9.062e

Std Dev     0.977

Underflow       0

Overflow        0

Integral  1.52e+07

Skewness 0.2008− 

Pull
5− 4− 3− 2− 1− 0 1 2 3 4 5

0

10000

20000

30000

40000

50000

60000

Pull
Entries     1.52011e+07

Mean  10− 9.062e

Std Dev     0.977

Underflow       0

Overflow        0

Integral  1.52e+07

Skewness 0.2008− 

Pull distribution

Figure 2.7: Pull histogram for q-MC integration meth without event 58 and 330 of the sample.

those weights, after normalisation, are probabilities
with which we compute the likelihood (1.8), it is
important to define how to deal with those events.
One possibility is to put a cut on the likelihood in
order to eliminate such events both in the testing
with MC samples and on the analysis of the data.
This will marginally reduce the size of the sample
but will avoid such numerical problems. A similar
cut on the likelihood was used in the last measure-
ment [1].

Without those events the pull distribution is the
one shown in figure 2.7.

µq−MC =(9.0620± 0.0003) · 10−10; (2.14)

σq−MC =0.9770± 0.0001. (2.15)

We see that it reproduce a gaussian distribution
as expected meaning that the integration method
using the scrambled sobol sequences is reliable. Still
there is a negative skewness evident in the histogram.
In this case also it is not clear if it will go away
with more statistics (more repetition of every inte-
gration) or not. Anyway it is interesting to compare
it to the pMC result. The pull distribution looks
very similar. This ensure us that the q-MC integra-
tion method is as solid as it is the p-MC. Then if it

reaches better convergence of the errors is undoubt-
edly a significant improvement over the code used in
the last analysis. The fact that the two distribution
looks so similar suggest that there could be a sim-
ilar bias in the code independently of the sequence
of point used. This also needs to be tested further.

2.3 Coefficient of variation: p-MC,q-MC

In order to have a qualitative results showing which
is the more precise and better converging integration
method a further analysis has been carried out. In
figure 2.8 there is the histogram showing the ratio:

rk,ij =
σk,ij

< Wk,ij >
(2.16)

for the results of both the integration methods. This
represents the coefficient of variation for every set
of 22 repetitions of the various integrations.

We clearly see how this ratio is consistently smal-
ler for q-MC method. The mean values of the his-
tograms are:

µp−MC =0.11400± 0.00008 (2.17)

µq−MC =0.09363± 0.00009 (2.18)
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Figure 2.8: Histogram of the coefficient of variation for p-MC and q-MC

Since the two sets of simulation were run with
the same termination parameters presented in sec-
tion 2 and that, in this conditions, the integration
is almost certainly stopped by reaching the integra-
tion time limit, the fact that we see a mean value of
the ratio r smaller for q-MC than p-MC method is a
qualitative proof that the latest integration method
leads to a faster convergence and a more precise re-
sult overall. In order to have a quantitative estima-
tion of the convergence the test needs to be repeated
with the two method without termination parame-
ters and fixed number of points. The speed of in-
tegration was preliminary tested with fixed number
of points and it has been shown that there is no
difference with the two methods.

Having a faster converging method finally leads
to more precise results because in the refinement
and calibration of the method (with pseudo-experi-
ment) and finally in the data analysis the most con-
straining termination parameter is going to be the
time limit. Thus, reaching a better precision with
less points of integration will end up giving more
precise results.

3 New Transfer Functions

The next part of analysis that I carried out is the
comparison of the new and old transfer functions.
The old TF have been used in the analysis up to
this point and they are designed to be implemented
in the ME code and used with only tight categories,
see table 1.2. The new TF instead are compatible
also with events in the loose categories. This is part
of the improvement of the analysis with respect to
the last CDF top mass measurement which didn’t

contain loose categories in the selected event sample.
In order to have a meaningful feedback to start

debugging the new TF there are two possible ways:
direct computation of same events in tight cate-
gories with both TF and comparison of the results;
plot directly both TF to see what are the main dif-
ferences. I compared them using the first method.

In the tight categories on which both are ap-
plicable (old TF were not derived to be used with
loose categories) we should expect to get the same
results. Therefore, I computed the likelihood for
the 956 events from sample used in the pull analysis
(A.1) with the old and new TF.

Approximatively ∼ 30% of the events calculated
with the new TF went on held status on Fermi-
grid because problems (Aborts, unphysical efficien-
cies...). Thus only the events that were success-
fully computed with the new TF where considered
in both samples for the comparison. Of course the
presence of such errors in the computation of the re-
sults for so many events give the first intuition that
the new TF still need to be refined.

