
FERMI NATIONAL ACCELERATOR LABORATORY 

          1 

 
 
 
 

Simulation and Visualisation of 
electron column in the IOTA ring 

using Paraview 

Diletta Milana  
under the supervision of 

Jayakar Charles Tobin Thangaraj (FAST-IOTA)  
and 

Chong Shik Park (IOTA)  
Giulio Stancari (IOTA)  

 

 

September 23rd, 2016 

Fermi National Accelerator Laboratory, Batavia (IL) 

 

 

 



FERMI NATIONAL ACCELERATOR LABORATORY 

          2 

Abstract 
During my nine-week internship at Fermilab, I had the opportunity to take part in the 

IOTA1 ring experiment, that is currently being developed in the FAST2 facility. The IOTA 

ring will be of use for studying some of the instabilities that affect current accelerators, such as 

the space-charge effect, that is the focus of this work.  

In particular, I have focused on the simulation of one space-charge compensation 

method: the electron column. This method has shown to have potential to improve the 

performance of circular accelerators.  

In the first phase of my internship, I focused on the visualisation of data using Python and 

Paraview, an open-source, multi-platform data analysis tool for extremely large datasets. 

Starting from the output of the electron column simulation, I was able to produce a number 

different visualisations that were very useful in detecting and understanding the most relevant 

features of the process. These visualisations can be launched by running the relative python 

script directly from Paraview's GUI: in fact, anyone can potentially make small modifications 

in the code (setting specific values for the parameters), run the script and see the result. 

In the second phase of my internship, I started to focus on how to reduce the bottlenecks 

in the simulation using HDF5. More work has to be done in the future in this direction. 

 

 

 

 

 

 

                                                
1 Integrable Optics Test Accelerator 
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The context 
In this section I will report some key hints concerning the physics behind the electron column 
simulation. 

High-power accelerators and high-brightness beams are needed in many areas of particle 
physics, such as the study of neutrinos and of rare processes. The performance of these 
accelerators is limited by tolerable losses, beam halo and instabilities in general, including the 
space-charge effect. Nonlinear integrable optics, self-consistent or compensated dynamics 
with self fields and beam cooling beyond the present state of the art are being studied to address 
these issues (G. Stancari† s.d.). 

The IOTA ring 
The Integrable Optics Test Accelerator (IOTA) is a research storage ring with a circumference 
of 40 m being built at Fermilab (A. V. S. Nagaitsev s.d.) (D. B.-v. S. Nagaitsev s.d.). Its main 
purposes are the practical implementation of nonlinear integrable lattices in a real machine 
and the study of space-charge compensation in rings.  IOTA is designed to study single-particle 
linear and nonlinear dynamics with pencil beams of 150-MeV electrons. For experiments on 
space-charge dynamics, 2.5-MeV protons will be injected (G. Stancari† s.d.).  

 

 

 

 

 

  
 

 

The space-charge effect 

In a beam, particles with the same charge are forced to remain extremely close. The resulting 
mutual coulomb repulsion creates an internal electric field3: this process is called the space-charge 
effect and, as it was mentioned earlier, it might cause beam losses and emittance growth that limit 
the current and hence cannot be tolerated. In fact, transverse space-charge effects have long been 

                                                
3 In a moving beam, space-charge forces are also partially mitigated by magnetic attraction. 

Figure 1: Schematics of the IOTA ring 

Electron 
Lens 
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recognized as a fundamental intensity limitation in synchrotrons and storage rings4 (D. Mohl s.d.).   
The usual figure of merit of the space-charge effect in circular accelerators is the incoherent tune 
shift, that is defined as the frequency change of a single particle’s betatron oscillations caused by 
the space charge of a stationary beam. As the RF voltage is turned on in the ring, the injected 
beam is gradually bunched and experiences the largest space-charge tune shift (W. T. Weng 
s.d.). If the tune shift is larger than the free space between dangerous (lower order) resonances, 
then the beam suffers from coherent (e.g., quadrupole breathing modes of the beam envelope) 
and incoherent (e.g., parametric resonances in a single particle’s motion) instabilities (D. Mohl 
s.d.) (A. V. Burov 2000). 

Space-charge compensation 

The main idea of space-charge compensation is based on the long-known fact that the negative 
effect of Coulomb repulsion can be mitigated if beams are made pass through a plasma column 
of the opposite charge (D. Garbor s.d.). This idea has been successfully applied to transport 
high-current low- energy proton and H- beams into the RFQ in many linacs5. In circular 
machines, partial neutralization by ionized electrons was attempted with remarkable 
improvements in proton beam intensity, namely one order of magnitude higher than the space-
charge limit. However, the beam-plasma system was subject to strong transverse electron-
proton (e-p) instability. In principle, this difficulty can be overcome if protons and electrons are 
immersed in a strong enough longitudinal magnetic field (Y. A. V. Shiltsev s.d.). Further, the 
nonlinear optics adopted in the IOTA ring are expected to suppress the e-p instability (V. 
Dudnikoiv s.d.), and minimize the space-charge driven halo formation (S. Webb s.d.). These 
synergistic mechanisms can be readily studied by injecting low-energy protons into the IOTA 
ring. Therefore, the necessary conditions for the effective space-charge compensation in rings 
will be (G. I. Dimov s.d.), (A. V. Burov 2000) :  

1. The impact of electrons is equal to the total impact of beam space charge over the (G. I. 
Dimov s.d.) ring. 

2. The Transverse profile of the electron density ne(r) is the same as that of the proton beam.  

3. The system of electrons and protons is dynamically stable.  

Although space-charge compensation is commonly used in linacs, its implementation in rings 
is still an active field of research. Charge neutralization over the circumference of the ring is 

                                                
4 As a side note, the space-charge forces become negligible at high beam energies. So increasing the 
injection energy, either by making the linac longer or by adding a small booster, would be a 
straightforward solution, but very costly. In synchrotrons, fast acceleration would help the beam to cross 
resonances of order 3 and higher, but still there is enough time for lower order modes to develop. 
5 Linear accelerators 
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usually not practical. Local compensation schemes require high charge densities, which in turn 
can cause beam scattering, distortions of the lattice, and beam- plasma instabilities.  

The electron lens 

“Electron lens” is the term used to indicate the area of the ring where space-charge 
compensation will be applied6. In particular, two compensation methods will be investigated, 
at different times, in the IOTA ring: the electron column and the electron gun The electron 
gun generates the required charge distribution in transverse space and in time, to reproduce 
the bunch shape of the circulating beam (A. V. Burov 2000). This method is technically 
challenging, particularly, it requires a large number of expensive lenses for high periodicity 
machines (M. Chung s.d.). In the other scheme, the so-called electron column, the electrons 
are generated by ionization of the residual gas and trapped axially by electrodes and 
transversely by the solenoidal field, in a configuration similar to a Penning-Malmberg trap (V. 
Shiltsev 2007) where the electron gun and collector are not necessary.  

The electron column 

This method of space-charge compensation aims to achieve very intense and stable beams in 
circular accelerators through trapping and controlling of electrons generated from beam-
induced residual gas ionization. As mentioned earlier, in the electron column, electrons are 
generated internally through beam-induced residual gas ionization without special electron 
sources and optics. For this reason, its realization would be more effective and technically 
feasible (M. Chung s.d.) .  

