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2 Introduction
The present report partially summarizes the work done during my internship at
Purdue University. The study is within the field of the astrodynamics, and deals
with efficient design of low-energy transfers in planetary system. Motivated by
the growing interest in the robotic exploration of the Jovian system, which has
given rise to numerous studies and mission proposals, we apply the method to
three Galilean moons orbiting around Jupiter. The first chapter is an intro-
duction to the circular restricted three body problem, which is the framework
of the work. The second chapter briefly summarize the method used with an
application to a two-moons coupling. Eventually, results for the three-moon
coupling are presented.

3 The circular restricted three-body problem
Studying the dynamics of n bodies subjected to their mutual gravitational at-
traction is the main purpose of orbital mechanics. The so called two-body prob-
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Figure 1: The synodical reference frame. With the convention used in this
work P1, i.e., the heavier body, has positive x coordinate. ri (i = 1, 2) is the
position vector connecting Pi with P3, while r = (x, y, z) is the position vector
connecting the origin O with P3.

lem, corresponding to n = 2, was first studied and solved by Johann Bernoulli
(1667-1748). This problem considers two masses (for example a spacecraft and
the Earth) approximated as points and acted upon only by the mutual force
between them. The solution to this problem is analytical and shows that the
two bodies revolve around their mutual barycentre describing an elliptical mo-
tion. In real cases, however, considering more than two bodies may provide
more accurate solutions. With the three-body problem, for instance, to motion
of a point mass P3 with respect to two other masses P1 and P2 is considered.
If P3 is vanishingly small with respect to the other two masses we talk about
the restricted three body problem. Eventually, if the motion of P1 and P2 is
assumed to by circular (and centred on their barycentre) we are referring to the
circular restricted three body problem (CR3BP)[1]. The main elements of the
CR3BP are here briefly introduce; fundamental references include [1, 2, 3, 4, 5]
for the CR3BP and [6, 7, 8] for the dynamical systems theory.

Let the synodical reference frame (SRF) be the co-moving frame whose x-
axis always contain the two primaries P1 and P2 in fixed positions, with the
origin on their barycentre. The SRF rotates with constant angular velocity
ω = 2π/T with respect to an inertial reference frame centred on O, being T the
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period of the primaries. Moreover, we define the mass ratio of the system as:

µ = m2

m1 +m2
, (1)

being mi the mass of Pi (i = 1, 2). Introducing a set of nondimensional coor-
dinates such that the distance between P1 and P2, the sum of their masses
and the angular velocity are unitary quantities, the equations of motion of P3
in the SRF are a solely function of the mass ratio:

ẍ = 2ẏ + x− (1− µ)(x− µ)
r3

1
− µ(x+ 1− µ)

r3
2

(2a)

ÿ = y − 2ẋ− (1− µ)y
r3

1
− µy

r3
2

(2b)

z̈ = − (1− µ)z
r3

1
− µz

r3
2

(2c)

where ri (i = 1, 2) is the position vector connecting Pi with P3. Furthermore,
these equations are autonomous, since there is not explicit dependence on time.
They are also nonlinear because of the dependence from the inverse of the third
power of the distances r1 and r2. Eventually, Eqs. (2) admit a first integral J ,
called Jacobi constant:

J = x2 + y2 + 2(1− µ)
r1

+ 2µ
r2

+ [µ(1− µ)]− (ẋ+ ẏ2 + ż2). (3)

Its values is linked to the mechanical energy of the system E, being E = −J/2.
The term ẋ+ ẏ2 + ż2 on the right-hand side of Eq. (3) is the magnitude of

the velocity squared. Rearranging Eq. (3) with ẋ+ ẏ2 + ż2 = 0 permits to define
three-dimensional zero-velocity surfaces (ZVSs), known as forbidden regions,
which separate regions where the motion of P3 is permitted from regions where
it is not allowed (since the magnitude of the velocity squared would be negative).
A projection of these surfaces onto the xy plane results in the so called zero-
velocity curves (ZVCs). The region surrounding the larger primary is often
defined as interior region, the region in the vicinity of the smaller primary as
P2 region and the region beyond the ZVCs as exterior region. An example of
these surfaces is provided in Fig. 2.