Firstly I computed the total likelihood as ex-
plained in section 1.3. As estimator for Mt and
∆JES I extracted the values of the bin with maxi-
mum log(L). It has to be underlined that the like-
lihood is still not the final likelihood because Wij is
still the unnormalised probability. In order to do the
proper analysis we’ll need to divide the weights by
the acceptance and total cross section and extract
the parameter with the profiled likelihood method.
This has not been done in this section of the analysis
since the aim of this work is to show a the qualita-
tive difference in the results with different TF. They
still present an important deviation from the origi-
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Figure 3.1: Comparison of single event from the sample computed with old/new TF

nal TF that quantitative results are not needed at
this point. Results are shown in section 3.1 and 3.2.

In figure 3.1 we can see the result for a single
event. On the left there is the result for the old TF
while on the right for the new. It is evident how
the new one present some bugs. For example we
can spot the irregular behaviour of bin 171.5GeV/c2

which is not expected. The other important thing
to notice is that, even though the results are not
normalised probabilities, the two plots show com-
plete different order of magnitude for the weights
resulting from the integration, meaning that there
is a problem with the new TF normalisation.

3.1 Old transfer functions

MC Sample Results

Mt,MC 173GeV/c2 Mt 172.5GeV/c2

∆JES,MC 0σ ∆JES −1σ

Figure 3.2: Old TF: contour plot of
Log(L)(∆JES ,Mt). The maximum bin is identified
by a marker.

3.2 New Transfer Functions

MC Sample Results

Mt,MC 170GeV/c2 Mt 178.5GeV/c2

∆JES,MC 0σ ∆JES 2σ

Figure 3.3: New TF: contour plot of
Log(L)(∆JES ,Mt). The maximum bin is identified
by a marker.

3.3 Comparison of Results

The main conclusions we can draw from those re-
sults are the following. First of all the new TF
gives weight which seems to be normalised differ-
ently compared to the old one so the normalisa-
tion has to be debugged (see image 3.1). Secondly,
the new one gives unregular results which could be
caused by a bug in the construction code. Lastly,
by analysing the total likelihood over 700 events we
can see clearly how the new one tend to underesti-
mate the parton pt which results in a shift of the
max likelihood to the value of 2σ.
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Since the new transfer functions where derived
using NLO MC and with a different variables def-
inition, possible errors could be present at various
steps in their construction. This qualitative analysis
was meant to identify possible problems by seeing
the overall result in the likelihood.

4 Study of the sensitivity to ∆JES

In this section I report the analysis I did on the sen-
sitivity of the resulting estimators of Mt and ∆JES

to the shift of ∆JES applied in the MC simulated
signal events. This analysis is important at this
stage of the measurement because, even though we
do not have the complete likelihood definition, it
checks if the the results for the parameters follows a
linear dependence to the ∆JES,MC . If that is true,
shifted results from the input MC values are going
to be fixed with the final calibration of the method
by means of pseudo-experiment.

The samples (A.1) used contain signal events
generated at LO with Pythia with values of the
∆JES = {0,±1}σ, Mt = 172.5GeV/c2, category
1TagT and 2TagT. The code used for the analy-
sis is the signal matrix element code with the old
transfer functions.

For every sample 10000 events were analysed in
the following way. After having calculated the 2D
likelihood, by using the profile likelihood method
[11] the 1D likelihood over Mt and ∆JES has been
created. In general, to profile the Log(L)(∆JES ,Mt)
and extract the Log(L)(Mt), the profile likelihood
method impose to take for every bin in Mt the cor-
responding Log(L) value defined as the maximum
over all values of ∆JES for that bin:

log(L)(Mt) = Max∀i,j=Mt{log(L)ij} (4.1)

The same procedure can be used to derived the pro-
filed likelihood for the ∆JES

2.
To extract the estimator and the 1σ uncertainty

the histograms were fitted with a parabola. Then
the estimator for Mt is the value that maximises the
likelihood. The 1σ uncertainty is found by taking

2In the limit of large statistics we expect the likelihood
to follow a gaussian distribution. Since we have the unnor-
malised probabilities (missing total cross section and accep-
tance) to build the likelihood, this is of course an approxima-
tion. Since we expect the normalisation to be considerably
flat over the parameter space, it doesn’t change significantly
the shape of the likelihood making this approximation less
significant.

M∗t so that:

log(L)(M∗T ) = log(L)Max − 0.5. (4.2)

The profiled likelihood for Mt was fit in the range
Mt ∈ [160, 185]GeV/c2 to avoid the non parabolic
behaviour of the tails of the histogram. Finally, I
plotted the contour lines for the 2D likelihood which
identify the 1σ, 2σ, 3σ uncertainty regions.

log(L)(∆JES ,MT ) =log(L)Max − 0.5 (4.3)

log(L)(∆JES ,MT ) =log(L)Max − 2 (4.4)

log(L)(∆JES ,MT ) =log(L)Max − 4.5 (4.5)

This analysis follows the one explained in the article
of the precedent measurement [5].