In the following figure, the electron column is shown in detail: a beam of protons is made flow 
from left to right inside a horizontal pipe. As the protons bump into the H2 ions contained in 
the pipe, new electrons are generated: these electrons, that will remained focused towards the 
center of the pipe due to the solenoid and to the two electrodes, located at the two ends of the 
pipe, will compensate the space-charge effect. 

 

p + H2       à     p + H2+ + e 

 

 

                                                
6 Because the electron lens is based upon magnetically confined electron beams, some of the space-charge effects 
can already be mitigated. 
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Installation and setting 
Because the IOTA ring is under construction, a simulation of the electron column experiment 
is being run. To be able to run this simulation script, parallel computation is required. I took 
advantage of the Accelerator Simulations Wilson cluster 7  (http://tev.fnal.gov), a joint 
acquisition by the Accelerator Physics Center, Computing Sector and Technical Division. At 
the link http://wilsonweb.fnal.gov/cluster/status.html it is possible to monitor in real time the 
situation of the cluster. To run the simulation, it is necessary to connect to it using ssh, which 
means that two steps must always be performed8: 

1. $ kinit username@FNAL.GOV #to request a Kerberos ticket on the connecting 
machine. This command will in return ask for the password corresponding 

to that user9 
2. $ ssh -k username@tev.fnal.gov #to connect to the cluster. Once connected, 

the current directory will be /home/username 

                                                
7 This cluster is currently being used for development and testing of accelerator and radio frequency simulation 
codes. 
8 in the following, username will always need to be replaced with the individual username of the active user. 

9 Depending on the local machine, this ticket might not be forwarded to the remote machine once the ssh process 
starts. This might cause the user to request another Kerberos ticket (with command number 1) once logged in the 
remote machine, for instance in case he/she needs to push to a remote repository. To understand whether the 
remote machine already has a ticket or not, it is sufficient to check the output of the command: 
$klist 

Figure 2: Shiltsev (2007) – Electron Column Proposed Experimental Setup 
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After having created a personal directory on the Wilson Cluster (home/username), I 

proceeded with the build of Warp, an extensively developed open-source particle-in-cell code 

designed to simulate charged particle beams with high space-charge intensity. Warp takes 

advantage of a number of different libraries that must be installed as well. To do this, the 

following steps required, in this order. 

At first, I created a “warp” directory, and in that directory the “build” and “install” sub-
directories: 

$ mkdir warp 

$ cd warp 

$ mkdir build 

$ mkdir install 

All packages are built under "/PATH/TO/BUILD" directory and installed in the 
“/PATH/TO/INSTALL" directory. 

In my case, 

# /PATH/TO/BUILD   = /home/dmilana/warp/build 

# /PATH/TO/INSTALL = /home/dmilana/warp/install 

Before the installation begins, and also every time a new ssh session is established10, three 
environmental variables will need to be sourced. Two of these, PATH and 
LD_LIBRARY_PATH, can already be set now: 

$ LD_LIBRARY_PATH="/PATH/TO/INSTALL/lib:$LD_LIBRARY_PATH" 

$ export LD_LIBRARY_PATH 
$ PATH="/PATH/TO/INSTALL/bin:$PATH" 

$ export PATH 
A config script is suggested to automate this operations at the beginning of each session. 

The following steps cover the installation of all the packages needed for the Warp simulation 
to run. 

Python 

We will be installing Python-2.7.8. A version 2.7 or greater is required to import "subprocess" 
module. Python 3.4 is tested, but its syntax is not compatible with Warp. 

$ cd /PATH/TO/BUILD/ 

$ wget https://www.python.org/ftp/python/2.7.8/Python-2.7.8.tgz 

$ tar zxf Python-2.7.8.tgz 

$ cd Python-2.7.8 

                                                
10 It is suggested to create a single bash script to be launched at the beginning of every session in order to 
perform all these actions automatically. The one I used will be included in the final documentation.  
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$ ./configure --prefix=/PATH/TO/INSTALL 

$ make altinstall prefix=/PATH/TO/INSTALL exec-prefix=/PATH/TO/INSTALL 

At this point, it is necessary to source the third environment variable, PYTHONPATH 

$ PYTHONPATH="/PATH/TO/INSTALL/lib/python2.7/site-packages:$PYTHONPATH" 

$ export PYTHONPATH 

Which will be included in the script mentioned above. 

Numpy-1.7.1 
$ cd /PATH/TO/BUILD/ 

$ wget http://downloads.sourceforge.net/project/numpy/NumPy/1.7.1/numpy-
1.7.1.tar.gz 

$ tar zxf numpy-1.7.1.tar.gz 

$ cd numpy-1.7.1 

$ python2.7 setup.py build 

$ python2.7 setup.py install --prefix=/PATH/TO/INSTALL 

Forthon 
$ cd /PATH/TO/BUILD/ 

$ git clone https://github.com/dpgrote/Forthon.git 

$ cd Forthon 

$ python2.7 setup.py install --prefix=/PATH/TO/INSTALL 

Pygist 
$ cd /PATH/TO/BUILD/ 

$ git clone https://bitbucket.org/dpgrote/pygist.git 

$ cd pygist 

$ python2.7 setup.py config 

$ python2.7 setup.py install --prefix=/PATH/TO/INSTALL 

Warp/Pywarp90 

Two alternatives can be used for installation11. 

$ cd /PATH/TO/BUILD/ 

$ git clone https://bitbucket.org/berkeleylab/warp/git/warp.git 

$ cd warp/pywarp90 

$ git pull 

$ cd pywarp90 

$ make install 

                                                
11 The first one is suggested, as it guarantees that the version installed is always up-to-date. 
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or 

$ cd /PATH/TO/BUILD/ 

$ wget 
https://bitbucket.org/berkeleylab/warp/downloads/Warp_Release_4.2.tgz 

$ tar zxf Warp_Release_4.2.tgz 

$ cd warp/ 

Now, a Makefile.local has to be created (for example using vi editor). The following 
command will create and open up a file in command mode: 

$ vi Makefile.local 

At this point, press *i to enter the edit mode. Now, paste the following line  

PYTHON = python2.7 

press esc to exit the edit mode and enter the command mode, then :x (will show up at the 
bottom of the page). Then: 

$ make install12 

For the parallel version: 

Openmpi13 

 
$ cd /PATH/TO/BUILD/ 

$ wget http://www.open-mpi.org/software/ompi/v1.6/downloads/openmpi-
1.6.5.tar.gz 

$ tar zxf openmpi-1.6.5.tar.gz 

$ cd openmpi-1.6.5 

$ ./configure --prefix=/PATH/TO/INSTALL/ 

$ make all install 

PyMPI 
$ cd /PATH/TO/BUILD/ 

$ git clone http://portal.nersc.gov/project/warp/git/pyMPI.git 

$ cd pyMPI 

$ ./configure --prefix=/PATH/TO/INSTALL 

$ make 

$ make install 

                                                
12 in case this doesn’t work, try: 
 make -f Makefile.Forthon install 

13 Default openmpi version in the Wilson cluster is 1.8.1 but its mpif lib has a different name from old openmpi 
(libmpi_f77.so -> libmpi_mpifh.so). Fix mpif lib name of warp Makefile.local.pympi or compile openmpi-1.6.5. 
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Warp/pywarp90 
$ cd /PATH/TO/BUILD/ 

$ cd warp/pywarp90 

Now, create Makefile.local.pympi with: 

$vi Makefile.local.pympi 

Now enter edit mode, pressing *i and paste: 

