
HEP Cloud investigation

of Google Compute Engine

2016 Summer internship final report

Flavio Giobergia

Supervisors
Gabriele Garzoglio
Steven Timm

Contents

0 Introduction 3

1 HEP Cloud 4
1.1 The problem . 4
1.2 The solution . 5
1.3 Google Cloud Platform . 5

2 Investigating Google Compute Engine 6
2.1 Running Scientific Linux on GCE 6
2.2 “Basic plumbing” . 7

2.2.1 Metadata . 7
2.2.2 SSH . 8
2.2.3 Firewall rules . 8

2.3 Programmatical handling of instances 8
2.3.1 OAuth 2.0 and Google Accounts 9

2.4 Monitoring . 10
2.4.1 The existing platform . 10
2.4.2 The instance counting probe 11
2.4.3 The CPU utilization probe 11

2.5 Billing . 14
2.6 Benchmarking . 15

3 Mu2e case study 19
3.1 Cosmic Ray Veto . 19
3.2 The workload . 19
3.3 The results . 20
3.4 Discounts . 21

3.4.1 Sustained use . 21
3.4.2 Preemptible instances . 21

4 Conclusions 22

References 23

Appendix A Python excerpts 25

Appendix B Mu2e Spreadsheet 29

2

Chapter 0

Introduction

This Summer internship has been spent exploring Google Compute Engine
and its possible integration into HEP Cloud (a Scientific Computing Division
project). Since no previous work had been done for the Google integration, the
internship had to start from square one (although the previous Amazon Web
Services experience helped setting expectations and milestones): this implies
that the first part of the internship consisted in getting to know Google’s of-
fering and figuring out if and how that would suit HEP Cloud needs: while
the reader may find it trivial, it actually required going through Google’s docu-
mentation, understand potentials and limits of various options and make choices
based on constraints and requirements. Because of that, that part has not been
omitted and constitutes the first part (after the HEP Cloud introduction) of
this report.

The nature of this document dictates that it should mainly focus on the individ-
ual work carried out throughout the internship. Apart from the introductory
chapter, the rest of the report will only contain such work. This does not in
any way mean that the Google investigation has been a one-man work: on the
contrary, many people spent their time on the project. When relevant, this
report will mention some of other people’s work and give the credit due.

3

Chapter 1

HEP Cloud

1.1 The problem

The High Energy Physics program is evolving and that comes with an ever
increasing appetite for computing. The High Luminosity LHC at CERN, the
muon and the neutrino programs all require high precision and handle highly
complex events: this requires substantial computing power. In the years to
come, the computing needs are expected to grow by – at the very least – a
factor of 10. This requires scaling to accommodate for that demand.

The demand for computing resources is not evenly distributed throughout the
year: some periods may be more computationally intensive (when simulations,
data processing and analysis happen), while others are relatively calm. The
traditional approach to computing resources provisioning (i.e. buying enough
machines based on the worst case) is a bad fit for this fluctuating scenario: the
most intensive periods are well handled but, during the rest of the time, only a
fraction of the available computing power may be actually used. This inflexible
solution thus may result in a waste of money and resources.

Alternative solutions, such as that offered by Open Science Grid [1], target this
very problem, exploiting unused resources through the opportunistic usage of
idle cycles. As a federation of resources owned by scientific institutions, OSG
has a limited capability to address the ever increasing need for bursts of resource
capacity. The HEP Cloud Facility project aims at integrating commercial Cloud
resources to support such bursts in computing demand, paying for resources
only when the need arises.

4

1.2 The solution

The HEP Cloud project was launched in June 2015 by the Scientific Com-
puting Division at Fermilab. It aims to provide a common interface to ac-
cess a heterogeneous set of computing resources, including local clusters, grids,
high-performance computers, community and commercial clouds. This last re-
source is the most suitable candidate to target the aforementioned problem.
Rather than buying resources, cloud computing services offer a pay-as-you-go
approach: clients rent virtual machines and pay by the hour, with none of the
additional costs that would come with buying and maintaining the underlying
hardware.

HEP Cloud already supports Amazon Web Services, one of the largest cloud
computing services currently available [2]. In early 2016, HEP Cloud success-
fully provided an extra 58,000 AWS cores to the CMS experiment [3], four times
the computing power available at Fermilab. In order to further expand HEP
Cloud, support for other cloud services is required: the rest of this report will
detail the work that has been carried out during this Summer internship for
supporting Google Cloud Platform on HEP Cloud.

1.3 Google Cloud Platform

Google Cloud Platform is Google’s response to AWS. It offers a cloud computing
platform with a large number of services, including Google Compute Engine,
the Infrastructure as a Service (IaaS) component.

While the decision of supporting from scratch a new service may seem coun-
terintuitive, Fermilab decided it would be best not to rely on a single service
provider: having a second option allows for comparisons of prices and perfor-
mance, while also providing a redundant service in case things go awry with the
first one. The steps taken during the internship to support GCP are:

– launching a Scientific Linux VM on Google servers

– configuring and tuning the VM based on HEP Cloud needs

– using Google API for a scripted interaction with the machines

– implementing a monitoring system to supervise the cloud’s overall health

– implementing a billing monitor to keep track of the expenses charged by
Google

– launching benchmark tests to assess the potential of Google’s machines

– doing a case study on the Mu2e experiment to evaluate if and how it can
benefit from GCP

Chapter 2

Investigating Google
Compute Engine

2.1 Running Scientific Linux on GCE

HEP Cloud makes use of HTCondor, a specialized workload management sys-
tem for compute-intensive job [4]. HTCondor collects jobs from users (in the
form of submission files) and dispatches said jobs to a machine within a pool of
computers available. This pool can be comprised of different kinds of machines
and HEP Cloud leverages this feature to handle various resources.