In the following sections 4.1, 4.3, 4.3 are reported
the results for the three different samples.

4.1 ∆JES,MC = −1σ

In table 4.1 are reported the vales of the parame-
ters which were used to generated the MC sample.
Underneath there are the estimated Mt and ∆JES

from the fit of the profiled likelihood.

Sample = ttop25 mc jes-1 btag jpt20 .hs

Mt,MC 172.5GeV/c2

∆JES,MC −1σ

Results

Mt(fit) 172.3± 0.2 GeV/c2

∆JES(fit) −1.74± 0.04 σ

Table 4.1: MC values and results

In appendix A.2 can be found the plot of the pro-
filed likelihood and the corresponding fit. In figure
4.1 there is the contour plot of the Log(L). After

Figure 4.1: Contour plot of log(L). The cross iden-
tify the bin with max value.

the 2D fit the contour plot was built (figure 4.2).
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Figure 4.2: log(L) with contours corresponding to
a 1-σ, 2-σ, and 3-σ uncertainty. The marker shows
the maximum.

4.2 ∆JES,MC = 0σ

In table 4.2 are reported the vales of the parame-
ters which were used to generated the MC sample.
Underneath there are the estimated Mt and ∆JES

from the fit of the profiled likelihood.

Sample = ttop25 mc jes0 btag jpt20 .hs

Mt,MC 172.5GeV/c2

∆JES,MC 0σ

Results

Mt(fit) 170.9± 0.2 GeV/c2

∆JES(fit) −1.32± 0.05 σ

Table 4.2: MC values and results

In appendix A.3 can be found the plot of the
profiled likelihood and the corresponding fit. In fig-
ure 4.3 there is the contour plot of the Log(L).

Figure 4.3: Contour plot of log(L). The cross iden-
tify the bin with max value.

After the 2D fit the contour plot was built (figure

4.4).

Figure 4.4: log(L) with contours corresponding to
a 1-σ, 2-σ, and 3-σ uncertainty. The marker shows
the maximum.

4.3 ∆JES,MC = 1σ

In table 4.3 are reported the vales of the parame-
ters which were used to generated the MC sample.
Underneath there are the estimated Mt and ∆JES

from the fit of the profiled likelihood.

Sample = ttop25 mc jes-1 btag jpt20 .hs

Mt,MC 172.5GeV/c2

∆JES,MC −1σ

Results

Mt(fit) 169.8± 0.2 GeV/c2

∆JES(fit) −0.90± 0.05 σ

Table 4.3: MC values and results

In appendix A.4 can be found the plot of the
profiled likelihood and the corresponding fit. In fig-
ure 4.3 there is the contour plot of the Log(L).

Figure 4.5: Contour plot of log(L). The cross iden-
tify the bin with max value.
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After the 2D fit the contour plot was built (figure
4.6).

Figure 4.6: log(L) with contours corresponding to
a 1-σ, 2-σ, and 3-σ uncertainty. The marker shows
the maximum.

4.4 Results

In this subsection there is the summary of the re-
sults of this analysis. In table 4.4 we see the val-
ues of ∆JES and Mt resulting from the analysis of
each sample. Even though the results were derived
with the unnormalised likelihood, at this stage of
the analysis the goal was to see the dependencies to
the shift of ∆JES in the MC samples. We can see in
figure 4.7 that there is a perfectly linear dependence
between MC’s ∆JES and the resulting ∆JES .

Figure 4.7: Plot of ∆JES as a function of ∆JES,MC

∆JES = [(−1.32± 0.03)+

(0.42± 0.03) ·∆JES,MC ] σ
(4.6)

In fact a shift of absolute value 1 σ in MC’s ∆JES,MC

creates a shift of 0.42σ in the ∆JES . The linear de-
pendence ensures that the shift absolute value and

proportionality parameter will be corrected by the
calibration that is going to be performed before the
final measurement.

It is important to recall the definition of the
∆JES used in by the CDF group for the construc-
tion of the sample. In an event generated with a
certain ∆JES , the actual correction applied to the
jets is the opposite. For example, a sample with a
positive ∆JES has actually a negative correction to
the pt,jets so that the likelihood itself will select a
positive correction. For that reason we see a clear
linear correlation.