FARGS = --farg "-DMPIPARALLEL -I/PATH/TO/INSTALL/include -
L/PATH/TO/INSTALL/lib/" 

PYTHON = python2.7 

Now, create setup.local.py with: 

$vi Makefile.local.pympi 

Now enter edit mode, pressing *i, and paste (for openmpi-1.6.5): 
if parallel: 

 library_dirs = library_dirs + ['/PATH/TO/INSTALL/lib/'] 

 libraries = fcompiler.libs + ['mpi', 'mpi_f77'] 

Press esc and then :x to close and save. Now: 
$ make pinstall 

 

Optional Packages: 

Scipy 

$ cd /PATH/TO/BUILD/ 

$ wget 
https://sourceforge.net/projects/scipy/files/scipy/0.14.0/scipy-
0.14.0.tar.gz 

$ tar zxf scipy-0.14.0.tar.gz 

$ cd scipy-0.14.0 

$ python2.7 setup.py install —prefix=/PATH/TO/INSTALL 

HDF5 

$ cd /PATH/TO/BUILD/ 

$ wget http://www.hdfgroup.org/ftp/HDF5/current/src/hdf5-
1.8.17.tar.bz2 

$ tar jxf hdf5-1.8.16.tar.bz2 

$ cd hdf5-1.8.16 

$ ./configure --prefix=/PATH/TO/INSTALL 
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$ make 

$ make install 

Pytables 
$ cd /PATH/TO/BUILD 

$ wget 
https://sourceforge.net/projects/pytables/files/pytables/2.1.2/table
s-2.1.2.tar.gz 

$ tar zxf tables-2.1.2.tar.gz 

$ cd tables-2.1.2 

$ python2.7 setup.py build --hdf5=/PATH/TO/INSTALL 

$ python2.7 setup.py install --prefix=/PATH/TO/INSTALL —
hdf5=/PATH/TO/INSTALL 

Now that the installation is complete, to make sure it works properly, here are some test steps 
to perform: 

$ cd /PATH/TO/BUILD/ 

$ cd warp/warp_test 

$ python2.7 runalltests.py 

If no errors are returned, the installation was successful. 

Running the simulation 
To run the electron column simulation, two files are necessary: 

1. ecolumn.py : A python file that contains the electron column simulation script written 
using Warp libraries by Moses Chung and Chong Shik Park. For the data visualisation 
and analysis part of this report, this simulation script will be taken for granted and not 
discussed any further. 

2. ecolumn.sh: A bash file that launches the simulation on the Wilson Cluster. 

 

Simple bash file 

This is an example of the most simple bash file used to run the simulation: ecolumn.sh 

 
#!/bin/sh 
#PBS -o ecolumn.out #file produced when the simulation is over: this 
is the standard output used throughout the code to print relevant 
moments in the simulation. 
#PBS -e ecolumn.err #file produced when the simulation is over: 
contains traces of the errors occurred. 
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#PBS -l nodes=1:amd32 #runs on 1 node of type amd32 
#PBS -l walltime=24:00:00 #maximum time allowed for a simulation to 
run 
#PBS -q amd32 #queue where the job will wait for its turn 
#PBS -A srflinac #account on which the job time will be charged. 
 
nproc=32   #number of processors on which the simulation runs. 
This must be equal to procspernode(see next line) times nodes (see 
above). 
procspernode=32 #amd32 nodes have 32 processors, while intel12 have 
12 processors per node. 
 
echo "running on $nproc processors" 
 
. /home/username/warp/setup.sh #performs the sourcing mentioned in 
the previous pages 
 
cd ${PBS_O_WORKDIR} #moves to the right directory on cluster 
 
mpirun -np ${nproc} -npernode ${procspernode} pyMPI ecolumn.py -p 4 
4 64 
#launches the simulation with the parameters set above. 
 
 
Once the parameters in the bash script have been properly set, it is possible to launch the 
simulation with the command 
$ qsub ecolumn.sh 

To check the status of the simulation: 
$ qstat 

To interrupt and delete a job: 
$qdel jobID #the ID of the job can be seen using qstat command 
 

Once the simulation is over, it will produce all the results in the same directory where the 
scripts are located.  

Alternative bash file 

I was able to create many different alternative bash files starting from the previous simple script. 
For instance, the following script runs on intel12 nodes (more efficient for input-output 
operations) which have 12 processors per node. The intel12_cbhat queue is a high priority 
queue, that also allows for a walltime14 of 60 hours instead of 24.  

What characterises this script is the fact that 3 arrays are created, each of which contains all 
the values for a three parameters (the magnetic field produced by the solenoid, the potential at 
the right electrode and the potential at the left electrode) that are of interest in a simulation.  

#!/bin/sh 
#PBS -o ecolumn.out 
                                                
14 time after which the job will be aborted automatically if it has not finished yet. 
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#PBS -e ecolumn.err 
#PBS -l nodes=2:intel12 #running on intel12 nodes 
#PBS -l walltime=60:00:00 
#PBS -q intel12_cbhat #on a priority queue 
#PBS -A srflinac 
 
# Absolute value function, used to create the name of files and directories 
containing the results of a specific simulation 
 abs() { 
   [ $1 -lt 0 ] && echo $((-$1)) || echo $1 
 } 
 
nproc=24 
 
procspernode=12 
echo "running on $nproc processors" 
 
. /home/dmilana/warp/setup.sh 
 
cd ${PBS_O_WORKDIR} 
 
#creating three arrays of parameters. Each array contains all values to be 
assigned to a parameter, such as Bsol (the magnetic field produced by the 
solenoid), Vbias_left (potential at the left electrode) and Vbias_right. 
Hence, simulation number x will be run with parameters coming from Bsol[x], 
Vbias_left[x] and Vbias_right[x]. 
 
declare -a Bsol=(0 0.1 0.1 0.5 0.5 ) 
declare -a Vbias_left=(0 -50 -100 -50 -100 ) 
declare -a Vbias_right=(0 -50 -100 -50 -100) 
 
param_length=${#Bsol[@]} #all three arrays will have the same length 
echo $param_length 
max=$((param_length-1)) 
echo $max 
 
i="0" 
 
while [ $i -lt $param_length ]; do 
        b=${Bsol[$i]} 
           
        vl=${Vbias_left[$i]} 
        vr=${Vbias_right[$i]} 
         
    #this value will be used later in the naming of directories  
    (instead of calling a directory V_-10 we will call it V_10) 
        absl=$(abs $vl) 
        absr=$(abs $vr)  
 
  #Now we use the sed command to substitute in the original  
  ecolumn.py file, the 3 values just extracted from the arrays,  
  creating a temporary file for each substitution and eventually a 
  new complete simulation file, ecolumn_parameters.py. The  
  ecolumn_parameters.py file will be placed in a new directory,  
  created explicitly for that simulation and whose name will  
  indicate clearly the parameters of that specific simulation. 
 
        sed "s/\"bsol_value\"/$b/" ecolumn.py >tmp1.py 
        sed "s/\"vbiasl_value\"/$vl/" tmp1.py >tmp2.py  
        sed "s/\"vbiasr_value\"/$vr/" tmp2.py >ecolumn_parameters.py 
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  #here a new directory for that specific simulation is created and 
  the ecolumn_parameters.py files is copied into it. After moving 
  into that directory (cd) move into that directory, the job itself 
  will be launched. 
 
        directory="./ecolumn/B_"$b"T_V_"$absl"_"$absr"V" 
        mkdir $directory 
        cp ./ecolumn_parameters.py $directory 
        #echo $directory  
        cd $directory 
        mpirun -np ${nproc} -npernode ${procspernode} pyMPI 
ecolumn_parameters.py -p 4 4 64 
        let i=$i+1 
done 
 
Once the simulation script is launched, it will start to produce some results: the output data 
can be analyzed. For this purpose, I used the Paraview software. 