HTCondor offers some support to Google Compute Engine: this allows launch-
ing virtual machines (that may then proceed to carry out the user’s job) along
with limited customization (only machine type, zone, image and metadata are
configurable [5]). While this allows for some basic testing, more complex oper-
ations could not be performed through HTCondor.

After having expressed these concerns, the HTCondor team, in collaboration
with Google, started working on expanding the support offered for GCE. The
update was made available around the end of the internship: Steven Timm
managed to use the known procedures (some from this Summer internship,
some from AWS) to successfully launch new jobs using the existing infrastruc-
ture.

In order to launch a VM, an “image” is required. This image is a file containing
a representation of a bootable hard disk. Different formats are available for
representing images: Google currently accepts raw images (i.e. byte-by-byte
copies of the actual hard disk contents). The raw image needs to be named
disk.raw, placed in a tar.gz archive and uploaded to Google Storage. Then,
either the browser console, the command-line interface or the API allow for
the creation of a new Google image, which may be used at any given time for

6

dispatching a new VM.

Google already provides a series of vanilla images. While these images are per-
fect for early testing, HEP Cloud requires images with some software on them
(e.g. HTCondor, GlideinWMS [6]) to successfully control dispatched instances.
Moreover, users expect to find specific software (required for simulations, data
analysis and other CPU intensive activities) already running on the machine:
the perfect candidate is Scientific Linux [7], a distro designed with those needs in
mind. Unfortunately, Scientific Linux is not among the list of images provided
by Google.

This would normally imply having to create the new image from scratch with
the desired OS and software. Luckily, the Amazon image used for HEP Cloud
already provided most of the required features. Hyun Woo Kim changed some
provider-specific settings (e.g. grub configuration) and, after installing some
Google tools [8] the existing image was working on GCP, thus cutting down on
the time required to have a working HEP Cloud-ready machine

2.2 “Basic plumbing”

After the first machine was up and running, a series of concerns arose. First,
the machine needed to be accessible and this access needed to be limited and
secured. Second, the machine needed to receive information on how it should
behave (this information may yes be hardcoded in the image, but that would
prevent on-the-fly changes and it would result in all the machines sharing the
same configuration, which may not be the desired behaviour).

2.2.1 Metadata

The latter point is handled using metadata, a method offered by Google (and
other cloud services as well) to submit key-value pairs to an instance upon cre-
ation (or at later times). These strings may encode anything from specific con-
figuration files to scripts to be executed when particular events happen.

HTCondor supports metadata: these can be sent using either the gce metadata
or the gce metadata file commands (the difference between the two is in
the source of the metadata – the second option reads the metadata from a file).
Metadata may then be retrieved from within the virtual machine by sending
HTTP requests to metadata.google.internal (using /computeMetadata/
v1/ as base path).

2.2.2 SSH

As for the first problem, SSH (Secure SHell) is probably the most common tool
for accessing a machine remotely. Google makes no exception and uses SSH
as the preferred tool for interacting with instances. SSH uses public-key cryp-
tography to authenticate the remote computer and allow it to authenticate the
user, if necessary. Users may generate a public/private pair of keys and provide
the server with the public key, while keeping the private one for themselves.
The server will then use the public key received to test whether the client re-
questing access actually owns the right private key. Whoever knows the private
key, thus, may gain SSH access to the server.

Google already provides useful solutions for handling SSH access to the various
instances. gcloud is a CLI tool that provides full support to Google Cloud
services. This tool also takes care of generating SSH keys on behalf of the
user (using tools like ssh-keygen), thus making the entire process completely
transparent. While this may be good most of the times, having full control over
the SSH keys used is required.

Because of that, Google offers options for semi-direct handling of SSH keys: spe-
cific metadata (sshKeys and ssh-keys) are used by Google to “inject” public
keys in a given machine (public keys are stored in the /home/user/.ssh/
authorized_keys file). Project-wide, as well as instance-bound, keys may
be used (the only difference between the two being the scope of the keys).

2.2.3 Firewall rules

Only exposing the minimum required to the outside world is a good rule of
thumb for security. Google enforces that rule by configuring firewalls so that
all incoming traffic is blocked by default and then uses “allow” rules for ports
22 (SSH) and 3389 (RDP). This usually works fine, but some scenarios may
require those ports to be filtered and other ports to be allowed instead. Doing
that is extremely easy, as the Developers Console has options for creating and
deleting “allow” rules that can either target specific IP ranges, or the entirety
of the machines. Since the change of these rules normally happens slowly, the
web interface has been deemed a good enough tool for this operation.

2.3 Programmatical handling of instances

Google offers a number of ways for interacting with instances. The most user-
friendly one is the Developers Console available from any browser. This console
provides easy-to-use interfaces for humans. A slightly less user-friendly tool is
gcloud: it provides no graphical UI and may be used as a normal command-
line program. It is great for retrieving information quickly, without having to
go through the frills that come with the browser console. gcloud may be

also be used for bash scripting. The best way to programmatically work with
instances (i.e. creating scripts that interact with machines) is using the API
Google offers.

Google offers RESTful API (i.e. API that use HTTP and its features) for in-
terfacing with its Cloud services. Furthermore, it provides libraries for some
common languages (including Python). That, along with the provided docu-
mentation, is enough to start writing code that interacts with GCE instances.
Being able to do that is of vital importance: as other sections of this report
point out, the entire cloud needs to be monitored at all times and automating
that process (through the use of Google API) is the way to go. While par-
ticularly easy to use, the API needs to be secure and that implies having an
authentication and an authorization part: the latter is achieved using OAuth
2.0.

