Study of the impact of TS collimator misalignments on physics parameters of the Mu2e experiment

Elisabetta Spadaro Norella
September 21, 2016
Supervisor: Costas Vellidis

Table of contents

> Mu2e experiment and CLFV
> Previous study of TS misalignments
> Purpose of my study
> Results and discussion

Charge Lepton Flavor Violation (CLFV)

$>\quad$ In the Standard Model (SM) neutrinoless charged lepton decays are extremely suppressed (<~ 10-52)
$>$ Therefore observation of such decays is a signature of new physics

$>$ Muons offer the best signatures because they are easily produced and weakly decaying, with a long τ_{3}

CLFV history

$$
\begin{gathered}
\mu \rightarrow e \gamma \\
\left(B R<10^{-13}\right)
\end{gathered}
$$

Evidence of physics beyond the

 Standard Model$$
\left(B R<10^{-52}\right)
$$

$>$ Mu2e search process: conversion of muon into electron in a field of a nucleus, $\mu N \rightarrow e N$

- Muons are easy to produce and have a lifetime long enough to make muonic atoms
- Best combination of new physics reach and experimental sensitivity

Mu2e in a nutshell

1. Produce $10 \wedge 18$ muonic Al atoms in the 1 s state after 3 years of running
2. Count "muon conversion electrons" with tracking and calorimetry

- Mono-energetic electrons emanating from the Al target

$$
E_{e}=m_{\mu}-E_{b}-E_{\text {recoil }}=104.96 \mathrm{MeV}
$$

3. Suppress Background
$>$ What happens to Muonic Al?

- Nuclear capture ($\sim 61 \%) \rightarrow$ Normalization factor
- Muon decay in orbit (DIO) (~39\%) \rightarrow Main Background
- Muon to electron conversion $\left(<10^{-13}\right) \rightarrow$ Signal

Mu2e outlook

$>$ Pions are produced and decay into muons which spiral in the Transport Solenoid (TS)
$>3 * 10^{20}$ protons at the production target
$>$ Single Event Sensitivity:

$$
R_{\mu e}=\frac{\mu^{-}+A(Z, N) \rightarrow e^{-}+A(Z, N)}{\mu^{-}+A(Z, N) \rightarrow \nu_{\mu}^{-}+A(Z-1, N)} \simeq 3 \cdot 10^{-17}
$$

Transport Solenoid

$>\quad$ " S " shape \rightarrow to select only charged particles
>3 Collimators \rightarrow TS3 selects negative particles because they drift above the horizontal plane

Studies of the physics effects of TS misalignments have already been made (F. Bradascio, MSc thesis Mu2e-doc-7808)

My work focuses on physics effects of the misalignments of the central collimator (TS3) along the TS beamline

Methodology and topics

$>\quad$ All the work presented here is done using the Mu2e default map: Mau10
$>$ Physics simulation with GEANT4 in the framework of the Mu2e offline software
> Only the actual geometry is varied, not the field
> Analysis is conducted in ROOT

Topics examined

> Muon and Pion Stopping Rates
\rightarrow The muon capture and pion absorption probabilities at the stopping target depend on the direction of these particles, determined by the TS field
$>$ Background from Beam Electrons
$\rightarrow \quad$ The scattering probability of beam electrons off the stopping target material depends on the direction of the electrons, determined by the TS field
> $\quad \beta$ Source Test
\rightarrow We can approximately trace the TS field lines by taking advantage of the small Larmor radius of low-momentum electrons injected into TS from a conventional β source

My work plan

Study only displacements and rotations of TS3 collimator:

Why is it important?
> Hole in the upper part selects negative particles with appropriate momentum \rightarrow possible misalignment affects charge and momentum range selection
> What can happen to the physics of the experiment with slightly wrong momentum range and charge
 selection?