3.1 Equilibrium points
In the SRF it is possible to identify specific points, the equilibrium points, in
which the combined gravitational pull exerted by P1 and P2 on P3 is exactly
balanced by the centripetal force required by P3 to rotate with the SRF itself.
These positions can be found by imposing

ẋ = ẏ = ż = 0; ẍ = ÿ = z̈ = 0 (4)

in Eqs. (2). Therefore if P3 is placed in one of these points with zero velocity
and acceleration it will remain still with respect to the SRF (therefore moving in
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(a) Zero velocity curves (b) Zero velocity surfaces

Figure 2: ZVCs and ZVSs (a three-dimensional cut on a x-z plane is displayed)
for the Earth-Moon system with J = 3.17 (Earth and Moon are not to scale). At
this energy level, P3 is allowed to move inside the whole realm of interior region,
P2 region and exterior region. [NU] in the axes stands for nondimensional units

circular motion with respect to the IRF). Comparing Eq. (4) with (2c) it follows
that the equilibrium points lie in the orbital plane of the primaries. Combining
Eqs. (2a),(2b) with (4) it can be shown that five equilibrium points exist and
these are classified into two categories [1].

• Collinear equilibrium points (also known as libration or Lagrangian points).
They lie on the x-axis and they are called L1, L2, L3.

• Triangular equilibrium points. They lie at the vertexes of two equilateral
triangles, whit unitary side (in nondimensional units).

Their positions for the Earth-Moon CR3BP are shown is Fig. 3.
Studying the stability of the equilibrium points is fundamental to exploit

the dynamics of the CR3BP. The equations of motion (2) in the neighbourhood
of these points can be linearised in the form:

ẋ = Ax. (5)

where A is a constant matrix, whose elements vary according to the equilibrium
point considered. It can be shown that:

• the collinear equilibrium points behave linearly as the product of two cen-
tres by a saddle, i.e., in their vicinity there exist bounded orbits (associated
with the central part) and escape trajectories (associated with the saddle
part);

• the triangular equilibrium points are unstable when the mass ratio µ <
µcritic = 1/2(1−

√
69/9) ≈ 0.038521.
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Figure 3: Positions of the equilibrium points for the Earth-Moon CR3BP (µ =
0.121506683× 10−1).

The value of µcritic is rather high: for instance, the mass ratio of the CR3BPs
composed by the Sun and each of the eight planets of the Solar System is much
smaller than this value. Therefore, in the majority of real cases, the triangular
libration points are stable. On the other hand, the unstable character of the
collinear libration points allows to define dynamical structures responsible for
the transport of material to/from their neighbourhood.

The central part of the collinear libration points is associated with planar
periodic orbits, revolving around them 1. Initials conditions for such orbits,
called planar Lyapunov orbits (PLO) can be found from the linearized equations
by imposing that y = z = 0, ẋ = ż = 0 at t = 0. Integrating the initial state in
the non-linear model, i.e., Eqs. (2) and adding the constraint of periodicity by
means of a single-shooting algorithm we can identify these periodic orbits and
eventually a family of PLO. In Fig. 4 an example of PLO families around L1
and L2 for the Earth-Moon systems is displayed.

3.2 Invariant manifolds of periodic orbits
The analysis of eigenvectors associated to matrix A (Eq. (5)) permits to define
stable and unstable subspaces associated to equilibrium points in the linearized
space. In particular, the set of all the eigenvectors with positive real part define
the stable subspace, while eigenvectors with negative real part define the unsta-
ble subspace. By means of the centre manifold theorem [6, 7] we can prove the

1The central part is actually related to non-planar orbit as well. Among them, vertical
Lyapunov orbits, Halo orbits and the quasi-periodic Lissajous trajectories.
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(a) PLOs familiy around L1 (b) PLOs familiy around L2

Figure 4: PLO families around L1 and L2 for the Earth-Moon system (Moon
not to scale). Notice that PLOs around L2 are bigger than orbits around L1.

existence of invariant manifolds (IMs) associated to equilibrium points: these
objects are the counterpart of subspaces when using the non-linear model and
they are tangent to relative subspace in the equilibrium point. Should P3 belong
to the six-dimensional stable (or unstable) manifold related to the equilibrium
point Pi (i = 1, 2, 3) it will asymptotically tend towards the equilibrium point
itself for t→ +∞ (t→ −∞).

These structures can be defined also for periodic orbits (such as PLOs) of
the collinear points. Both stable and unstable IMs for periodic orbits are char-
acterized by two branches. Projections of these object into the bi-dimensional
space defined by the x and y coordinates are represented in Fig. 5 for the Earth-
Moon system. We often refer to these projections as manifold tubes. Stable IMs
converge to the corresponding PLO for t → +∞, while unstable IMs converge
to the corresponding PLO for t→ −∞.