2.3.1 OAuth 2.0 and Google Accounts

OAuth 2.0 is an authorization framework that enables third-party applications
to obtain limited access to a service on behalf of a user of the service that is being
accessed [9]. As such, this method makes it so that third-party applications need
not ask users for their username and password (which should always be private)
to access the contents protected with said credentials.

The way OAuth 2.0 works is straightforward: the third-party application (or
client) has the user authenticate on the server of interest. In return, the server
provides a pair of tokens: an access token and a refresh token. These tokens are
then used by the client to make requests to the server, which can in turn enforce
any kind of policy desired by the user (e.g. limiting the scope of the access).
Access tokens are short-lived: after expiration, the client can use the (long-
lasting) refresh token to request further access tokens with no need for the
user’s permission. Figure 2.1 illustrates how the refreshing process happens,
highlighting how the refresh token is only ever used with the authorization
server, while the access token is sent to the resource server (although, in many
cases, the two servers are one).

This method is used for the so called User Accounts, In other cases, a Service
Account may also be available. Instead of receiving a pair of tokens, the service
account only gets a private key, that can be used to request access tokens.

While at a first glance the two methods may seem similar, there are actually
many differences between the two. The most important one is that user accounts
are normally used when the client needs to access some of the user’s information
stored on the server and thus requires the owner’s authorization. On the other
hand, many applications do not need access to any user information and instead
only need to use some of the server’s services. In this case, it would not make
sense to ask a user for their authorization: this is why service account were
introduced.

+--------+ +---------------+
	--(A)------- Authorization Grant --------->			
	<-(B)----------- Access Token -------------			
	& Refresh Token			
	+----------+			
	--(C)---- Access Token ---->			
	<-(D)- Protected Resource --	Resource		Authorization
Client		Server		Server
	--(E)---- Access Token ---->			
	<-(F)- Invalid Token Error -			
	+----------+			
	--(G)----------- Refresh Token ----------->			
	<-(H)----------- Access Token -------------			
+--------+ & Optional Refresh Token +---------------+

Figure 2.1: Refreshing an Expired Access Token (from RFC 6749)

The HEP Cloud scenario does not require any interaction with a user’s data (as
it works as a central resource manager): the service account option is therefore
ideal. All code written therefore uses this type of account. HTCondor used
to only support user accounts: the new update supports service accounts as
well (as a temporary workaround, a user account was being used as a makeshift
service account).

2.4 Monitoring

Monitoring the instances’ status is of paramount importance, as it provides
information about the health of the cloud at a glance, highlights any problem
or unexpected behaviour and shows useful statistics on the usage of the various
machines. While countless metrics may be measured (Google offers more than
900 [10]), only a couple have been deemed useful for this initial stage (along
with those already collected through HTCondor): the number of running in-
stances and the CPU utilization for such instances. This information should be
aggregated by project, geographical zone and machine type.

2.4.1 The existing platform

Fermilab (through Fifemon [11]) is already doing extensive monitoring activities
on the existing infrastructures: the monitoring code will therefore need to in-
terface with it. Fifemon uses Graphite for storing numeric time-series data [12]
and Grafana for querying and visualizing time series and metrics [13].

The way Graphite works is incredibly straightforward. A server listens on
a given port and it accepts 3-tuples following the format <metric path>
<metric value> <metric timestamp> (data may also be encoded using
the pickle protocol [14]: this is actually what Fifemon uses). The metric
path field allows for dot-separated hierarchies (e.g. foo.bar.baz.qux) and
proves useful when grouping data.

In order to send data to Graphite, Fifemon already provides some classes for
implementing new probes.[15]. The Graphite class handles the interactions
with the Graphite server and exposes the send dict method, whose sole pur-
pose is that of sending data (stored as a dictionary) to Graphite. The other
useful class is Probe. This class exposes the method run that loops indefinitely
and collects the data (through the post method, that should be overridden by
derived classes) to be sent.

2.4.2 The instance counting probe

The first probe that was developed serves as an instance counter. It queries
Google’s servers to get a list of running machines. The provided API allows
for the retrieval of all instances for a given project and a given geographical
zone. Since no selector on the machine type is offered, that part is handled
by the probe itself: it scans the list of machines returned, filters by running
instances and separates by machine type. The final metric path uses the follow-
ing structure: namespace.project.zone.machine_type.count, where
namespace is a uniquely identified path (e.g. hepcloud.test.gce); the
rest is self-explanatory. The core parts of the probe can be found in Listing
2.

2.4.3 The CPU utilization probe

Knowing the average CPU utilization helps knowing how loaded the cloud is at
any given time. Retrieving the CPU utilization is a little trickier than counting
the number of instances, for reasons that will soon be explained.

Stackdriver is the monitoring API offered by Google. It provides easy access to
a number of different metrics collected on the various instances. There are two
categories of metrics:

– Some metrics can be collected without access to the instance itself. These
are usually less accurate (as they are based on the information provided
by the external process that is running the virtual machine), but use no
extra resources (CPU, memory, data transfer), since – as mentioned – it is
not the instance’s duty to report the collected data; and that data would
be collected and stored anyway.

– Other metrics can only be collected from within the instance. This re-
quires special software (called “agent”) to be installed and running on
every VM. This provides information that may not be accessible from the
outside (as the VM is seen as a black box that uses resources) and those
measurements that could be taken from the outside are usually less reli-
able (e.g. when measuring the amount of memory used, an inside agent
would know exactly how much memory every process is using, while, from
the outside, the only data that can be collected is the amount of mem-
ory in use by the process running the VM, which includes some overhead
memory used by the process and not available to the VM). The big draw-
back of this solution is that every agent needs to report the collected
information, with the waste of resources that comes with it.