80+80 cm long Cu

Steps:
A. Shift up 2 cm
B. Shift down 2 cm
C. Rotation right 15°
D. Rotation left 15°

Rotation:
15° right, 15° left

Topics:

- Muons and Pions stopping rates
- Beam electrons
- Beta source test

Stopping Rates

Simulation provides the transport of muons and pions from the production target up to the stopping target

Protons on target: $10 \mathrm{M} \longrightarrow$ muons can decay
\longrightarrow pions are forced to be stable

Because of their shorter lifetime
$>$ Estimation of background: Muon stopping rate: $\frac{N_{\mu}}{N_{P O T}}$

$$
\text { Pion stopping rate: } \quad \frac{n_{\pi}}{N_{P O T}}
$$

$n_{\pi}=$ number of pions
weighted by $\mathrm{e}^{-\mathrm{t} / \tau}$ $\tau=$ pion lifetime of 26 ns
> Deviation in rate between default case and rotated field maps

- Fractional yield factor:

$$
\alpha=\frac{Y_{\text {varied }}-Y_{\text {default }}}{Y_{\text {default }}} \quad \delta_{\alpha}=\sqrt{\frac{Y_{\text {varied }} \cdot\left(Y_{\text {varied }}-Y_{\text {default }}\right)}{Y_{\text {default }}^{3}}} \quad \begin{aligned}
& Y=N_{\mu} \text { for muons } \\
& Y=n_{\pi}^{\prime} \text { for pions }
\end{aligned}
$$

Muons and pions stopping rates

- Displacements:
- Decrease of statistics moving the collimator: mainly a geometric effect
- The weighed pion rate is very low (a few pions stopped) to allow significant conclusions
- Rotations:
- Consistent results as we expected \rightarrow rotation doesn't affect spiraling particles
\longrightarrow Fractional yield differences: more sensitive to displacement down

	$\alpha_{\mu}[\%]$	$\alpha_{\pi}[\%]$	$N_{\mu} / N_{\text {POT }}\left[10^{-3}\right]$	$n_{\pi} / N_{\text {POT }}\left[10^{-7}\right]$
Default	-----	1.87 ± 0.01	6.27 ± 0.08	
UP (2cm)	-4.55 ± 1.00	12 ± 61	1.79 ± 0.01	7.01 ± 0.09
DOWN $(2 \mathrm{~cm})$	-7.18 ± 0.98	-17 ± 49	1.74 ± 0.01	5.18 ± 0.07
Right $\left(-X 15^{\circ}\right)$	-0.98 ± 1.03	2 ± 57	1.85 ± 0.01	6.40 ± 0.08
Left $\left(+X 15^{\circ}\right)$	-0.47 ± 1.03	4 ± 58	1.86 ± 0.01	6.53 ± 0.08

A) Muons shifted up

X of μ^{-}stop

- Comparison with Federica results for the default case:
- Y distribution differs by many sigmas from the default case in accordance with the shift

Y of μ^{-}stop

Mean X	-3092.0 ± 0.8
Mean Y	3.8 ± 0.8

A) Muons shifted up

Z of μ^{-}stop

- Comparison with Federica results:

Time of μ^{-}stop

Mean Z	5814 ± 5
Mean time	256 ± 1

Beam electrons background

$>$ Proton Beam: $2 \cdot 10^{9}$ POT produces ~ 100 e$^{-}$arriving at the stopping target (VD9) \rightarrow resampling needed to increase statistics (resampling factor $=10^{6}$)
$>$ A second stage simulation using the resampled e^{-}as input provides momenta and locations of e^{-}hits in the tracker volume
\longrightarrow Results have big statistical fluctuation in number of e^{-}at the tracker

- crude approximation: could be done more efficiently by resampling over the cross section

Background Estimation:

$$
N_{e}=\frac{N}{N_{\text {stat }}} \times 3 \cdot 10^{20} \times 10^{-10} \times 0.5=(2.5 \pm 1.2) \times 10^{-4} \quad \text { By Federica Bradascio }
$$

$\mathrm{N}=$ number of electrons in tracker that have $104<\mathrm{P}<106 \mathrm{MeV} / \mathrm{c}$ and $0.4<\mathrm{P}_{z} / \mathrm{P}<0.7$
$\mathrm{N}_{\text {stat }}=$ number of simulated POT times resampling factor $\left(10^{6}\right)$
$3 \times 10^{20}=$ expected number of POT in the experiment
$10^{-10}=$ extinction factor
$0.5=$ live time window