3.3 Transit orbits
A key feature of IMs is that they act as separatrices for the flow through the
equilibrium region, i.e., they separate two distinct types of motion: transit or-
bits, which move inside the manifold tubes and non-transit orbits which are
those outside the tubes. Moreover, only TOs can travel between the interior
and the exterior region, thus controlling the transport of material to and from
the L2 bottleneck. As a consequence, for a given Jacobi constant J , all the
TOs will pass inside the region defined by the PLO around L2 with the same
energy. In Fig. 6 examples of transit and non-transit orbits are provided for the
Earth-Moon planar CR3BP.
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(a) IMs originating from PLO around
Earth-Moon L1. J = 3.18067, propaga-
tion time: 23.05 days

(b) IMs originating from PLO around
Earth-Moon L2. J = 3.19238, propaga-
tion time: 17.39 days

(c) Stable IM originating from PLO
around Earth-Moon L2. J = 3.19238,
propagation time: 38.26 days

Figure 5: Different IMs morphologies originating from PLOs around L1 and
L2 points of the Earth-Moon System. Exponents “+” and “-” for a given stable
WS
Li

or unstable WU
Li

IM (i = 1, 2) represents the two different branches.
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(a) Transit orbit (b) Non-transit orbit

Figure 6: Examples of transit (left) and non-transit (right) orbits. Stable and
unstable IMs of the PLO around L2 are represented in blue and red respectively.

4 The indirect coupled circular-restricted three
body problem

In the present work, the planar CR3BP is used to identify connections between
consecutive moons of a planetary system, with the primaries being a planet and
one of its moon and the third massless body is the spacecraft. This is done
by means of the so called coupled CR3BP [9, 10] However, instead of using the
CR3BP equations for the whole transfer (as done in the quoted papers), the
two-body approximation is used in regions where the influence of the moon’s
gravity is negligible (inter-moon space). The boundary between the inter-moon
space and the intra-moon space (where the CR3BP is used) is called circle of
influence (CI). We define the radius of the circle of influence rCI as the radius
of the Laplace sphere multiplied by a convenient factor k:

rCI = kr0

(m
M

)
(6)

being r0 the radius of the moon, m its mass and M the mass of the planet.
These concepts are clarified in Fig. 7 for a planetary system composed by a
planet and three moons. The coordinate system adopted when describing the
inter-moon dynamics is the planet-centred IRF; the value of k will be clarified
later.

In order to perform the coupling, a coordinate change is applied from each
SRF to the planet-centred IRF at the boundary between the inter-moon and
intra-moon space, i.e., at the CI. This transformation requires a translation
from the barycentre of the planet-moon system to the centre of the planet and
a rotation about the z-axis by the angle between the x-axes of the SRF and the
X-axis of the IRF. However, in this work we ignore the first translation being
the centre of mass of the planet-moon system within a negligible distance from
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Figure 7: A planetary-system with three moons. The planet-centred IRF is
represented in black, while the SRFs for each moon are represented in red (the x-
axes are in the direction of the vector connecting the planet to the given moon).
The intra-moon space is defined by the regions inside each CI (represented in
blue), where the CR3BP is used. In the remaining region, defining the inter-
moon space, the two-body approximation is adopted. Each moon is in a circular
orbit around the planet.
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Figure 8: The coupled CR3BP for two consecutive moonsM1 andM2 in circular
motion around the planet P at constant angular velocity. The plot outlines the
coupling at the time t = 0, with the x1-axis aligned with the inertial X-axis.
The angle α0 between the two SRFs parametrises the model. For the sake of
illustration, the forbidden region corresponding to the Jacobi constant value for
two PLOs around P1 or P2 is represented for both the SRFs.

the centre of the planet in the majority of real cases (for example each planet-
moon barycentre of the Galilean moons is three to six orders of magnitude
smaller than the radius of Jupiter). The overall coupling between two moons
depends on the relative angles swept by the x-axis of the SRFs with respect to
the X-axis of the IRF. However, we choose to orient the IRF so that one of the
two x-axis coincides with the inertial X-axis at t = 0: this allows to remove
the dependence on one of the two angle. Therefore, the transformation has just
one degree of freedom, represented by the relative angle α0 between the two
x-axes, as sketched in Fig. 8 for two consecutive moons of a planetary system.
Moreover, since the angular velocities of the moons are constant, we can choose
the angle α0 at any fixed time to completely parametrise the model. We can
use this parameter to map all the possible relative orientations between two
moons in search for the optimal trajectory which links them. Taking advantage
of the full integrability of the two-body model employed for the inter-moon
connection, we can analytically solve for the best α0 instead of scanning all the
possible solutions associated with its values. In this work two methods are used
to identify trajectories in the intra-moon space, i.e., by means of IMs and TOs.
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Figure 9: Stable and unstable IMs originating from a PLO around P1 (left)
and P2 (right), integrated until the CI and used for the outward connection.