The former category is the best one when the number of machines scales up:
it lowers the overall consumption of resources and the averaging of inaccurate
measurements produces a value that is somewhat accurate. The only problem
with using the external process’ information is that it may sometimes register
a CPU utilization beyond 100%. This is likely due to the way that percentages
are computed: CPUIn use

CPUMax expected

1. CPUMax expected can only be an estimate of

how much CPU the external process is expected to use, based on the type of
machine that is being run. However, the external process may end up using –
for a short burst – more than the expected amount of CPU, thus resulting in
an apparent CPU usage over 100%. If known, this problem does not cause any
particular annoyance and it is likely that such behaviours pass unnoticed after
averaging out.

Listing 1 is a JSON response to a request for CPU utilization by project.
timeSeries is an array of objects, each one identifying a metric for a specific
instance. The points array contains a list of measurements for the specific
metric-instance pair: startTime and endTime are the same because the met-
ric kind is GAUGE. Other metric kinds (e.g. DELTA) have different start and end
times. value.doubleValue is the actual reading: in this case, 0.10% of the
CPU was in use, as the machine was idling (to be more accurate, the type of
request sent required the information of the last 5 minutes to be aggregated; the
0.10% value represents the average CPU utilization over the previous 5-minutes
period).

The previously mentioned requirement stating that all data collected needs to
be grouped by project, zone and machine type cannot be enforced easily in
this scenario. The Stackdriver API is not providing any information regard-
ing the machine type (although the machine type is one and one only, for
any given instance), but it returns information about the geographical zone
(resource.labels.zone): this is a design choice made by the author of the
API. For the time being, the probe uses a placeholder for the machine type
(“n1-standard-1”). Other solutions for retrieving the actual machine type

1This is a guess of what actually happens, as Google does not provide information on any
of the formulas used.

are O(n) in either the number of API requests or in memory: since this would
not scale well, such solutions have been discarded.

{
"timeSeries": [

{
"metricKind": "GAUGE",
"metric": {

"labels": {
"instance_name": "cpu-test-instance"

},
"type": "compute.googleapis.com\/instance\/cpu\/utilization"

},
"points": [

{
"interval": {

"endTime": "2016-09-18T15:57:20.946345Z",
"startTime": "2016-09-18T15:57:20.946345Z"

},
"value": {

"doubleValue": 0.10114381041274
}

}
],
"resource": {

"labels": {
"instance_id": "8997168970812556963",
"project_id": "fermilab-poc",
"zone": "us-central1-b"

},
"type": "gce_instance"

},
"valueType": "DOUBLE"

}
]

}

Listing 1: Stackdriver response to CPU utilization request

A request for adding the machine type information to the response has been
opened and hopefully this key parameter will be provided in a future version of
the API. If that piece of information becomes available, the instances counting
probe would be rendered useless, as the CPU utilization probe could be used
to also collect the number of instances. Listing 3 contains most of the code for
the CPU utilization probe.

Figure 2.2 shows what the GCE part of the dashboard currently looks like on

Figure 2.2: Google Compute Engine dashboard on Grafana

Grafana.

2.5 Billing

There are many reasons that could lead to a bitter surprise in the billing:
anomalous behaviours, unexpected expenditures and malicious users are just
a few examples. The sooner these expenses are noticed, the sooner measures
can be taken to limit the damage: this is why monitoring the invoices is so
important.

Google provides a daily invoice as a CSV file in Google Storage. Getting an
update every 24 hours is not ideal (Amazon provides the same information 4
times as often) and the possibility of getting more frequent updates is currently
being explored.

Gabriele Garzoglio wrote the bulk of the code on top of the existing billing
probe for AWS, with smaller contributions made by the author. The code acts
as follows:

– the CSV files containing the invoices are fetched from Google Storage

– the files are filtered so as to only consider the items within the specified
time period

– each item’s total cost is computed by summing the item’s expenses through-
out the time period

– the result of the previous point is aggregated into broader categories

– the final result is sent to Graphite and displayed using Grafana

Due to the sensible nature of the data handled by this probe, the repository
containing the source code is being kept private: in accordance to that decision,
none of that code will be included in this report.

2.6 Benchmarking

Benchmarking is used to get a quantitative measure of how well a machine
performs certain tasks. Different benchmark suites perform different operations,
testing the machine for different purposes: testing a high performance computer
and a DBMS with the same test – when the two work differently – would not
make sense.

The benchmark tests used on Google Cloud machines are hepspec06 and ttbar cms.
These tests are the same as the ones previously used on Amazon machines: this
is the perfect way to assess how Google machines compare to AWS.

Google offers numerous default configurations (called “machine types”) char-
acterized by different number of cores and amount of main memory available.
Moreover, custom configurations may be used – if none of the default ones are
to the user’s taste.

For benchmarking, the n1-standard family has been used. The family in-
cludes machines with 1, 2, 4, 8, 16 and 32 cores and 3.75 GB of memory per
core (e.g. 4 cores → 15 GB). All the machine types but the 32 cores one have
been tested using both suites. Table 2.1 lists the results for GCE, while Table
2.2 shows the ones for AWS (available as the result of the work of 2015 Summer
student Davide Grassano [16]) .