Regarding the Mt linear dependence to the
∆JES,MC , we can see in figure 4.8 that there is an
anti-correlation between MC’s ∆JES and Mt. This
is the expected results following our definition of the
JES correction in the construction of the sample: an
overestimation of the jet energy scale (∆JES < 0,
as explained before) result in a greater value of the
mass and vice-versa. A shift of absolute value 1 σ
in MC’s ∆JES creates a shift of ∼ 1.25GeV/c2 in
the Mt.

Figure 4.8: Plot of Mt as a function of ∆JES,MC

Mt = [(171.00± 0.12)+

(−1.25± 0.14)∆JES,MC ] GeV/c2
(4.7)

Also in this case the linear dependence was expected
and the values of the shifts after the inclusion of the
proper normalisation are going to be tuned to the
correct ones before the final measurement with the
calibration performed with pseudo-experiments.

A note has to be added to this part of the anal-
ysis. The introduction of the normalisation with
the acceptance (dependent on Mt and ∆JES) and
the total cross-section (dependent on Mt only) may
change the location of the peaks in the log(L) but we
don’t expect that to change the linear dependence
shown in this analysis.
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Sample’s ∆JES −1σ 0σ 1σ

Mt(fit) 172.3± 0.2 GeV/c2 170.9± 0.2 GeV/c2 169.8± 0.2 GeV/c2

∆JES(fit) −1.74± 0.04 σ −1.32± 0.05 σ −0.90± 0.05 σ

Table 4.4: Results of the analysis of the three different samples

5 Conclusion

In this section I can summarise the current situation
of the analysis with the insight given from the result
of my work.

The q-MC integration code is giving reliable re-
sults and its improvements are going to be an im-
portant advantage in terms of precision of the re-
sults and machine time during the calibration and
final measurement. There can be found the same
slight deviation from gaussian behaviour in the pull
with both the integration method which suggests
that a bias could be present in the ME code itself.
The next testing of the q-MC integration method
should be done once a new definition of the integra-
tion errors is implemented in the code. The precise
testing of the integral convergence will then be done
to definitely validate the method

The main concern right now is the strange be-
haviour of the new transfer functions which is not
well understood and needs to be fixed since they
are the key element in the extension of the analysis
with the inclusion of loose categories. They are go-
ing to be also a noticeable improvement compared
to the last measurement since they are derived from
Powheg NLO generated MC signal samples instead
of LO Phytia MC signal samples.

The study of the sensitivity to the ∆JES is also
an important part in the validation of the signal
code since it proved that the final calibration is go-
ing to fix perfectly the bias present in the analysis
code. Furthermore, this analysis basically laid the
footprint for the study of the systematic uncertain-
ties resulting from the uncertainties in ∆JES .

This report describe briefly the work I conducted
at Fermilab under the supervision of Prof. Velev.
The main results of the work I did during the sum-
mer school period are presented in section 2, 3, 4.
Those results have been presented to the group con-
ducting the measurement and has been posted on
the internal webpage for future reference. Those are
preliminary results since the analysis has still few
steps to be performed before to approach the final
measurement. Still, most of the macros developed

by me are going to be useful for future analysis of the
MC simulation and in the measurement itself. The
aim of this measurement is to reduce the systematic
and statistical uncertainties of the last measurement
and reach the maximum precision with the complete
RunII data sample.

I would like to thank my supervisor Prof. Velev
for his advices and his patience. Furthermore, I
would like to thank everyone involved in the anal-
ysis, in particular Prof.Vellidis which followed me
as well and was very helpful; Tony which explained
me quite a few mathematical subtleties and with
which I had fruitful discussions. Prof. Volobuev for
his professionalism and attention to our requests.
Finally I would like to thank the organisers of the
summer school, Prof. Bellettini, Dott. Barzi, Prof.
Donati for having given me the opportunity to be
part of the Fermilab summer school program.
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A Appendices

A.1 Minintuples input files used in the analysis

– Pull distribution p-MC and q-MC:

– ttbar calib djes0 notau jpmatching tight1tag 1000ev.ttkt73-htmtmu mc.hs;

– Transfer functions comparison:

– ttbar calib djes0 notau jpmatching tight1tag 1000ev.ttkt73-htmtmu mc.hs;

– Analysis of the sensitivity to ∆JES :

– ttop25 mc jes-1 btag jpt20 .hs

– ttop25 mc jes0 btag jpt20 .hs

– ttop25 mc jes1 btag jpt20 .hs

A.2 ∆JES,MC = −1σ

Figure A.1: Fit of the profiled Log(L) for both the parameter.

A.3 ∆JES,MC = 0σ

Figure A.2: Fit of the profiled Log(L) for both the parameter.
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A.4 ∆JES,MC = 1σ

Figure A.3: Fit of the profiled Log(L) for both the parameter.
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