Paraview 

About Paraview 

ParaView is an open-source, multi-platform data analysis and visualization tool. ParaView 
users can build visualizations to analyze their data using qualitative and quantitative 
techniques. ParaView is able to visualise and animate data from a very high number of different 
file formats (txt, csv, vtk, hdf5…). ParaView was developed to analyze extremely large datasets 
using distributed memory computing resources (K. Moreland s.d.). 

Why Paraview 

Amongst the various software applications  available, we chose Paraview for two main reasons: 
• Strong Python support: users can create python scripts based on the paraview.simple 

library. These portable scripts can then be used by other users and on different datasets with 
different parameters (can be modified by modifying just one lines of code). All a third user 
needs to do to create his visualisations basing on someone else’s script is work directly on the 
script (modifying for instance the lines where the simulation files are imported), import it in 
Paraview and run it to see the results. 

• Strong animation support: with some hints15, Paraview is able to understand how the data in 
input is structured and in particular whether a group of files located in one directory 
represents a unique set of data, yet sampled at different timesteps. This way, Paraview can 
easily create interesting animations, that allow to understand the basics of the process behind 
them. 

                                                
15 see next sections 
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How ParaView works 

Visualization is the process of converting raw data into images and renderings to gain a better 
cognitive understanding of the data. ParaView uses VTK, the Visualization Toolkit, to provide 
the backbone for visualization and data processing. 

Paraview’s core is the so-called visualization pipeline: you bring your data into the system by 
creating a reader, the source, which depends on the file format at hand. You then apply a 
filter to either extract information (e.g., iso-contours) and render the results in a view or to save 
the data to disk using writers. All readers can be found in Filters, Search. Eventually, you create 
one or more views to render the data. The key point in creating the right visualisation for the 
specific case is, hence, finding the right filter, amongst the high number of filters available. 

These three steps can be performed by a python script, that allows portability and re-usability. 
In the next pages, the main scripts I developed will be shown and commented.  

Install ParaView 

To obtain Paraview it is sufficient to visit the webpage http://www.paraview.org/download/ 
and download the version corresponding to the current system. To install the software, just 
follow the steps of the guided procedure. 

Support 

Paraview has an extensive support: a lot of information can be found on the web in terms of 
official PDF documents16 or mailing lists17.  

Reset the current session 

Before moving from one visualisation to another, it is important to reset the current session, so 
as to avoid any overlapping between existing readers and filters. All the scripts I developed do 
this automatically, as they import the reset.py module, that contains the reset_all() 
function that will reset the current session18: 
import sys 

import os 

PATH_TO_SCRIPTS="/Users/diletta/Desktop/Fermiworking/paraview/" 

sys.path.append(os.path.abspath(PATH_TO_SCRIPTS)) 

#to reset all components in the current view 

                                                
16 See bibliography 

17 http://www.paraview.org/mailing-lists/ . Even without subscribing to the official mailing list, a simple 
google.com search will likely produce very useful results. 

18 For this reason it is very important that all scripts (including reset.py) are all kept in the directory indicated by 
the variable PATH_TO_SCRIPTS which is located at the beginning of each script. Otherwise, the import will 
not work 
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from reset import * 

reset_all() 

 

In any other case, to reset the session just click on Edit, Reset Session. 

Run a script  

It may be very useful to start from a script for Paraview that some other user has wrote. To do 
this, it is sufficient to click on Tools, then select Python Shell. This will open up a shell. By 
clicking on the Run Script button, It will be possible to select which script to run. 

 

 

 

 

 

 

 

 

 

 

 

 

Hence, it is very easy to start from a script that somebody else has written and modify it 
according to the specific needs.  

Save State 

In Paraview there is no such thing as simply “save” to update an exisiting file. One of the most 
simple way to save the progress in Paraview is to go File, Save State. This will generate a .pvsm 
file that can be opened uniquely by Paraview and the reproduces completely the current 
situation. It is advisable to load this .pvsm file directly within Paraview (File, Load State) 
because most likely, simply clicking on the file and trying to open it in Paraview will cause an 
error19.  

Start and Stop Trace 

Even though Paraview is very well documented, it might be hard to find the exact command 
corresponding to a desired action. This happens very often when it comes to display 
properties, as there are a very high number of them, depending on the active filter or view. 

                                                
19 On Mac: “no application found to open the document”. 
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For this reason, the Tools, Start Trace function might be very useful. After having selected 
the right settings the pop-up window: 

Paraview will start converting the actions performed in the GUI into python commands. To 
stop the trace, it is sufficient to click on Tools, Stop Trace. At this point, Paraview will visualise 
the script corresponding to the actions performed. The user can now decide to save the script, 
copy its content or close it and hence delete it permanently. 

Format the output 

The initial results I displayed with Paraview did not make any physical sense. In my case, with 
a detailed analysis I found out that these files contained some small typos: small formatting 
incoherencies (blank spaces, new lines), which resulted in the impossibility for Paraview to really 
understand the data. Since the time and resources required for the complete simulation to run 
again were challenging, I decided to write some simple python script that would replace the 
typos. 

The following script replaces double spaces: 

 
#!/usr/bin/python 

name_temp_old="/Users/diletta/Desktop/FermiWorking/B_0.1T_V_0.005kV/"; 

name_temp_new="/Users/diletta/Desktop/format_output/B_0.1T_V_0.005kV/"; 

 

TOP_RANGE= 114500 

 

#protons 

part="protons_" 

for i in range(0, TOP_RANGE): 
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 if (i==0 or i%500==0): 

  count= "%06d" % (i,) 

  with open(name_temp_old+part+count+".txt", "r") as f: 

       content = f.readlines() 

   newfile= open(name_temp_new+part+count+".txt", 'w+') 

   for line in content: 

    newline= line.replace("  ", ",").replace(" ", ",") 

 

#electrons 

part="electrons_" 

for i in range(0, TOP_RANGE): 

        if (i==0 or i%500==0): #ricordarsi i due punti in if e for 

                count= "%06d" % (i,) 

                with open(name_temp_old+part+count+".txt", "r") as f: 

                        content = f.readlines() 

                newfile= open(name_temp_new+part+count+".txt", 'w+') 

                for line in content: 

                        newline= line.replace("  ", ",").replace(" ", ",") 

 

#h2plus 

part="h2plus_" 

for i in range(0, TOP_RANGE): 

       if (i==0 or i%500==0): 

                count= "%06d" % (i,) 

                with open(name_temp_old+part+count+".txt", "r") as f: 

                        content = f.readlines() 

                newfile= open(name_temp_new+part+count+".txt", 'w+') 

                for line in content: 

                        newline= line.replace("  ", ",").replace(" ", “,") 

 

The following script replaces blank lines: 

 
#!/usr/bin/python 

 

name_temp_old="/Users/diletta/Desktop/format_output/"; 

name_temp_new="/Users/diletta/Desktop/format_output/acapo/"; 