Machine type # cores Speed (GHz) Price ($/h)
n1-standard-1 1 2.30 0.038
n1-standard-2 2 2.30 0.076
n1-standard-4 4 2.30 0.152
n1-standard-8 8 2.30 0.304
n1-standard-16 16 2.30 0.608

Machine type ttbar/s per core ttbar/s ttbar/s per $/h
n1-standard-1 0.03048 0.03048 0.8020
n1-standard-2 0.02024 0.04048 0.5326
n1-standard-4 0.01973 0.07892 0.5192
n1-standard-8 0.02075 0.16598 0.5460
n1-standard-16 0.01947 0.31157 0.5125

Machine type HS06 per core HS06 HS06 per $/h
n1-standard-1 23.67 23.67 623
n1-standard-2 16.92 33.85 445
n1-standard-4 18.50 74.01 487
n1-standard-8 13.95 111.63 367
n1-standard-16 12.56 200.97 331

Table 2.1: GCE benchmarking results (ttbar and hepspec06)

Machine type # cores Speed (GHz) Price ($/h)
m3.xlarge 4 2.50 0.266
m3.2xlage 8 2.50 0.532
m4.xlarge 4 2.40 0.252
m4.2xlage 8 2.40 0.504
m4.4xlarge 16 2.40 1.008
c3.xlarge 4 2.80 0.210
c3.2xlage 8 2.80 0.420
c3.4xlarge 16 2.80 0.840
c4.xlarge 4 2.90 0.220
c4.2xlage 8 2.90 0.441
c4.4xlarge 16 2.90 0.882
r3.xlarge 4 2.50 0.350
r3.2xlarge 8 2.50 0.700
r3.4xlarge 16 2.50 1.400
cc2.8xlarge 32 2.60 1.090

Machine type ttbar/s per core ttbar/s ttbar/s per $/h
m3.xlarge 0.0139 0.0557 0.209
m3.2xlage 0.0139 0.111 0.208
m4.xlarge 0.0201 0.0806 0.320
m4.2xlage 0.0191 0.153 0.304
m4.4xlarge 0.0198 0.317 0.315
c3.xlarge 0.0153 0.0611 0.291
c3.2xlage 0.0153 0.122 0.291
c3.4xlarge 0.0149 0.239 0.284
c4.xlarge 0.0228 0.091 0.415
c4.2xlage 0.0226 0.181 0.410
c4.4xlarge 0.0205 0.327 0.371
r3.xlarge 0.0151 0.060 0.172
r3.2xlarge 0.0150 0.120 0.171
r3.4xlarge 0.0146 0.233 0.166
cc2.8xlarge 0.0141 0.450 0.413

Machine type HS06 per core HS06 HS06 per $/h
m3.xlarge 14.3 57.1 215
m3.2xlage 12.2 97.6 184
m4.xlarge 16.1 64.5 256
m4.2xlage 15.1 121 240
m4.4xlarge 13.5 217 215
c3.xlarge 14.9 59.4 283
c3.2xlage 14.7 118 281
c3.4xlarge 13.2 212 252
c4.xlarge 17.5 69.9 318
c4.2xlage 16.5 132 300
c4.4xlarge 14.8 237 268
r3.xlarge 15.5 62 177
r3.2xlarge 14.2 114 162
r3.4xlarge 12.7 203 145
cc2.8xlarge 11.2 359 329

Table 2.2: AWS benchmarking results (ttbar and hepspec06) [16]

Figure 2.3: Value for money by machine type

While some of Amazon machines get better scores in absolute terms, Google’s
machines seem to be an overall better deal, because of the lower hourly cost. It is
worth keeping into account that Amazon’s results are out-of-date: many of the
instances listed in Table 2.2 belong to a previous generation [17]. Benchmarking
tests should be run on Amazon’s new machines to get an up-to-date result: this,
though, is out of this internship’s scope and would result in a never-ending chase
for more recent results.

Of particular interest is the way different Google machines compare. Figure
2.3 sums up the various machines’ value for money. The single core option
ranks significantly better than the other ones. Finding the precise reason for
this behaviour would require further investigation – as well as access to GCE’s
internal details. This behaviour, though, could be expected since the amount of
work done usually increases sublinearly with the number of cores (many reasons
lead to this result: scarce parallelism in the code, policies enforced by the OS
and processor architecture). A similar behaviour had already been observed in
FermiCloud, which uses the same OS and the same hypervisor (KVM).

Chapter 3

Mu2e case study

3.1 Cosmic Ray Veto

The Mu2e experiment [18] has been chosen as alpha user for the Google Com-
pute Engine integration. In particular, Google’s machine will be working on the
simulations required for verifying the updated design of the Cosmic Ray Veto
system. Cosmic rays can interact with the detector, possibly leading to a fake
conversion signal: in order to achieve the experiment’s designed sensitivity, the
CRV needs to account for such events accurately.

3.2 The workload

The simulation requires the execution of 500,000 to 2 million jobs. Each job is
expected to take about 4 hours to complete (based on previous experience with
Open Science Grid) and produces a 100÷200 MB output. Each job requires 1
core, 2 GB of memory and 9 GB of storage.

Two different scenarios have been outlined for the retrieval of the jobs’ out-
puts:

– The first option requires all outputs to be transferred immediately from
Google to Fermilab. This option does not require to temporarily store
data anywhere else, but implies having the machine “waste” time sending
data to Fermilab, using a connection that can be assumed to be slow (or,
at least, slower than the intra-Google one).

– The second option stores all outputs to Google Storage (resulting in a
quicker data transfer). All the data is then pulled from Google Stor-
age periodically. This introduces a cost for using Google Storage, but

19

eliminates the cost of idle VMs waiting on output transfer completion,
competing for bandwidth.