4.1 Integration of trajectories in the intra-moon space.
An outward connection between two consecutive moons (i.e., a link from the
inner to the outer moon) by means of IMs is conceived as a trajectory leav-
ing a PLO around P2 of the inner moon through the unstable manifold and
approaching a PLO around P1 of the outer moon through the unstable mani-
fold. Similarly, an inward connection is conceived as a trajectory leaving a PLO
around P1 of the outer moon through the unstable manifold and approaching
a PLO around P2 of the inner moon through the stable manifold. PLOs are
varied according to a certain energy discretization, leading to a database to be
used in the trajectory design. For each PLO of the database, the corresponding
stable (or unstable) IM is propagated until intersection with the CI (see Fig. 9).
The phase states collected on the CIs are transformed to the planet-centred IRF
and considered as initial conditions for backward/forward integration.

In the case of the TOs, instead of leaving/approaching the PLO, the trajec-
tory pass through it. For this reason, we select initial conditions for the TOs
directly inside the region defined by each PLO of the database by means of a
nX × nY grid (see Fig. 10). Since each PLO is computed numerically as a set
of points, an analytical representation of the PLO is needed to distinguish be-
tween points inside or outside the grid: this is accomplished by approximating
the PLO through a parametric cubic spline. Only points inside the grid are
selected as initial conditions. For a given position (x0, y0) and a value of the Ja-
cobi constant J , the magnitude of the initial velocity is constrained by Eq. (3):
Therefore, once selected an angle β (see Fig. 10) between the velocity direction
and the positive x-axis, the remaining velocity components of the initial state
ẋ0 and ẏ0 are given, being: {

ẋ = v cosβ
ẏ = v sin β

(7)

where β ∈ [0, 2π[. We call nβ the number of directions in which the angular
range [0, 2π[ is discretized. A given initial state for a TO is therefore a function of
the position (x0, y0) on the grid, the Jacobi constant J and the angle β. Varying
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Figure 10: 8× 21 grid around a PLO. Only points (x0, y0) inside the Lyapunov
region are selected as initial conditions for trajectory computation. The velocity
components (ẋ0, ẏ0) are selected through equation (7) for a given angle β.

the position on the grid and the remaining two parameters permits to define
a set of initial states (x0, y0, ẋ0, ẏ0) to be integrated by means of Eqs. 2 until
intersection with the CI. Eventually, the phase states at the CI are converted
from the SRF to the planet-centred IRF.

4.2 Motion in the inter-moon space
The two-body approximation in the planet-centred IRF substitutes the CR3BP
when dealing with the spacecraft’s dynamics beyond the CI, i.e., in the inter-
moon space. The initial states on the CI expressed in the planet-centred IRF are
used as initial conditions for backward/forward Keplerian orbit propagation. No
matter the time direction, these Keplerian orbits are ellipses with a focus on the
planet’s centre. These ellipses are completely parametrised by the semi-major
axis a, the eccentricity e, the argument of pericentre ω and supplemented by the
true anomaly θ which parametrises the motion along the ellipse (in the planar
approximation, the inclination and the right ascension of the ascending node are
irrelevant). Since the two ellipses shares the same focus (this focus being the
planet) it is easy to prove that the maximum number of intersections between
them is two. The semi-major axis and the eccentricity provide the shape of
the ellipse, and as such are fixed for a given state on the CI. On the contrary,
the argument of pericentre depends only on the relative orientation between
the x-axis with the XY -plane at the given time. In other words, a change ∆α
in the orientation of the SRF produces an equivalent change ∆ω = ∆α of the
argument of pericentre of the resulting ellipse.

