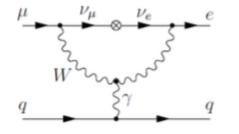


Systematic errors caused by imperfections of Mu2e beam line magnetic lattice

Fabio Spagliardi Supervisor: Eric Prebys Final Presentation 09/22/2016

‡ Fermilab

Outline


- The Mu2e experiment
 - Signal & Background
 - Radiative pion capture background
 - Extinction
- Some accelerator physics
- Simulations
 - Check of the code
 - Misalignment of DS collimator
 - Optical errors in beam optics

The Mu2e experiment

Mu2e will search for the conversion of a muon to an electron in the field of an aluminum nucleus:

$$\mu^- + N(Z,A) \to e^- + N(Z,A)$$

3

- \bullet Process allowed within the SM but at the level of $10^{\text{-}54}$
- Neutrino oscillation
- Any signal would be evidence of new physics

The experiment will measure the ratio of conversion to the usual muon capture:

Mu2e will achieve a SES of $3x10^{-17}$ that means that if R is equal to $3x10^{-17}$, we will expect one event in the full dataset

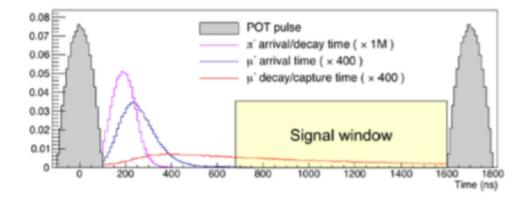
$$R_{\mu e} = \frac{\Gamma\left(\mu^{-} N(A, Z) \to e^{-} N(A, Z)\right)}{\Gamma\left(\mu^{-} N(A, Z) \to \nu_{\mu} N'(A, Z - 1)\right)}$$

Signal & Background

$$E(e) = M(\mu) - E^{bind} - E^{rec} = 104.95 \text{ MeV}$$

- Background: 4 main sources
 - decay in orbit (DIO)
 - presence of antiprotons
 - cosmic rays
 - radiative pion capture

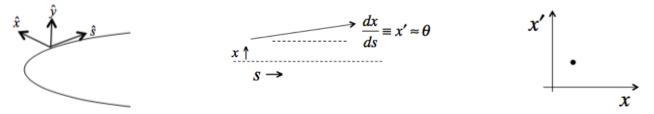
RADIATIVE PION CAPTURE


- muons are made from protons: $pN \to \pi X \quad \pi \to \mu \nu$
- not all the pions decay before reaching the stopping target
- electron from the process $\pi N \to \gamma N' \quad \gamma N \to e^+ e^- N$ could fake the signal

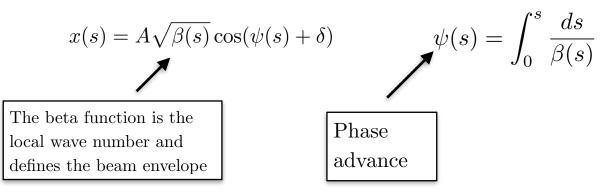
Avoid RPC BG: Beam Structure

Pion lifetime: 26 ns, muon lifetime: 864 ns → in order to reduce RPC background we just need to wait → bunch structure of the beam

Bunch structure avoids the presence of protons before and during the signal window


- $3x10^7 \text{ p/bunch}$
- 1695 ns bunch spacing (μ lifetime)

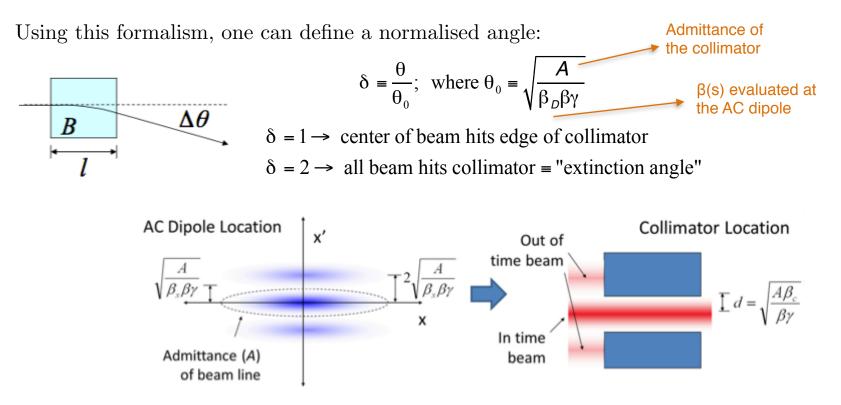
A very small fraction of out-of-time proton is then required. This parameter is called **EXTINCTION**. Extinction is required to be $<10^{-10}$ (10⁻¹¹ expected)