Since significant measurements of the links speeds are not available, an approx-
imation of sorts has been used. Since only 5 jobs per day are expected to be
executed by every core (and each job takes approximately 4 hours to run), the
price estimate accounts for an extra 4 hours every day (24 − 5 · 4). This pe-
riod is orders of magnitude greater than the time it would take to transfer the
outputs to either destination (Google or Fermilab) assuming link speeds in the
tens or hundreds of Mbps. This period may therefore be used to account for
all the supporting operations that need to be carried out (download the parts
needed, upload the output and so on). This cushion time makes it so that no
tangible difference exists between the two aforementioned scenarios (apart from
the Google Storage usage for the latter case). During the actual execution, the
supporting operations are likely to last much less than the expected 4 hours:
each VM can move on to the next job as soon as it is done with the previous
one, shrinking the total time and the total cost estimated in this study.

3.3 The results

Table 3.1 contains the final estimate of the cost for this simulation. Appendix
B contains a spreadsheet covering the main costs that come with running the
described jobs (those costs sum up to the final result shown in Table 3.1). While
the spreadsheet in the appendix only shows static data, the actual file allows
tweaking various parameters to adapt to different situations.

Interestingly, the total cost does not change with the kind of machine used.
This is because of the underlying assumption that the work done scales linearly
with the number of cores (and the price). The benchmarks show that this is
not exactly the case: a more complex model could account for this.

Second, the total number of cores provided does not influence the total cost,
but only the total duration of the simulation (as the spreadsheet shows, the
total number of cores assumed to be used is 150,000: this is approximately the

500,000 jobs 2,000,000 jobs
Machine type 1st scenario 2nd scenario 1st scenario 2nd scenario

custom 88,107 88,172 352,430 352,820
n1-standard-1 98,259 98,324 393,038 393,428
n1-standard-2 98,259 98,324 393,038 393,428
n1-standard-4 98,259 98,324 393,038 393,428
n1-standard-8 98,259 98,324 393,038 393,428
n1-standard-16 98,259 98,324 393,038 393,428

Table 3.1: Total cost estimate (all results are in USD)

number of cores expected for this simulation). Increasing the number of cores,
though, may not be the best of strategies: if that happens, the storage and
the link between Fermilab and Google could become bottlenecks, with all the
implications of the case.

3.4 Discounts

The prices mentioned in the spreadsheet are the ones applied in most cases.
Google – though – offers discounted prices in some situations. Keeping these
into account may result in a substantially lower invoice.

3.4.1 Sustained use

If an instance is run for a significant portion of a billing month, Google will
refund part of the money spent. The discount applied may get as high as 30%
if the usage level for the month is 100%. This kind of offer is particularly suited
for heavy users. Fermilab could be labelled as such, if a large portion of the
computations were to migrate to the cloud.

3.4.2 Preemptible instances

An even higher discount comes with preemptible instances. Google’s machines
run at all times, independently of the effective load. Because of that, it is con-
venient for Google to sell the unused computing power at a fraction of the price:
machines using those resources are called preemptible. Preemptible instances
cost roughly 28% of their “normal” counterparts, but have a major drawback:
while still executing a workload, the VM may be preempted i.e. shut down to
get a hold of its resources for customers paying the full price. Machines receive
a “warning” signal 30 seconds before being shut down. The user may specify –
upon creation of the instance – a script to be executed in such a situation. If
possible, the script should create a checkpoint of the current progress done and
prepare to shut down gracefully.

Google makes some guarantee on the minimum time a preemptible instance will
stay up: if the VM is shut down before 10 minutes, no charge will incur. Google
also enforces an upper bound on the execution time a preemptible instance will
get: if the virtual machine has been running for more than 24 hours straight,
it will be preempted – no matter what.

Chapter 4

Conclusions

The HEP Cloud facility is a portal to an ecosystem of diverse computing re-
sources, commercial or academic, including the Grid, High Performance Com-
puters, and Clouds. It provides a complete solution to users for managing
scientific workflows. The Facility routes workloads to local or remote resources
based on workflow requirements, cost, and efficiency of accessing various re-
sources.

This Summer internship has been spent investigating the Google Compute En-
gine option for HEP Cloud: this entailed getting a solid understanding of the
way GCE works and the way it can be integrated; followed by the implemen-
tation of tools that will be used to monitor and get useful information out of
Google’s cloud. Then, GCE has been compared to AWS using different metrics.
Finally, Mu2e has been considered as a potential alpha user and an estimate
based on the experiment’s needs and Google’s offering has been provided.

Google Compute Engine proved to be a viable alternative to Amazon Web Ser-
vices. The recent HTCondor update allows for full control of GCE instances and
introduces service accounts support. While some problems with Google API
have come up (lack of machine type in Stackdriver responses and low update
frequency for billing), none of them is so severe as to prevent the integration
and can be easily overcome (although future updates may result in an improved
service). Given the benchmark results and Google discounts, it would appear
that Mu2e could benefit from an integration with GCE.

22

References

[1] Open Science Grid project, https://www.opensciencegrid.org/
about/

[2] f http://fortune.com/2015/05/19/amazon-tops-in-cloud/,
May 2015

[3] Jeff Bar, Experiment that Discovered the Higgs Boson Uses AWS
to Probe Nature, https://aws.amazon.com/blogs/aws/
experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/,
March 2016

[4] What is HTCondor?, https://research.cs.wisc.edu/htcondor/
description.html

[5] The GCE Grid Type, HTCondor documentation http://research.cs.
wisc.edu/htcondor/manual/v8.4/5_3Grid_Universe.html#
SECTION00637000000000000000

[6] GlideinWMS, http://glideinwms.fnal.gov/

[7] Scientific Linux, https://www.scientificlinux.org/

[8] GCP, Compute Image Packages, https://github.com/
GoogleCloudPlatform/compute-image-packages

[9] IETF, The OAuth 2.0 Authorization Framework, https://tools.ietf.
org/html/rfc6749, October 2012

