Study of the impact of TS collimator misalignments on physics parameters of the Mu2e experiment

Elisabetta Spadaro Norella September 21, 2016

Supervisor: Costas Vellidis

Table of contents

- ➢ Mu2e experiment and CLFV
- Previous study of TS misalignments
- > Purpose of my study
- Results and discussion

Charge Lepton Flavor Violation (CLFV)

- ▶ In the Standard Model (SM) neutrinoless charged lepton decays are extremely suppressed (<~ 10⁻⁵²)
- > Therefore observation of such decays is a signature of new physics

 \succ Muons offer the best signatures because they are easily produced and weakly decaying, with a long τ_{1}

CLFV history

- > Mu2e search process: conversion of muon into electron in a field of a nucleus, $\mu N \rightarrow eN$
 - Why? Muons are easy to produce and have a lifetime long enough to make muonic atoms
 - Best combination of new physics reach and experimental sensitivity

Mu2e in a nutshell

- 1. Produce 10^18 muonic Al atoms in the 1s state after 3 years of running
- 2. Count "muon conversion electrons" with tracking and calorimetry
 - Mono-energetic electrons emanating from the Al target

$$E_e = m_\mu - E_b - E_{recoil} = 104.96 MeV$$

- 3. Suppress Background
- > What happens to Muonic Al?
 - Nuclear capture (~61%) \rightarrow **Normalization factor**
 - Muon decay in orbit (DIO) (~39%) \rightarrow Main Background
 - Muon to electron conversion(< 10^{-13}) \rightarrow Signal

Mu2e outlook

- > Pions are produced and decay into muons which spiral in the Transport Solenoid (TS)
- > $3 * 10^{20}$ protons at the production target
- Single Event Sensitivity:

$$R_{\mu e} = \frac{\mu^- + A(Z, N) \to e^- + A(Z, N)}{\mu^- + A(Z, N) \to \nu_{\mu}^- + A(Z - 1, N)} \simeq 3 \cdot 10^{-17}$$

Transport Solenoid

- S" shape \rightarrow to select only charged particles
- ➤ 3 Collimators → TS3 selects negative particles because they drift above the horizontal plane

Studies of the physics effects of TS misalignments have already been made (F. Bradascio, MSc thesis Mu2e-doc-7808)

My work focuses on physics effects of the misalignments of the central collimator (TS3) along the TS beamline

Methodology and topics

- > All the work presented here is done using the Mu2e default map: Mau10
- > Physics simulation with GEANT4 in the framework of the Mu2e offline software
- > Only the actual geometry is varied, not the field
- > Analysis is conducted in ROOT

Topics examined

- Muon and Pion Stopping Rates
 - → The muon capture and pion absorption probabilities at the stopping target depend on the direction of these particles, determined by the TS field

Background from Beam Electrons

→ The scattering probability of beam electrons off the stopping target material depends on the direction of the electrons, determined by the TS field

> β Source Test

→ We can approximately trace the TS field lines by taking advantage of the small Larmor radius of low-momentum electrons injected into TS from a conventional β source

My work plan

Study only displacements and rotations of TS3 collimator:

Why is it important?

- ➤ Hole in the upper part selects negative particles with appropriate momentum → possible misalignment affects charge and momentum range selection
- What can happen to the physics of the experiment with slightly wrong momentum range and charge selection?

80+80 cm long Cu

My work plan

Enormously exaggerated misalignments, to test the induced effects

Steps:

- A. Shift up 2 cm
- B. Shift down 2 cm
- C. Rotation right 15°
- D. Rotation left 15 °

Topics:

- Muons and Pions stopping rates
- Beam electrons
- Beta source test

Simulation provides the transport of muons and pions from the production target up to the stopping target

Protons on target: 10 M \rightarrow muons can decay

→ pions are forced to be stable

Estimation of background: Muon stopping rate:
Pion stopping rate:

 $\frac{N_{\mu}}{N_{POT}}$ $\frac{n_{\pi}}{N_{POT}}$

Because of their shorter lifetime

 n_{π} = number of pions weighted by e^{-t/ τ} τ = pion lifetime of 26 ns

Deviation in rate between default case and rotated field maps

• Fractional yield factor:

Muons and pions stopping rates

- Displacements:
 - Decrease of statistics moving the collimator: mainly a geometric effect
 - The weighed pion rate is very low (a few pions stopped) to allow significant conclusions
- Rotations:
 - \circ Consistent results as we expected \rightarrow rotation doesn't affect spiraling particles
 - --- Fractional yield differences: more sensitive to displacement down

	α _μ [%]	α _π [%]	N _µ /N _{POT} [10 ⁻³]	n _π /N _{POT} [10 ⁻⁷]
Default			1.87± 0.01	6.27 ± 0.08
UP (2cm)	-4.55 ± 1.00	12 ± 61	1.79± 0.01	7.01± 0.09
DOWN (2cm)	-7.18 ± 0.98	-17 ± 49	1.74± 0.01	5.18 ± 0.07
Right (-X 15°)	-0.98 ± 1.03	2 ± 57	1.85 ± 0.01	6.40 ± 0.08
Left (+X 15°)	-0.47 ± 1.03	4 ± 58	1.86 ± 0.01	6.53 ± 0.08

