Fermilab Dus. Department of Science

Mu2e experiment integration

- Federico Crisci
- Supervisor: George Ginther
- Final report
- 21 September 2016

Overview

- Mu2e searches for neutrinoless conversion of muon to electron
- Stopping target monitor (STM) provides normalization (counting number of muons stopped in stopping target) by detecting photons resulting from muon stops
- Become familiar with the Mu2e experiment building
- Design of the STM (Stopping Target Monitor) infrastructure
- Refined the Teamcenter CAD model of the Mu2e experiment
- Added features in Teamcenter CAD model

Design of the assigned parts of the STM

The parts of the STM infrastructure that weren't in the 3D CAD model and that I had to model are:

Upstream elements:

- Shield for CRV
- Sweeper magnet
- STM field-of-view collimator
- Stand for the upstream components

Downstream elements:

- STM spot-size collimator
- STM shielding
- Two photon detectors
- Stand for the downstream components

Design of the assigned parts of the STM

The parts of the STM infrastructure that weren't in the 3D CAD model and that I had to model are:

Upstream elements:

- Shield for CRV
- Sweeper magnet
- STM field-of-view collimator
- Stand for the upstream components

Design of the assigned parts of the STM

The parts of the STM infrastructure that weren't in the 3D CAD model and that I had to model are:

Upstream elements:

- Shield for CRV
- Sweeper magnet
- STM field-of-view collimator
- Stand for the upstream components

Total weight: 4811 lbs.

Requirements of the upstream STM stand

- Support the upstream STM components
- Move and reposition stand and mounted components readily and reliably to facilitate detector train access
- It has to be made out of non-magnetic material, because of the proximity with a strong magnetic field
- It has to facilitate the alignment of the components
- The legs of the stand rest on the two inner floor plates

Requirements of the upstream STM stand

- Support the upstream STM components
- Move and reposition stand and mounted components readily and reliably to facilitate detector train access
- It has to be made out of non-magnetic material, because of the proximity with a strong magnetic field
- It has to facilitate the alignment of the components
- The legs of the stand rest on the two inner floor plates

🛠 Fermilab

Requirements of the upstream STM stand

- Support the upstream STM components
- Move and reposition stand and mounted components readily and reliably to facilitate detector train access
- It has to be made out of non-magnetic material, because of the proximity with a strong magnetic field
- It has to facilitate the alignment of the components
- The legs of the stand rest on the two inner floor plates

Solution realized for the Upstream STM infrastructure

Solution realized for the Upstream STM infrastructure

Total weight of the stand: 430 lbs

Solution realized for the Upstream STM infrastructure

Side view

Top view

Used material and beams for the Upstream STM infrastructure

Fermilab

Selected wheels for the Upstream STM infrastructure

4 Stronghart Single Wheel Caster:

- Diameter: 8"
- Width: 3"
- Mount height: 10 1/2"
- Capacity: 2,520 lbs
- Swivel with Brake and Swivel Lock
- Abrasion-Resistant Green Polyurethane

7 Fermilab

Relative alignment of the parts on the table

The system realized allows the relative alignment of the shield for CRV, sweeper magnet and the collimator, so that this internal alignment operation does not to be repeated every time the stand has to be moved.

Alignment between the table and the beam line

Once realized the alignment of the individual elements on the table, this one can be mounted on the stand and aligned to the beam line through the alignment system mounted on the stand. This second alignment is faster than the one made before and this will reduce the time due to the realignment after the maintenance operation.

Moving operation for the Upstream STM components

The stand realized allows the table with the shield for CRV, the sweeper magnet and the collimator to be moved in the plane, to allow other maintenance operation. This will avoid the need to pick up the table when it is just sufficient remove it from the beam line.

🛠 Fermilab

Moving operation for the Upstream STM components

The stand realized allows the table with the shield for CRV, the sweeper magnet and the collimator to be moved in the plane, to allow other maintenance operation. This will avoid the need to pick up the table when it is just sufficient remove it from the beam line.

口 Fermilab

Downstream elements of STM

- Tungsten wall with the two collimation holes
- Two photon detectors (two HPGe or one HPGe and one LaBr₃)
- Room background shield made from lead
- Stand for downstream elements

Requirements of the downstream STM stand

- It has to support the the tungsten wall with the two 5.642 mm radius collimation holes, the two photon detectors and the lead background shield.
- It has to allow to build the shielding with common 2" x 4" x 8" lead bricks
- It has to allow to remove the bricks for maintenance on the two detectors
- It can't be too long, in z direction, because the space upstream the tungsten wall is necessary for the moving of the upstream train during the maintenance
- The stand has to be referred to the ground, so it cant be fixed to the east hall wall too
- It has to allow the operation of alignment

Solution realized for the Downstream STM infrastructure

Solution realized for the Downstream STM infrastructure

Front view

Solution realized - fixed part

Total weight of steel: 606 lbs

Total weight of lead: 980 lbs

Solution realized - mobile part

Total weight of steel: 712 lbs

Total weight of lead: 3350 lbs

Solution realized - mobile part

7 Fermilab

Advantages of the realized solution for the Upstream STM infrastructure

- The fixed stand, which is the one that supports the tungsten wall and the two detectors includes few lead bricks. This reduces the weight of this part of the stand so that it is subjected to less deformation, allowing a better alignment of the pieces on it.
- The removable shield allows the maintenance access without removing the bricks one by one. This operation in fact would be too long and it would be a waste of time. Furthermore, the placement of the bricks one by one, once the maintenance is finish, could affect the alignment of the holes in the tungsten wall and the photon detectors.
- The fact that the shield can be easily removed allows to **gain more space along z** during the upstream maintenance operation, which is important to allowed the parts to be extracted from the upstream shielding.