[10] Stackdriver Monitoring, Metrics List, https://cloud.google.com/
monitoring/api/metrics

[11] Fifemon, https://fifemon.fnal.gov/

[12] Graphite, Graphite Overview, http://graphite.readthedocs.io/
en/latest/overview.html

[13] Grafana, http://grafana.org/

[14] The Python Standard Library, pickle – Python object serialization,
https://docs.python.org/2/library/pickle.html

23

https://www.opensciencegrid.org/about/
https://www.opensciencegrid.org/about/
http://fortune.com/2015/05/19/amazon-tops-in-cloud/
https://aws.amazon.com/blogs/aws/experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/
https://aws.amazon.com/blogs/aws/experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/
https://research.cs.wisc.edu/htcondor/description.html
https://research.cs.wisc.edu/htcondor/description.html
http://research.cs.wisc.edu/htcondor/manual/v8.4/5_3Grid_Universe.html#SECTION00637000000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.4/5_3Grid_Universe.html#SECTION00637000000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.4/5_3Grid_Universe.html#SECTION00637000000000000000
http://glideinwms.fnal.gov/
https://www.scientificlinux.org/
https://github.com/GoogleCloudPlatform/compute-image-packages
https://github.com/GoogleCloudPlatform/compute-image-packages
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://cloud.google.com/monitoring/api/metrics
https://cloud.google.com/monitoring/api/metrics
https://fifemon.fnal.gov/
http://graphite.readthedocs.io/en/latest/overview.html
http://graphite.readthedocs.io/en/latest/overview.html
http://grafana.org/
https://docs.python.org/2/library/pickle.html

[15] Fifemon base classes, https://github.com/fifemon/probes/
tree/master/bin/fifemon

[16] Davide Grassano, Benchmarking of public and local cloud resources,
http://eddata.fnal.gov/lasso/summerstudents/papers/
2015/Davide-Grassano.pdf

[17] Amazon EC2 Instance Types, https://aws.amazon.com/ec2/
instance-types/

[18] Mu2e experiment, Fermilab https://mu2e.fnal.gov/

https://github.com/fifemon/probes/tree/master/bin/fifemon
https://github.com/fifemon/probes/tree/master/bin/fifemon
http://eddata.fnal.gov/lasso/summerstudents/papers/2015/Davide-Grassano.pdf
http://eddata.fnal.gov/lasso/summerstudents/papers/2015/Davide-Grassano.pdf
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://mu2e.fnal.gov/

Appendix A

Python excerpts

Listing 2: GCE Instances Number Monitor

def setup(json_path):
os.environ[’GOOGLE_APPLICATION_CREDENTIALS’] = json_path

try:
credentials = GoogleCredentials.get_application_default()
return discovery.build(’compute’, ’v1’, credentials=credentials)

except Exception as e:
logger.error(’Cannot talk to GCE: %s’,e)
return None

def get_gce_instances(client, project, zone):
counts = defaultdict(int)
pageToken = None

if client != None:

while True if break -> do..while behavior
while True:

result = client.instances().list(
project=project,
zone=zone,
pageToken=pageToken).execute()

pageToken = result.pop(’nextPageToken’, None)

if ’items’ not in result:
logger.info(’No instances found in %s’ % zone)
return counts

for instance in result[’items’]:
if instance[’status’] == ’RUNNING’:

25

machine_type = instance[’machineType’].split(’/’).pop()

metric_name = ’{machine_type}.count’.format(
machine_type=fifemon.graphite.sanitize_key(machine_type))

counts[metric_name] += 1

if pageToken == None:
break

return counts
else:

return []

class GceProbe(fifemon.Probe):
def __init__(self, *args, **kwargs):

self.zones = kwargs.pop(’zones’, [’us-central1-a’])
self.projects = kwargs.pop(’projects’, [None])
self.client = setup(kwargs.pop(’credentials’, ’credentials.json’))

super(GceProbe, self).__init__(*args, **kwargs)

def post(self):
if self.client == None:

return

for project in self.projects:
for zone in self.zones:

data = get_gce_instances(self.client, project, zone)
logging.info(’queried zone {0} for project {1}’.format(zone,project))
if len(data) == 0:

continue
if self.use_graphite:

try:
self.graphite.send_dict(’{namespace}.{project}.{zone}’.format(

namespace=self.namespace,
project=project,
zone=zone),
data, send_data=(not self.test))

except Exception as e:
logging.error("error sending data to graphite: %s"%e)

if self.use_influxdb:
logging.warning(’InfluxDB is currently not supported’)

[...]

Listing 3: GCE CPU Utilization Monitor

def setup(json_path):
os.environ[’GOOGLE_APPLICATION_CREDENTIALS’] = json_path #

try:
credentials = GoogleCredentials.get_application_default()
return discovery.build(’monitoring’, ’v3’, credentials=credentials)

except Exception as e:
logger.error(’Cannot talk to GCE: %s’,e)
return None

def mapToTime(x):
return datetime.datetime.strptime(x[’interval’][’endTime’], ’%Y-%m-%dT%H:%M:%S.%fZ’)

def get_gce_cpu_usage(client, proj, startTime, endTime, filter):
project = ’projects/{0}’.format(proj)
pageToken = None
obj = {’count’: defaultdict(int), ’load’: defaultdict(float)}

while True:
result = client.projects().timeSeries().list(name=project,

interval_endTime=endTime,
interval_startTime=startTime,
filter=filter,
pageToken=pageToken,
aggregation_alignmentPeriod=’300s’,
aggregation_perSeriesAligner=’ALIGN_MEAN’).execute()