 

TOP_RANGE= 114500 

part="electrons_" 
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for i in range(0, TOP_RANGE): 

  if (i==0 or i%500==0): 

    count= "%06d" % (i,) 

    newfile= open(name_temp_new+part+count+".txt", 'w+') 

    with open(name_temp_old+part+count+".txt", "r") as f: 

      for line in f: 

        if line.strip("\n"): 

          newfile.write(line) 

          

part="protons_" 

 

for i in range(0, TOP_RANGE): 

  if (i==0 or i%500==0): 

    count= "%06d" % (i,) 

    newfile= open(name_temp_new+part+count+".txt", 'w+') 

    with open(name_temp_old+part+count+".txt", "r") as f: 

      for line in f: 

        if line.strip("\n"): 

          newfile.write(line) 

 

part="h2plus_" 

 

for i in range(0, TOP_RANGE): 

  if (i==0 or i%500==0): 

    count= "%06d" % (i,) 

    newfile= open(name_temp_new+part+count+".txt", 'w+') 

    with open(name_temp_old+part+count+".txt", "r") as f: 

      for line in f: 

        if line.strip("\n"): 

          newfile.write(line) 

 

To be able to color-map the electrons by density, Paraview would need to have the same density 
field in the same file as the particle’s location20. The current simulation output instead, had 
different files: for each time step, one file contains all densities and one file contains only the 
particles information. In particular, the density files can be divided in two groups: denx, 
carrying the density value along the x axis for all protons, electrons and h2plus, and den 

                                                
20 A programmable filter could have been considered for the same purpose, but it would have been 
computationally intensive anyway. 
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carrying the density value along the z axis. I wrote the following script to include a z-density 
field in the same electron21 files: 

 
#!/usr/bin/python 

name_el_old="/Users/diletta/Desktop/format_output/acapo/"; 

name_den_old="/Users/diletta/Desktop/format_output/"; 

name_el_new="/Users/diletta/Desktop/format_output/new_density_field/"; 

 

TOP_RANGE= 114500 

part="electrons_" 

for i in range(0, TOP_RANGE): 

  if (i==0 or i%500==0): 

    count= "%06d" % (i,) 

    print("file: "+count) 

 

  with open(name_el_old+part+count+".txt", "r") as f: #old electron files 

    content_el = f.readlines() 

 

  with open(name_den_old+"_new_denz_"+count+".txt", "r") as densityfile: 

    content_den=densityfile.readlines() 

 

  #new electron file 
  newfile= open(name_el_new+"new_"+part+count+".txt", ‘w+') 

 

  #for every line in the old electron file we pick the z coordinate 

  for line in content_el: 

    split= line.split(“,") 

  

    #we approximate the z coordinate by 2 digits 

    coordz=round(float(split[3]), 2) 

    #for every electron, we look up its density in the relative file       

    for line1 in content_den: 

       

      split1= line1.split(",") 

      coordz1= round(float(split1[2]),2) 

      den=float(split1[1]) 

 #densities are sampled by 0.001 at each step 

                                                
21 Since the operation was very computationally intensive per se, only electrons underwent this formatting (as 
they are the particles whose density is more interesting). 
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      if (float(abs(coordz1 -coordz))<0.01): 

   

        newline=line.replace("\n","")+","+str(den) 

        newfile.write(newline+"\n") 

        break 

 

The following script was developed to reduce the number of particles in each file, to make it 
easier to track them: 

 
#!/usr/bin/python 

name_temp_old="/Users/diletta/Desktop/format_output/"; 

name_temp_new="/Users/diletta/Desktop/format_output_particles/"; 

TOP_RANGE= 114500 

 

#electrons 

part="electrons_" 

for i in range(0, TOP_RANGE): 

        if (i==0 or i%500==0): #ricordarsi i due punti in if e for 

                count= "%06d" % (i,) 

                with open(name_temp_old+part+count+".txt", "r") as f: 

                        content = f.readlines() 

                newfile= open(name_temp_new+"mid_lines_"+part+count+".txt", 
"w+") 

 

                i=0 

                j=0 

 

                with open(name_temp_old+part+count+".txt", "r") as f: 

                    content = f.readlines() 

                 

                for line in content: 

                    if (i>301): #cosi non inizio con spazio 

                        newfile.write(line) 

                        j=j+1 

                     

                    if (j>7): #perche' le righe sono intervallate da spazi, 
     quindi per scrivere 3 righe ne devo leggere 6 
     (di cui 3 di spazi) 

                        break 

                    i=i+1 
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The main Paraview scripts 

I developed five main scripts: 

1. General View 

2. Particle Density 

3. Particle Tracing 

4. Slicing 

5. Compared View 

In this document, only the main features of the code will be analysed22. First, however, the 
common settings within each script will be discussed. 

General Settings and Annotations 

It is worth to note that these scripts contain some replicated code: I chose to include the general 
settings and annotations in each script, instead of creating a single settings.py script to be 
imported by all other scripts (general_view.py, tracing.py…), because I think that it is most 
likely for a user to be willing to personalise its visualisations in different ways. However, in case 
the user believes that it might be useful to create a single script to be imported in all the others 
(and thus have the same settings in each visualisation), all he/she will need to do is: 

1. Look for the settings-related lines of code in each python script. They can be found at the 
bottom of each script.  

2. Copy these lines and move them into a newly created settings.py file. Inside this file, 
locate these lines in a dedicate function. 

3. Save the file in the location saved in the PATH_TO_SCRIPTS variable. This variable is 
present at the beginning of every script, and it is currently only used to import the reset.py 
module (that resets the previous session before creating the new visualisation). 

import sys 

import os 

#indicates where all imported scripts can be found 

PATH_TO_SCRIPTS="/Users/diletta/ Fermiworking/fermiscripts/paraview/" 

sys.path.append(os.path.abspath(PATH_TO_SCRIPTS)) 

 

4. Edit the new settings.py code as you prefer.  

                                                
22 Its is important to note that, since the Start Trace functionality was used in particular cases as a base on 
which to develop the traditional code-writing procedure, there might be some replicated code within the script 
itself. For instance, one property of a certain object might be assigned two different values in two different 
positions of the script. I have extensively reviewed the scripts to remove these inconveniences, but some cases 
might still exist. 
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5. Remove all settings-related and annotations-related lines of code from the scripts that you 
want to have common settings (in the settings.py file): instead simply call the function you 
created in the settings.py file that will generate them.  

6. Make sure you include the import settings line at the beginning of each script. 

Here are the most relevant settings lines, currently included in every script. 