Some accelerator physics

- level of 10^{-5} extinction is provided by the delivery ring
- \bullet a set of resonance dipoles (AC dipoles) and collimators will provide another $10^{\text{-7}} \text{ extinction}$

Using this coordinates the motion can be described in terms of the $\beta(s)$ function:



- Emittance: roughly the area in the phase space of the particles
- Admittance: largest value of the emittance which the system will transport w/o loss

🛟 🛟 Fermilab

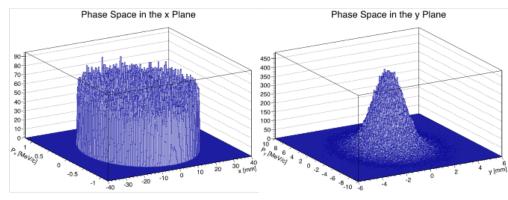
Extinction in practice

- the idea is to use the AC dipole to kick the out-of-time beam against the collimator's jaws
- the dipole system introduces an angular deflection which causes a lateral transverse deflection 90° betatron phase advance downstream

Simulations

Simulations have been carried out in order to check the transmission through the downstream collimator in different situations:

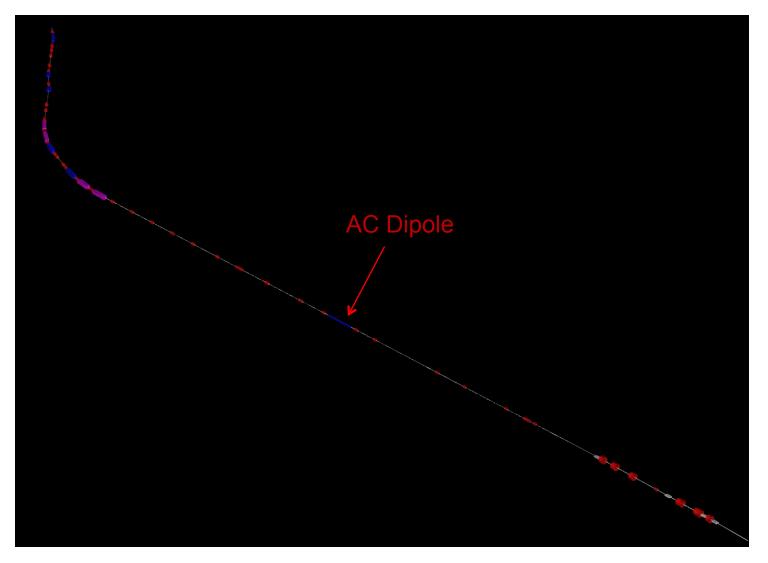
- verify that no transmission is present when $\delta > 2$
- \bullet understand the effect of the misalignment of the DS collimator
- understand the effect of optical errors (field errors) in beam optics


Tools for the simulations:

- the optic of the beam line is designed with MADX, a tool developed at CERN. It contains all the information about dipoles, quadrupoles, etc
- a Python script converts the MADX files in G4beamline scripts
- G4beamline is a GEANT4 scripting tool for particle simulations in beamlines

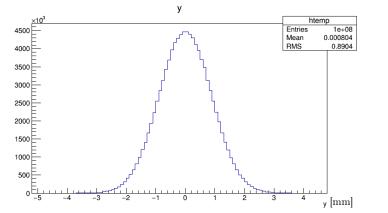
Simulation procedure

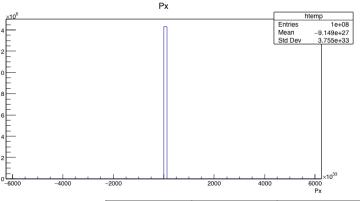
- Starting from MADX, a description of the entire beam line is obtained using G4beamline. It includes dipoles, quadrupoles, collimators and beam pipes.
- The description starts at the end of the Delivery Ring Enclosures. To save computer power, I have run the simulation beginning just upstream of the AC dipole using a provided mathematical model of the beam.