pageToken = result.pop (’nextPageToken’, None)
if ’timeSeries’ not in result:

break
for instance in result[’timeSeries’]:

zone = instance[’resource’][’labels’][’zone’]
eventually (when/if Stackdriver implements it),
this will look like instance[’resource’][’labels’][’machineType’]

machineType = ’n1-standard-1’
avgMeasurement = float(instance[’points’][0][’value’][’doubleValue’])
metric = ’{zone}.{machine_type}’.format(zone=zone, machine_type=machineType)

obj[’count’][metric] += 1
obj[’load’][metric] += avgMeasurement

if pageToken == None:
break

cpu_loads = defaultdict(float)
for key in obj[’load’]:

cpu_loads[’{0}.cpu_load’.format(key)]=obj[’load’][key]/max(1,obj[’count’][key])

return cpu_loads

class GceProbe(fifemon.Probe):
def __init__(self, *args, **kwargs):

self.zones = kwargs.pop(’zones’, [’us-central1-a’])
self.projects = kwargs.pop(’projects’, [None])
self.client = setup(kwargs.pop(’credentials’, ’credentials.json’))

super(GceProbe, self).__init__(*args, **kwargs)

def post(self):
if self.client == None:

return

now=datetime.datetime.utcnow()
endTime = now.isoformat() + ’Z’
startTime = (now - datetime.timedelta(minutes=5)).isoformat() + ’Z’
filter = ’metric.type = "compute.googleapis.com/instance/cpu/utilization"’

for project in self.projects:
data = get_gce_cpu_usage(self.client, project, startTime, endTime, filter)
logging.info(’queried project {0}’.format(project))
if len(data) == 0:

continue
if self.use_graphite:

try:
self.graphite.send_dict(’{namespace}.{project}’.format(

namespace=self.namespace,
project=project),
data, send_data=(not self.test))

except Exception as e:
logging.error("error sending data to graphite: %s"%e)

if self.use_influxdb:
logging.warning(’InfluxDB is currently not supported’)

[...]

29

Appendix B

Mu2e Spreadsheet

cores provided 150000 cores
jobs/day/core 5

of jobs 500,000 2,000,000 5,000,000
output_size/job 0.146484375 GB
base_code_size 10 GB

transfers GS→FNAL / day 1
Hard disk size 9 GB

Hard disk cost/month 0.36
Jobs/day 750000

Google Compute Engine pricing
Service Price Unit

Custom CPU 0.02663 $/core/hour
Custom memory 0.00357 $/GB/hour
Network egress 0.08 $/GB

Standard hard disk 0.04 $/GB/month

VM catalogue
VM Specifications # cores RAM (GB) Price/hour

custom 1 2 0.03377

n1-standard-1 1 3.75 0.038
n1-standard-2 2 7.5 0.076
n1-standard-4 4 15 0.152
n1-standard-8 8 30 0.304

n1-standard-16 16 60 0.608

VMs req'd
VM Type # VMs req'd
custom 150000

n1-standard-1 150000
n1-standard-2 75000
n1-standard-4 37500
n1-standard-8 18750

n1-standard-16 9375

days for all jobs
jobs # days req'd

500000 0.666666667
2000000 2.666666667
5000000 6.666666667

Total CPU + RAM cost
VM Type 500000 2000000 5000000
custom 81048 324192 810480

n1-standard-1 91200 364800 912000
n1-standard-2 91200 364800 912000
n1-standard-4 91200 364800 912000
n1-standard-8 91200 364800 912000

n1-standard-16 91200 364800 912000

Storage costs
VM type 500,000 2,000,000 5,000,000
custom 1200 4800 12000

n1-standard-1 1200 4800 12000
n1-standard-2 1200 4800 12000
n1-standard-4 1200 4800 12000
n1-standard-8 1200 4800 12000

n1-standard-16 1200 4800 12000

Network costs
jobs Traffic (GB) Cost

500000 73242.1875 5859.375
2000000 292968.75 23437.5
5000000 732421.875 58593.75

Network costs
jobs Traffic (GB) Cost

500000 73242.1875 5859.375
2000000 292968.75 23437.5
5000000 732421.875 58593.75

Storage costs
jobs Storage (GB) Cost

500000 73242.1875 65.1041666667
2000000 109863.2813 390.625
5000000 109863.2813 976.5625

500,000 jobs 2,000,000 jobs 5,000,000 jobs

custom 88,107 88,172 352,430 352,820 881,074 882,050
n1-standard-1 98,259 98,324 393,038 393,428 982,594 983,570
n1-standard-2 98,259 98,324 393,038 393,428 982,594 983,570
n1-standard-4 98,259 98,324 393,038 393,428 982,594 983,570
n1-standard-8 98,259 98,324 393,038 393,428 982,594 983,570

n1-standard-16 98,259 98,324 393,038 393,428 982,594 983,570

All prices are in USD

1st scenario

2nd scenario

Total cost by machine
type and # of jobs 1st scenario 2nd scenario 1st scenario 2nd scenario 1st scenario 2nd scenario

	Introduction
	HEP Cloud
	The problem
	The solution
	Google Cloud Platform

	Investigating Google Compute Engine
	Running Scientific Linux on GCE
	``Basic plumbing''
	Metadata
	SSH
	Firewall rules

	Programmatical handling of instances
	OAuth 2.0 and Google Accounts

	Monitoring
	The existing platform
	The instance counting probe
	The CPU utilization probe

	Billing
	Benchmarking

	Mu2e case study
	Cosmic Ray Veto
	The workload
	The results
	Discounts
	Sustained use
	Preemptible instances

	Conclusions
	References
	Appendix Python excerpts
	Appendix Mu2e Spreadsheet