# set to 0 to hide the AxisGrid, 1 to show it 
renderView1.AxesGrid.Visibility = 0 

   

# set to 0 to hide OrientationAxes, 1 to show it 
renderView1.OrientationAxesVisibility = 0 
   

# set to 1 to show a gradient background, 0 otherwise 
renderView1.UseGradientBackground = 0 
 

# select the RGB colours for the background 
renderView1.Background = [0.0, 0.0, 0.0] 
 

#create a textual annotation 
titleText = Text() 
titleTextDisplay = Show(titleText, renderView1) 

titleText.Text = 'Electron Column' 

titleTextDisplay.FontSize = 16 

titleTextDisplay.WindowLocation = 'AnyLocation' 

titleTextDisplay.Position = [0.67, 0.884200] 

renderView1 = FindViewOrCreate('RenderView1', viewtype='RenderView') 

 

# place the view on the e-column. It is a bit cumbersome to manipulate the 
view in Paraview: the slightest touch of the mouse might result in a big 
change in the view. This is why I found it very useful to play a little bit 
with the camera, find my preferred view and then save its coordinates23. 
renderView1.CameraPosition = [-0.13070705617372036, 0.27772719478767843, -
1.5591315229262686] 

renderView1.CameraFocalPoint = [5.511098962943289e-17, 1.3644275479349438e-
16, 0.5500000059604674] 

renderView1.CameraViewUp = [0.9970757747344116, -0.03729353056638097, -
0.06670151434313464] 

renderView1.CameraParallelScale = 0.09921621550177633 

renderView1.CameraParallelProjection = 1 

                                                
23 see Start Trace section 
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The Pipe 
# create a ‘Cylinder' representing the e-column pipe. Initially, it will 
have default properties. 

cylinder1 = Cylinder() 

cylinder1.Resolution = 350 

cylinder1.Height = 1.1 

cylinder1.Radius = 0.03 

cylinder1.Center = [0.0, 0.0, 0.0] 

cylinder1.Capping = 1 

RenameSource('Pipe', cylinder1) 

 

 # in order to rotate the pipe and make it match the flow of particles we 
will need to transform the pipe, using a Transform filter. 

transform1 = Transform(Input=cylinder1) 

transform1.Transform = 'Transform' 

transform1.Transform.Translate = [0.0, 0.0, 0.55] 

transform1.Transform.Rotate = [90.0, 0.0, 90.0] 

transform1.Transform.Scale = [1.0, 1.0, 1.0] 

1. General View 
See the full tutorial at https://www.youtube.com/watch?v=TKH8VKp9zMw. 

In this section we will show the main features of the python script that produces a general view 
of the e-column, where it is possible to see the behaviour of protons, electrons and h2plus. 

 
#import source files 

electrons_ = CSVReader(FileName=glob.glob(output_path+"electrons_*")) 

 

#describe the properties of the files imported: there are no headers on top 
of the columns, and each column is separated by the others by a comma. 

electrons_.DetectNumericColumns = 1 

electrons_.UseStringDelimiter = 1 

electrons_.HaveHeaders = 1 

electrons_.FieldDelimiterCharacters = ',' 

electrons_.MergeConsecutiveDelimiters = 0 

 

# create a new 'Table To Points filter’ to extract points from source files 

tableToPoints1 = TableToPoints(Input=electrons_) 

RenameSource('ElectronPoints', tableToPoints1) 

tableToPoints1.XColumn = 'Field 1' #cannot place ElectronPoints here, 
renaming happens only in Paraview environment 

tableToPoints1.YColumn = 'Field 2' 



FERMI NATIONAL ACCELERATOR LABORATORY 

          26 

tableToPoints1.ZColumn = 'Field 3' 

tableToPoints1.a2DPoints = 0 

tableToPoints1.KeepAllDataArrays = 1 

 

# create a new ‘Clip’, that will cut out the “noise” points that we are not 
interested in, for example those that are left before z-axis 0. 

clip1 = Clip(Input=tableToPoints1) 

clip1.ClipType = 'Scalar' 

clip1.Scalars = ['POINTS', 'Field 3'] 

clip1.Value = 0.0 

RenameSource('ClipElectrons', clip1) 

2. Particle Density 
In this section we will show the main features of the python script that produces a view of the 
particles, coloured by their density. Thus, a density field in the point in space where that specific  
particle is located at that specific moment in time, has to be added to files containing 
information on the single particles, it is not sufficient to have separate density and particle files. 
This means that in addition to the existing attributes (x-coordinate, y-coordinate, z-
coordinate…), for every particle ID, also the density along the z-axis will be available in the 
same file. 

In order to do so, since I initially did not have access to the simulation code itself and I had to 
take it as a black box, I just “merged” the particles and density files. This operation was 
computationally demanding, so it was tested only on electrons, but would be conceptually 
perfectly adaptable to all other particles as well: 

 
#!/usr/bin/python 

name_el_old="/Users/diletta/Desktop/format_output/acapo/" 

name_den_old="/Users/diletta/Desktop/format_output/" 

name_el_new="/Users/diletta/Desktop/format_output/new_density_field_0913/" 

 

TOP_RANGE= 114500 

 

#electrons 

part="electrons_" 

for i in range(0, TOP_RANGE): 

 

  if (i==0 or i%500==0): 

    count= "%06d" % (i,) 

    print("file: “+count) 

        

  #opening original electron files 
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  with open(name_el_old+part+count+".txt", "r") as f: 

    content_el = f.readlines() 

   
  #opening original density files 
  with open(name_den_old+"denz_"+count+".txt", "r") as densityfile: 

    content_den=densityfile.readlines() 

 

  #opening new electron files, that will include density fields 
  newfile= open(name_el_new+"new_"+part+count+".txt", 'w+') 

  for line in content_el: #for every “old” electron 

    split= line.split(",") 

    coordz=round(float(split[3]), 2) #pick z-coordinate and round 

 

    for line1 in content_den: #for every z-coord sampled in density files 

      split1= line1.split(",") 

      coordz1= round(float(split1[0]),2) #pick the z-coordinate and round 

      den=float(split1[2]) #pick the density corresponding to that z coord 

      if (float(abs(coordz1 -coordz))<0.01): #if the density picked is the 
 that of a point on the z-axis that is close enough to the location of 
 the electron chosen in the outer for loop 

        newline=line.replace("\n","")+","+str(den) 

        newfile.write(newline+”\n") #write the line with the new field 

        break 

 

An alternative to this clumsy method would be to add the density directly within the simulation 
code. This feature has been included in the latest ecolumn.py simulation script but has not been 
tested yet.  

Whatever the method, once the new files are ready to be used as input into Paraview: 

 
#set the color of the clip depending on the value of the density (field 5): 

ColorBy(clip1Display, ('POINTS', 'Field 5’)) 

 

# get color transfer function/color map for 'Field5' 

field5LUT = GetColorTransferFunction(‘Field5’) 

 

# Rescale transfer function 

field5LUT.RescaleTransferFunction(0.0, 7.017172e+14) 

 

# create color legend/bar for field5LUT. A number of properties are listed 
in the script, but they din’t have particular relevance so they will not be 
listed here.  
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field5LUTColorBar = GetScalarBar(field5LUT, renderView1) 

3. Particle tracing 
In the following script, it is shown how to trace the path of a single particle in time. The 
temporalParticlesToPathlines filter does not allow to select the specific particle to trace. 
Instead, it only allows one to pick one particle out of many others (this many depends on the 
MASK_POINTS variable in the next lines). 