- Full emittance in bend plane (x-plane)
- Gaussian emittance in the y-plane

- Particles are "transmitted" if they are within 5 mm of the target after the DS collimator (real radius is 3 mm) → if they miss the target the won't produce BG
- \bullet Transmission results of the simulations are given as a function of the normalised angles δ
- Results will be combined with the wave function of the dipole to correlate transmission with the time (not by me)

G4beamline graphic model





10 09/22/16 F. Spagliardi I Systematic errors caused by imperfections of Mu2e beam line magnetic lattice

Check of the code

• G4beamline produces a ROOT file with NTuples that contain information about x and y position of the particles and their momentum components at a given s

- a ROOT script takes the data contained in the last NTuples and computes the number of particles within the target
- G4beamline simulation uses 100,000,000 events (1,000,000 on 100 processor) for each value of δ going from 1.8 to 2.5 with .1 increments
- code works as expected \longrightarrow no transmission for $\delta \gtrsim 2$

δ	End	Hit
1.8	177890	5309
1.9	35755	667
2.0	2841	1
2.1	869	0
2.2	359	0
2.3	147	0
2.4	76	0
2.5	33	0

Misalignment of DS collimator

- \bullet Full simulations have been run with the downstream collimator tilted by 1 mr and 2 mr
- This is much more than what would actually happen

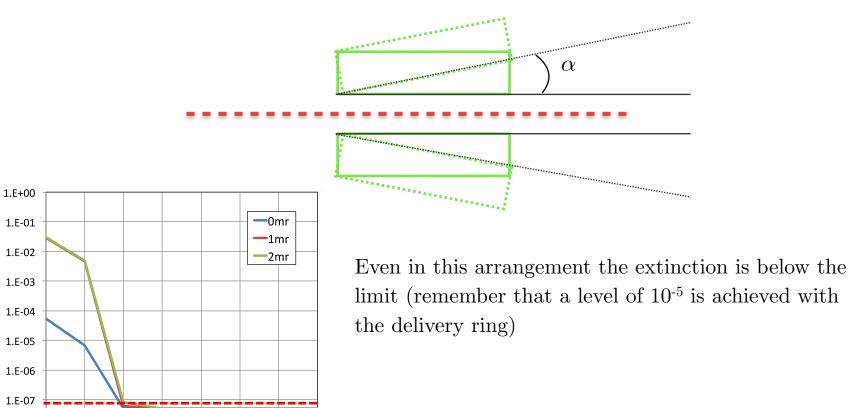
Extinction

1.E-08

1.8

1.9

2.1

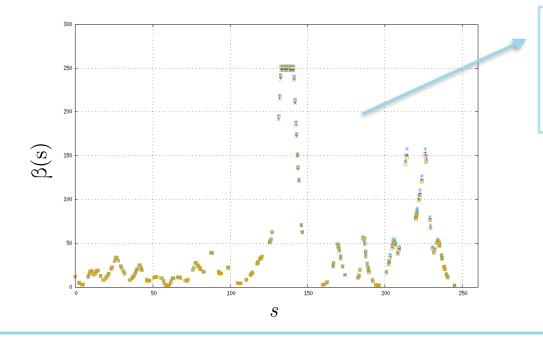

δ

2

2.2

2.3

2.4

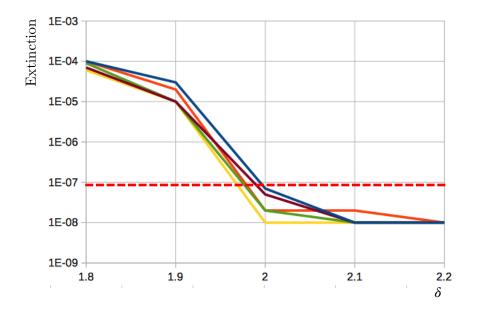


12 09/22/16 F. Spagliardi I Systematic errors caused by imperfections of Mu2e beam line magnetic lattice

2.5

Optical errors in beam optics I

- This analysis starts by modifying the MADX optic file
- A random error is added to the quadrupole field
 - gaussian error distribution with a cut at $2.5~{\rm sigma}$
 - rms value of $10^{\text{-}3}$ for the quadrupole field relative error
- This is done to have an idea of the effect on extinction while waiting for more realistic errors
- 5 different runs of the simulation (they take time)


How the Betatron function varies with the s coordinate for the first 4 runs of the optic simulation

13 09/22/16 F. Spagliardi I Systematic errors caused by imperfections of Mu2e beam line magnetic lattice

Optical errors in beam optics II

- Mathematical distribution of the beam has been regenerated in order to match the new optic. This has been done for each run.
- Once the random optic configuration is set, this has been translated in a G4beamline script in order to get transmission as a function of δ
- \bullet Again, we see that extinction is not sensible to .1% error of the quadrupole magnetic field

14 09/22/16 F. Spagliardi I Systematic errors caused by imperfections of Mu2e beam line magnetic lattice

Summary

- Understand the aim of the Mu2e experiment
- Background characterisation
- How extinction suppress background
- Prove that extinction meets the requirements even with reasonable errors caused by imperfections

Fermilab