Used material and beams

- STRUCTURAL STEEL
 - Modulus of elasticity: 210 GPa
 - Tensile yield strength: 290 MPa
 - Ultimate tensile strength: 480

I shape beam ASTM A36 3" x 0.170" x 2,33"

I shape beam ASTM A36 4" x 0.193" x 2.663"

Insert the Upstream and Downstream components of STM in Teamcenter building model

‡ Fermilab

Insert the Upstream and Downstream components of STM in Teamcenter building model

Storage of the STM components during maintenance

‡ Fermilab

Storage of the STM components during maintenance

North West Shield Block Pile

North West Shield Block Pile

TS Hatch			
Bottom Layer	20	SP23H	1.5 x 3.0 x 23 w/ haunch
2nd layer	20	SP23	1.5 x 3.0 x 23
3rd, 4th & 5th layer TS Hatch	23	SP26	1.5 x 3.0 x 26
3rd, 4th & 5th layer West	23	D	1.5 x 3.0 x 6
3rd, 4th & 5th layer East	23	E	1.5 x 3.0 x 3
Far East	2	D	1.5 x 3.0 x 6

‡ Fermilab

Cable trays around East end of detector hall

Cable trays around East end of detector hall

Cable trays around East end of detector hall

Penetrations

Penetrations

Penetrations

Placeholders for calorimeter infrastructures

Placeholders for calorimeter infrastructures

DAQ room wall

‡ Fermilab

‡ Fermilab

‡Fermilab

35 09/21/2016 Federico Crisci | Mu2e experiment integration

辈 Fermilab

		REMOTE HANDLING			10					ULD ANYON & PHEADED ULD ANKHONS F 3. WEB IS REDD] REDD J REEDD J REEDD J HEADED BAR ANH WILL DARLUE NCHOR F 3.
• • •	N-E to x							xlsx		•
2 🛅	🗊 🗄 🚔	🔏 🗛 🛱	📩 🞻 🖄 • 🐋 • 🗴 • 🍌 • 🏆 • 🐼 🛅 👫 200% • 🤅				6 - 🕜			Q- Cerca nel fo
🔒 In	izio Layout	Tabelle	Grafici	SmartArt Formu	le Da	ti Revisione	Sviluppo			
r Ch	Modifica Biompimonto	Calibri (Corpo) = 12 = A				Allineamento	Tosto o cono	Numero For		ormato Celle
										₹
Incolla V Cancella V C 2 UV V L V E E C 2 UV V C C C C C C C C C C C C C C C C C										
A		J C J× Transform		nation Matrix from E-N to X-y M		uze CAD		D	F	G
10	Tra	eformat	on Matrix from E-N to X-N					Lnmnut values i	n E-N coordinates	
							04000			
11	-0,54687		-0,83721		41806560,04200			feet E value	99532,76000	
12	0,83721			-0,54687		-8816839,43467			feet N value	98788,23000
13	0			0,00000		1,00000				
14										
15	Output coordinates in x-y Mu2e CAD									
16	x Mu2e cad value				6626,66119					
17	y Mu2e cad value				115463,86604					
1			_ · `	00200.2				•	- LO.000 (1864)	
8 09/09/15 ISSUED FOR REVISION 8 4 09/09/15 ISSUED FOR REVISION 4 09/09/14 ISSUED FOR REVISION 4 09/09/14 ISSUED FOR REVISION 4 09/09/14 ISSUED FOR REVISION 4 1 09/09/14 15 09/09/14 15 09/09/14 15 09/09/14									Mu2e CONVENTIONAL FACILITIES EMBEDMENT - PLAN, SECTIONS AND DETAILS AT ELEV. 720'-6"	
REVISIONS SUBMITTED										

‡ Fermilab

35 09/21/2016 Federico Crisci | Mu2e experiment integration

Hardstand and road

Transformers

and generator pads

Transformers

Lights and drains

Lights and drains

Bollards

Bollards

Tube trailer

Tube trailer

7 Fermilab

Plan Staging of shield blocks TS Hatch Blocks

DS Hatch Blocks T/WALL EL 758'-0" 0000000 B/B14 EL 738-0* B/LEDGE EL 737-6* 29' 6'

North West Shield Block Pile

PS Hatch Blocks

Remote Handling Hatch

Extinction Hatch

Blocks weight

- OPA and IPA locations
- Stopping Target Location
- Correct the calorimeter disks orientation
- Verify the calorimeter disks location

• OPA and IPA locations

- Stopping Target Location
- Correct the calorimeter disks orientation
- Verify the calorimeter disks location

- OPA and IPA locations
- Stopping Target Location
- Correct the calorimeter disks orientation
- Verify the calorimeter disks location

🛟 Fermilab

- OPA and IPA locations
- Stopping Target Location
- Correct the calorimeter disks orientation
- Verify the calorimeter disks location

Still many things to do..

- Electrical services in the solenoid power supply room
- Sump equipment in neighboring alcove
- Services in mechanical room
- Services in electrical alcove
- Services in DAQ room
- Services in Cal DT source alcove
- Floor plates
- Trench cover plates
- Pipe chase features
- Air activation barrier
- Shield blocks in the hatches
- Trench planning
- DS VESDA line
- etc..