MASK_POINTS=10000 #indicates the sampling setting: mask_points=10000 means 
only 1 particle out of 10000 will be displayed 

 

PATH_LENGTH= 1000 #indicates the maximum length of the path of a particle. 
If the path_length is too short, only the latest steps will be shown. If it 
is very long, like in this case, the complet path will be shown 

 

PARTICLE_RADIUS= 0.002 #indicates the radius of the particle displayed 

 

# create a new 'Temporal Particles To Pathlines' 

temporalParticlesToPathlines2 = TemporalParticlesToPathlines (Input= 
tableToPoints2, Selection=None) 

temporalParticlesToPathlines2.MaskPoints = MASK_POINTS 

temporalParticlesToPathlines2.MaxTrackLength = PATH_LENGTH 

temporalParticlesToPathlines2.MaxStepDistance = [1.0, 1.0, 1.0] 

temporalParticlesToPathlines2.IdChannelArray = 'Global or Local IDs' 

 

temporalParticlesToPathlines3Display = 
Show(OutputPort(temporalParticlesToPathlines3, 1), renderView1) 

temporalParticlesToPathlines2Display.GlyphType = ‘Sphere' 

temporalParticlesToPathlines2Display.GlyphType.Radius = PARTICLE_RADIUS 

 

To select the single particle by its ID, it is necessary to use the GUI24: see a tutorial on how to 
extract a single particle on https://www.youtube.com/watch?v=bdLXmkev9fI . What we 
need to do is go Edit, Find Data. In the new pop-up window, it is sufficient to insert the 
chosen ID and press enter. At this point, the result of the query will be displayed (as shown in 
Figure 3). Pressing the Extract Selection field will create a new Filter (Extract Selection 
filter).  

                                                
24 There seems to be a renowned bug in ParaView concerning how to select a particle by its ID in a python 
script. Hence, for the time being, it will be shown only in GUI. 
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At this point, it is possible to click on the new filter (Extract Selection) and apply a 
TableToPoints filter, just as we we did with input files25. Now, a new 
TemporalParticlesToPathlines can be applied . 

4. Slicing 
Threshold_min= 0.54 #where the slice begins when z=0 

Threshold_max=0.58 #where the slice ends when z=1 

 

# create a new iso volume 

isoVolume1 = IsoVolume(Input=tableToPoints1) 

isoVolume1.InputScalars = ['POINTS', 'Field 3'] 

isoVolume1.ThresholdRange = [Threshold_min, Threshold_max] 

 

# create the pipe 

cylinder1 = Cylinder() 

RenameSource('Pipe', cylinder1) 

pipe = FindSource('Pipe') 

SetActiveSource(pipe) 

 

# Properties modified on pipe: the height of the pipe are set depending on 
the dimension of the slice, whose parameters have been set at the 
beginning. However, the pipe will be kept a big longer than the slice (by 
0.01) 

                                                
25 With the extract selection filter, all we are doing is basically reading all files and taking one line in each. This is 
why we still need a Table To Points filter, as the type of the input (a line in the input file) is still the same. 
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pipe.Height = Threshold_max - Threshold_min +0.01 

5. Compared view 
A script producing a compared view of different simulation outputs (for instance comparing 
the results of a simulation running with a magnetic field of 0.1T with one with a magnetic 
field of 0.5T) is also included. The code of this script is not commented in this document as it 
does not bring anything new to the discussion. 

HDF5 
HDF5 is a data model, library, and file format for storing and managing data. It supports an 
unlimited variety of datatypes, and is designed for flexible and efficient I/O and for high 
volume and complex data26. This format becomes quite handy when dealing with simulations 
that need to manage huge amounts of data and continuously write onto files. 

HDF5 files are basically made up of two components: 

• HDF5 group: a grouping structure containing zero or more HDF5 objects, together with 
supporting metadata. Working with groups is similar in many ways to working with 
directories and files in UNIX. As with UNIX directories and files, an object in an HDF5 file 
is often referred to by its full path name (also called an absolute path name). For instance, 
“/foo” signifies a member of the root group called foo (D. B. Michelson s.d.).  

• HDF5 dataset: a multidimensional array of data elements, together with supporting 
metadata 

• HDF5 attribute is a user-defined HDF5 structure that provides extra information about 
an HDF5 object. Any HDF5 group or dataset may have an associated attribute list. 

To view the structure and the data contained in an HDF5 file, a visual tool like HDF5View 
can be very useful27. Another tool to keep in mind is the h5dump command, that can be used 
with the following options28: 

-H #displays header information only (no data) 

-n #displays the content (list of objects) in a file 
 
Example: h5dump -H timestep_000000.h5 
 

                                                
26 borrowed from https://www.hdfgroup.org/HDF5/ 

27 https://www.hdfgroup.org/products/java/hdfview/ 

28 https://www.hdfgroup.org/HDF5/Tutor/cmdtoolview.html 
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A possible structure would be something like the one 
displayed on the right.  

 

before HDF5: one file for each type of particle for each 
timestep, and one file for each type of density for each 
timestep. 

after HDF5: one file for each tilmestep containing all 
information on particles, and another file all densities (for 
all particles, along the x and z axis). 

 

There are a number of different libraries that can be used to read and write HDF5 files. 
PyTables, for instance, is wrote on top of the HDF5 library, using the Python language and the 
NumPy package29. 

In the case of the electron-column simulation, since it was written using Warp library to be able 
to exploit parallel computation, pytables could not be used. Instead, PWpyt and PRpyt 
modules, explicitly developed to manage HDF5 in Warp, were used30. However, I encountered 
some bugs in these scripts (it wasn’t possible to use the write function, for instance), so the 
script itself required a lot of testing. Eventually, once the files got written, I wasn’t able to close 
them without causing errors and thus interrupting the simulation. Hence, more work has to be 
done in this direction to find out the reasons behind these errors and possibly find better ways 
to manage HDF5 and Warp. 

The resulting ecolumn.py script included these writing lines: 
 if (iter % save_repetition == 0): 

     h5file= PWpyt.PW("timestep_%06d.h5" % iter) 

     ###PROTONS 

     nions = ions.getn() 

     xions = ions.getx() 

     yions = ions.gety() 

     zions = ions.getz() 

     pidions = ions.getpid() 

        

     ions_r = [] 

     for i in range(0, nions): 

                                                
29 http://www.pytables.org 

30 PWpyt.py module to write HDF5 files: 
http://hifweb.lbl.gov/Warp/scripts/doc/web/html/Warp/scripts/doc/PWpyt.html 
PRpyt.py module to read HDF5 files: 
http://hifweb.lbl.gov/Warp/scripts/doc/web/html/Warp/scripts/doc/PRpyt.html 



FERMI NATIONAL ACCELERATOR LABORATORY 

          32 

  denx=(iden[xions[i],iycenter,izcenter]+     
   iden[xions[i],iycenter,izcenter-1]+    
   iden[xions[i],iycenter,izcenter+1])/3.0 

  denz=(iden[ixcenter,ixcenter,zions[i]]+  

   iden[ixcenter,iycenter,zions[i]-1]+    
   iden[ixcenter,iycenter, zions[i]+1])/3.0 

                 
  ions_r.append([i,xions[i],yions[i],zions[i],pidions[i], 
  denx,denz]) 

        

     ions_np= np.array(ions_r) 

     h5file.protons= ions_np 

 

And same for h2plus and electrons. 

HDF5 and Paraview 

As mentioned earlier, HDF5 is a very complex and flexible format. This is why Paraview needs 
more support and information to understand the data that is contained in an HDF5 file 
received as input. One of the possibilities investigated was to produce an xdmf (xml-style, tree-
structured) file containing the information on the structure of the file to be fed as input to 
Paraview, together with the output files31. Documentation for this process was not easily 
available32. After doing some research33 I concluded that the quickest and probably most 
efficient way (for testing purposes at least) was to let Paraview and HDF5 interact was convert 
HDF5 files into txt files, very easy to read for Paraview. 