Default case: first stage

$>$ Collect electrons at VD9 \rightarrow POT: 2.0 M , e at VD9: 66
> Selected e^{-}with $\mathrm{p}>100 \mathrm{MeV}$
(X, Y) distribution at VD9

- hits in the downstream part because of the field lines:

Default case: Momentum distribution

Pdistribution in VD9
> Fit the momentum distribution in order to do the resampling \rightarrow particle momenta are randomized according to this fit
> Position and time distributions are randomized according to a gaussian distribution with $\sigma=10 \mathrm{~mm}$ and $\sigma=10 \mathrm{~ns}$
$>$ Momentum distribution: $f(p)=A e^{-k(p}$ -p0)

Federica's result: $\quad(81 \pm 9) \mathrm{e}^{-}$at VD9

My result:

$$
(66 \pm 8) e^{-} \text {at VD9 }
$$

Default case: Distribution of e- hits in the tracker volume

Cut: $p>95 \mathrm{MeV} / \mathrm{c}$

s:y:u

After cuts:
$104<p<106 \mathrm{MeV}$; $0.4<p_{z} / p<0.7$

Comparisons and Background

	original ${ }^{-}$	$\mathrm{e}^{-} \mathrm{VD} 9$	e^{-}tracker before cuts	e^{-}tracker after cuts	Background
Default Mau10	1997 ± 45	66 ± 8	6717	26	$(2.0 \pm 0.6) \times 10^{-4}$
up	2000 ± 45	225 ± 15	18531	118	$(9 \pm 1) \times 10^{-4}$
down	1996 ± 45	22 ± 5	4745	40	$(3.0 \pm 0.3) \times 10^{-4}$
Right 15°	2000 ± 45	90 ± 10	5548	25	$(1.9 \pm 0.7) \times 10^{-4}$

Consistent results with previous studies for default case: \rightarrow Federica's: $(1.9 \pm 0.1) 10^{-4}$
$>$ The only case where the estimated background changes significantly is the displacement up
> This is expected because electrons drift higher up than muons in the TS3 region, due to a higher velocity distribution corresponding to the same momenta (\rightarrow same Larmor radii)

Beta source test

We cannot measure the field inside TS, so we need a sensitive test of TS misalignments: this can be done using low momentum electrons
$>$ Source: ${ }^{90} \mathrm{Sr} /{ }^{90} \mathrm{Y}$ - No background
> "Virtual detector":

- Good momentum range
- (X,Y) resolution: ~300 $\mu \mathrm{m}$
- Momentum threshold: $200 \mathrm{keV} / \mathrm{c}$
> 1 Torr air pressure is assumed in the beam line, to ensure that the electrons go through
> For each misalignment, 27 source positions are examined
> Look only at VD3 and VD4 because the TS3 cut is applied between them

Comparison between default, up and down: steps of 50 mm

Source location on axis, collimator shifted up, statistics: 47832 @ VD3, 322 @ VD4

Comparison between default, up and down: steps of 5 mm

Steps above plane:

(

Source location on axis (small steps above plane), collimator shifted up, statistics: 47704@ VD3, 8045 @ VD4

Scatter plots Y vs X for All Tracks, VD 5

Scatter plots Y vs X for All Tracks, VD 6

Comparison between default, up and down: steps of 5 mm

Steps below plane:

Source location on axis (small steps below plane), collimator shifted up, statistics: 47775 @ VD3, 9 @ VD4

Conclusions

$>$ In general, only the up and down shifts and only in some cases can impact significantly the physics parameters of the experiment; rotations do not play an important role.
$>$ Stopping rates: up and down shifts are important due to a geometric effect \rightarrow the beam arriving at the stopping target is significantly displaced by the shifts.
$>$ Beam electrons background: sensitive to collimator misalignments, increases as the collimator is shifted upwards \rightarrow electrons drift higher up than muons in TS3.
$>$ Beta source test: sensitive to collimator shift up \rightarrow after the collimator the spots are cut and the corresponding $\langle\gamma\rangle$ is shifted up.
$>$ The above findings for largely exaggerated misalignments of the TS3 collimator guarantee that the collimator design provides a safe operation point for the experiment.

Thank you for the attention