A) Muons shifted up

- Comparison with Federica results for the default case:
- Y distribution differs by many sigmas from the default case in accordance with the shift

Y of µ stop

Mean X	-3092 .0 ± 0.8
Mean Y	3.8 ± 0.8

A) Muons shifted up

Time of μ^{-} stop

Mean time

256 ± 1

Beam electrons background

- ▶ Proton Beam: $2 \cdot 10^9$ POT produces ~100 e⁻ arriving at the stopping target (VD9) → resampling needed to increase statistics (resampling factor = 10^6)
- A second stage simulation using the resampled e⁻ as input provides momenta and locations of e⁻ hits in the tracker volume
- \longrightarrow Results have big statistical fluctuation in number of e^- at the tracker
- crude approximation: could be done more efficiently by resampling over the cross section

Background Estimation:

$$N_e = \frac{N}{N_{stat}} \times 3 \cdot 10^{20} \times 10^{-10} \times 0.5 = (2.5 \pm 1.2) \times 10^{-4}$$
 By

By Federica Bradascio

- N = number of electrons in tracker that have 104 < P < 106 MeV/c and $0.4 < P_z/P < 0.7$
- N_{stat} = number of simulated POT times resampling factor (10⁶)
- $3x10^{20}$ = expected number of POT in the experiment
- 10^{-10} = extinction factor
- 0.5 = live time window

Default case: first stage

- \succ Collect electrons at VD9 \rightarrow POT: 2.0 M, e at VD9: 66
- Selected e⁻ with p>100 MeV

• hits in the downstream part because of the field lines:

Default case: Momentum distribution

- ➤ Fit the momentum distribution in order to do the resampling → particle momenta are randomized according to this fit
- Position and time distributions are randomized according to a gaussian distribution with σ=10 mm and σ=10 ns
- Momentum distribution: $f(p) = A e^{-k(p)}$

Federica's result: $(81 \pm 9) e^{-} at VD9$

My result: $(66 \pm 8) e^{-} at VD9$

P distribution in VD9

Default case: Distribution of e⁻ hits in the tracker volume

Comparisons and Background

			e⁻ tracker	e⁻ tracker	
	original e⁻	e⁻ VD9	before cuts	after cuts	Background
Default					
Mau10	1997 ± 45	66 ± 8	6717	26	(2.0 ± 0.6) x 10 ⁻⁴
up	2000 ± 45	225 ±15	18531	118	(9 ± 1) x 10 ⁻⁴
down	1996 ± 45	22 ± 5	4745	40	(3.0 ± 0.3) x 10 ⁻⁴
Right 15°	2000 ± 45	90 ± 10	5548	25	(1.9 ± 0.7) x 10 ⁻⁴

- ▶ Consistent results with previous studies for default case: \rightarrow Federica's: (1.9 ± 0.1) 10⁻⁴
- > The only case where the estimated background changes significantly is the displacement up
- ➤ This is expected because electrons drift higher up than muons in the TS3 region, due to a higher velocity distribution corresponding to the same momenta (→ same Larmor radii)

Beta source test

We cannot measure the field inside TS, so we need a sensitive test of TS misalignments: this can be done using low momentum electrons

- \succ Source: ${}^{90}\mathrm{Sr}/{}^{90}\mathrm{Y}$
- No backgroundGood momentum range

X (mm)

- "Virtual detector":
 - (X,Y) resolution: ~300 μ m
 - Momentum threshold: 200 keV/c
- 1 Torr air pressure is assumed in the beam line, to ensure that the electrons go through
- For each misalignment, 27 source positions are examined
- Look only at VD3 and VD4 because the TS3 cut is applied between them

Comparison between default, up and down: steps of 50 mm

21

Source location on axis, collimator shifted up, statistics: 47832 @ VD3, 322 @ VD4

Comparison between default, up and down: steps of 5 mm

Steps above plane:

VD4

23

Source location on axis (small steps above plane), collimator shifted up, statistics: 47704 @ VD3, 8045 @ VD4

Comparison between default, up and down: steps of 5 mm

Steps below plane:

Source location on axis (small steps below plane), collimator shifted up, statistics: 47775 @ VD3, 9 @ VD4

Conclusions

- In general, only the up and down shifts and only in some cases can impact significantly the physics parameters of the experiment; rotations do not play an important role.
- Stopping rates: up and down shifts are important due to a geometric effect \rightarrow the beam arriving at the stopping target is significantly displaced by the shifts.
- ➢ Beam electrons background: sensitive to collimator misalignments, increases as the collimator is shifted upwards → electrons drift higher up than muons in TS3.
- > Beta source test: sensitive to collimator shift up \rightarrow after the collimator the spots are cut and the corresponding <Y> is shifted up.
- The above findings for largely exaggerated misalignments of the TS3 collimator guarantee that the collimator design provides a safe operation point for the experiment.

Thank you for the attention