A simple bash script took as input the HDF5 files and created the new txt files, one for each 
particle at each timestep: 

#!/bin/bash 
input='.' 
output='./txt/' 
i=0 
while [ $i -lt 100000 ]; do 
 
        if [ $i -eq 0 ]  || [ $(($i%500)) -eq 0 ]; then 
 
        count=$(printf "%06d" $i) 
        filename_in=$input'timestep_'$count'.h5' 

                                                
31 http://www.paraview.org/pipermail/paraview/2012-December/027049.html 

32 XDMF is extensively documented per se (see http://xdmf.org/index.php/Main_Page ) but there are 
insufficient resources to cover all relevant aspects needed when translating files written using PWpyt.py into a 
simple structure. A tool like XDMF Generator 
(https://hpcforge.org/plugins/mediawiki/wiki/xdmfgenerator/index.php/XDMF_Generator) was considered 
to help in this process, but a number of errors and warnings slowed down the compilation process and led to 
believe that other quickest procedures had to be found.  

33 including talking to experts who have been dealing with issues like these before, such as James Amundson, 
from Fermilab. 
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        filename_out_p=$output'timestep_protons_'$count'.txt' 
        filename_out_e=$output'timestep_electrons_'$count'.txt' 
        filename_out_h=$output'timestep_h2plus_'$count'.txt' 
 
        h5dump -o $filename_out_p -y -w 1000 -d protons $filename_in 
        h5dump -o $filename_out_e -y -w 1000 -d electrons $filename_in 
        h5dump -o $filename_out_h -y -w 1000 -d h2plus $filename_in 
        fi 
        let i=$i+1 
done 
 
This script turned out to be very efficient: it takes about 13 minutes to convert 200 HDF5 files 
into 600 txt files (one for each particle). However, these txt files needed further formatting, as 
the conversion process introduced blank spaces, blank lines and other characters. A very 
simple script was used to make these txt files understandable by Paraview. 

#!/usr/bin/python 

name_temp_old="/Users/diletta/Desktop/FermiWorking/hdf5_pytables_nogroups_0
826_1639/txt/timestep_"; 

name_temp_new="/Users/diletta/Desktop/FermiWorking/hdf5_pytables_nogroups_0
826_1639/txt/format/timestep_"; 

 

TOP_RANGE= 100000 

 

part="electrons_" 

for i in range(0, TOP_RANGE): 

 if (i==0 or i%500==0): 

  count= "%06d" % (i,) 

  with open(name_temp_old+part+count+".txt", "r") as f: 

   content = f.readlines() 

   newfile= open(name_temp_new+part+count+".txt", "w+") 

   for line in content: 

    line= line.replace(",\n", "\n") 

    line= line.replace(" ", "") 

    if (line!= "\n"): 

     newfile.write(line) 

 

part="protons_" 

for i in range(0, TOP_RANGE): 

        if (i==0 or i%500==0): 

                count= "%06d" % (i,) 

                with open(name_temp_old+part+count+".txt", "r") as f: 

                        content = f.readlines() 

                        newfile= open(name_temp_new+part+count+".txt", 
"w+") 
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                        for line in content: 

                                line= line.replace(",\n", "\n") 

                                line= line.replace(" ", "") 

                                if (line!= "\n"): 

                                        newfile.write(line) 

 

part="h2plus_" 

 

for i in range(0, TOP_RANGE): 

        if (i==0 or i%500==0): 

                count= "%06d" % (i,) 

                with open(name_temp_old+part+count+".txt", "r") as f: 

                        content = f.readlines() 

                        newfile= open(name_temp_new+part+count+".txt", 
"w+") 

                        for line in content: 

                                line= line.replace(",\n", "\n") 

                                line= line.replace(" ", "") 

                                if (line!= "\n"): 

                                        newfile.write(line) 

 

Now these files are ready to be imported in Paraview. 

Documentation 
A git repository for the e-column warp simulation output and related scripts was created in 
the cdcvs server. It can be cloned by:  
git clone ssh://p-ecolumns@cdcvs.fnal.gov/cvs/projects/ecolumns 

The content is also available at https://cdcvs.fnal.gov/redmine/projects/ecolumns. 

 

Bibliography 
A. V. Burov, G. W. Foster, V. Shiltsev. 2000. "FERMILAB-TM-2125." 
C. S. Park, J. Thangaraj. 2014. "Simulation of Space Charge Compensation Using e-
Columns at IOTA." 
D. B. Michelson, A. Henja. n.d. "A High Level Interface to the HDF5 File Format." 
D. Garbor. n.d. "Nature 160 (1947) 89." 
D. Mohl. n.d. "CERN/PS 93-59 (AR)." 



FERMI NATIONAL ACCELERATOR LABORATORY 

          35 

G. I. Dimov. n.d. "Particle Accelerators 14 (1984) 155." 
G. I. Dimov, V. E. Chupriyanov. n.d. "Particle Accelerators 14 (1984) 155." 
G. Stancari†, A. Burov, K. Carlson, D. Crawford, V. Lebedev, J. Leibfritz, M. McGee, S. 

Nagaitsev, L. Nobrega, C. S. Park, E. Prebys, A. Romanov, J. Ruan, V. Shiltsev, Y.-
M. Shin1, C. Thangaraj, A. Valishev. n.d. "Electron lens for the fermilab integrable 
optics test accelerator ." 

M. Chung. n.d. "Trapped Electron Plasmas for Space-Charge Compensation in High 
Intensity Circular Accelerators." DOE Early Career Research Program LAB 12-751.  

Moreland, K. n.d. "The ParaView Tutorial." 
S. Nagaitsev, A. Valishev, D. Shatilov, V. Danilov. n.d. "Proceedings of IPAC12, 2012, p. 

16." 
S. Nagaitsev, D. Broemmelsiek, A. Burov, K. Carlson, C. Gattuso, M. Hu, T. Kroc, L. Prost, 

S. Pruss, M. Sutherland, C. W. Schmidt, A. Shemyakin, V. Tupikov, A. Warner, G. 
Kazake- vich, S. Seletskiy,. n.d. "Phys. Rev. Lett. 96 (2006) 044801." 

S. Webb, D. Bruhwiler, D. Abell, K. Danilov, J. R. Cary, S. Nagaitsev, A. Valishev, V. 
Danilov, A. Shishlo. n.d. "Proceedings of IPAC12, 2012, p. 2961." 

U. Ayachit. n.d. "The ParaView Guide - Community Edition." 
V. Dudnikoiv, C. Ankenbradt. n.d. "Proceedings of PAC11, 2011, p. 1789." 
V. Shiltsev, Y. Alexahin, V. Kamerdzhiev, V. Kapin, G. Kuznetsov. n.d. "AIP Conference 

Proceedings 1086, 2009, pp. 649–654." 
 

Acknowledgments 
To Charles Thangaraj – for the incredible supervision and mentorship; 

To Chong Shik Park and Giulio Stancari – for the continuous guidance as co-supervisors; 

To the Fermilab Accelerator Science and Technology (FAST) - Integrable Optics Test 
Accelerator (IOTA) department – for the interest and collaboration; 

To Giorgio Bellettini, Emanuela Barzi, Simone Donati, CAIF– for the thoughtful support; 

To Fermilab – for the truly extraordinary opportunity. 

 

About the author 
I am a Computer Science and Engineering Master’s student at Politecnico di Milano, Italy. 
My main fields of interest are Artificial Intelligence and Machine Learning. 

diletta.milana@mail.polimi.it  