The procedure to find possible intersections is now presented. For a choice
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Figure 11: Two possible path (showed by means of orange and green arrows)
from the CI of moon M1 to the CI of moon M2 through the intersections A and
B. The two ellipses share the same focus represented by the planet P .

of two PLOs, one on each CR3BP, IMs and TOs are integrated with the method
described in the previous section. For a choice of α0 the phase states are col-
lected on the two CIs and converted into Keplerian elements sets. Connections
between moons are then sought by looking at the geometrical intersections be-
tween all the possible combinations of ellipses from the two CIs. If an intersec-
tion between two ellipses exist, the magnitude ∆V of the difference in velocity
at the intersection point is the magnitude of the impulse to be applied by the
propulsion system of the spacecraft to change from one orbit to another and
eventually accomplish the task of connecting the two CR3BPs. If more than
one intersection exist, two possible paths connecting the two moons are avail-
able and the ∆V at each intersection will be different. Figure 11 shows two
ways to connect the CIs of two moons by means of the two paths provided
by intersections A and B. This procedure should be repeated for every angle
α0 between 0 and 2π. Comparing all the possible combinations of ellipses, the
initial conditions providing the minimum ∆V can be found. This may become
time-consuming if the resolution taken to discretise the angle α0, the individual
PLO (or the related grid, in case of TOs) and the energy level of the Lyapunov
family is narrow. However, a closer look allows to simplify the problem and,
in turn, reduce the amount of computations. We start by writing the polar
equation of the ellipse, providing the distance r of the spacecraft to the focus
as a function of the true anomaly θ:

r = p

1 + e cos θ (8)

being p = a(1 − e2) the semilatus rectum of the ellipse. At the intersection
points A and B between two ellipses defined by the orbital sets (a1, e1, ω1) and
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Figure 12: Intersection point between two ellipses sharing the same focus. The
radius r is the same in this point, while the true anomalies θ1 and θ2 vary
according with the two argument of perigee ω1 and ω2 (referred to the inertial
X-axis).

(a2, e2, ω2) (see Fig. 12), the orbit equations can be written as:

r = p1

1 + e1 cos θ1
, (9a)

r = p2

1 + e2 cos θ2
. (9b)

The angular displacement between the two apse lines is

∆ω = θ2 − θ1, (10)

hence
cos(θ2) = cos(θ1 + ∆ω) = cos θ1 cos ∆ω − sin θ1 sin ∆ω. (11)

From Eqs. (9) and (11) it follows

p1 − p2 + cos θ1 [p1e2 cos ∆ω − p2e1] = sin θ1(p1e2 sin ∆ω) (12)

or, in a more compact form

a+ b cos θ1 = c sin θ1, (13)

where we made the substitutions:

a = p1 − p2, (14a)
b = p1e2 cos ∆ω − p2e1, (14b)
c = p1e2 sin ∆ω. (14c)

Squaring both the members of Eq. (13) and rearranging yields:

cos θ1 = −ab± |c|
√
c2 + b2 − a2

b2 + c2 . (15)
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Solutions exist and are real only if the discriminant is positive:

c2 + b2 − a2 ≥ 0, (16)

where the equality
c2 + b2 − a2 = 0, (17)

corresponds to the tangency condition between the two ellipses. From (13):

sin θ1 = a+ b cos θ1

c
, (18)

hence, the correct quadrant of the angle θ1 can be found using (15) and (18).
Once the two intersections are found, the radial and perpendicular components
of the velocity are computed for each orbit:

vr,ij = µ

h
e sin θij , (19a)

v⊥,ij = µ

h
(1 + e cos θij). (19b)

where the first index i represents the orbit (i = 1, 2) and the second index j
represents the intersection (j = 1, 2). Hence, we can write the velocity at each
intersection as:

vij = vr,ijûr,ij + v⊥ijû⊥,ij , (20)

being ûr,ij and û⊥,ij the unit vectors related to the radial and perpendicular
velocity components vr,ij and v⊥,ij . Therefore the ∆vj for each intersection j
will be:

∆vj = v2j − v1j . (21)

The condition on the discriminant (Eq. (16)) translates into a condition for ∆ω
to be satisfied, i.e. the two ellipses intersect only in a limited range of values
for ∆ω:

τ ≤ ∆ω ≤ 2π − τ, (22)

with τ ∈ [0, 2π[. The value of τ depends only on the shape of the two ellipses
and can be explicitly calculated in terms of ai and ei (i = 1, 2) from the the
tangency condition, given by Eq. 17. For τ > 0 the domain of intersections is
limited by the conditions at which the ellipses are mutually tangent (Fig. 13),
i.e., ∆ω = τ and ∆ω = 2π−τ . On the other hand, if τ = 0 no tangency condition
exists and the two ellipses always have two intersections, regardless their relative
orientation. In theory, one should vary ∆ω for each pair of ellipses and then
choose the value that minimizes ∆V = ‖∆v‖ in one of the two intersections.
Actually, as our intuition suggests, the minimum ∆V values corresponds to
the tangency configuration. In order to prove it, we analysed the value of ∆V
as a function of ∆ω for several pairs of ellipses, varying the semi-major axis
and the eccentricity. For each pair, the value of τ has been determined and,
by varying ∆ω between τ and 2π − τ the value of ∆V has been computed at
every intersection. The results show that if τ > 0, the ∆V has two minima for
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Figure 13: Relative angular displacement ∆ω between the arguments of perigee
of two ellipses when they are mutually tangent. The configuration is symmetrical
and the two ellipses are tangent for ∆ω = τ (left) or ∆ω = 2π − τ (right).

Figure 14: ∆V at the intersections between two ellipses versus their relative
orientation ∆ω. The two different curves (solid and dashed) stand for the ∆v
at the two different intersection. The minima correspond to the tangency con-
figuration while the maximum is for ∆ω = π.

16



Figure 15: The orbits of the Galilean moons (the radii of Jupiter and the moons
are not to scale)

∆ω = τ and ∆ω = 2π − τ , i.e., when the ellipses are mutually tangent. On
the other hand, the ∆V is maximum when ∆ω = π, that is when the two apse
lines are opposite (see Fig. 14). This behaviour always occurs at least when the
eccentricities are smaller than 0.2. In our case, since the ellipses studied are an
extension of the motion originating in the vicinity of the libration points, their
path in the IRF must inherit the behaviour of the corresponding equilibrium
points, which move in circular orbits around the planet. Therefore, these orbits
are expected to have low eccentricities and this guarantee the applicability of
the intersection pattern shown in Fig. 14.

4.3 Application to a transfer from Europa to Ganymede
and viceversa

In this section we present an application of the method described to the case of a
transfer between two consecutive Galilean moons, Europa and Ganymede. The
orbits of the four Galilean moons are represented to scale in Fig. 15. Relevant
orbital parameters are listed in Table 1. Connections are sought by means of
IMs and TOs in the inter-moon space. In the case of IMs, the transfer con-
nects two PLOs, one around L2 of Jupiter-Europa and the other around L1 of
Jupiter-Ganymede. On the other hand, when dealing with TOs, the trajectory
links one point inside a PLO around L2 of Jupiter-Europa and one inside a
PLO around L1 of Jupiter-Ganymede. PLOs are taken from two databases of
95 orbits (see Fig. 16), each discretized in 99 points. Jacobi constant for PLOs
around P2 ranges from 3.001631769881 to 3.003593748544, while for PLOs
around Ganymede P1 the range is from 3.005357382121 to 3.007543590510
(sorted from 1 to 95 in increasing energy order, i.e., with decreasing Jacobi
constant). The best coupling between the two CR3BPs is the one that mini-
mizes the ∆V at the intersection point between the two ellipses at their tangent
configuration in the inter-moon space.

When IMs trajectories are used in the intra-moon space, the absolute mini-
mum is ∆VMIN = 0.8814 km s−1 in both directions Europa-to-Ganymede and
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Moon Orbital radius Orbital Period Mass ratio
[105 Km] [days] [10−4]

Io 4.2180 1.8 0.470542991630
Europa 6.7110 3.6 0.252865845179

Ganymede 10.7040 7.2 0.780632933465
Callisto 18.8270 16.7 0.566808592975

Table 1: The second and the the third columns represent respectively the
radii and the orbital periods of the Galilean moons. The fourth column
lists the mass ratios mi/(mi + mJ), being mi the mass of the moon and
mJ = 0.189 813× 1028 kg the mass of Jupiter.

Figure 16: The database of PLOs around L2 in the Jupiter-Europa CR3BP
(left) and around L1 in the Jupiter-Ganymede CR3BP (right) shown in their
respective SRF. The maximum amplitude in the y direction of the largest PLO
and its minimum distance to the moon are displayed.
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Figure 17: Transfer from Europa to Ganymede (left) and viceversa (right) as
viewed from the Jupiter-centred IRF with the IMs method inside the CI. The
trajectory is represented with a dashed line as long as the spacecraft is inside
the CI while it is a continuous line on the Keplerian ellipses.

Ganymede-to-Europa. It is obtained for the PLO number 95 in both the
databases, corresponding to the highest energies of the database. The minimum-
cost trajectories are shown in Fig. 17.

In case of TOs, the initial conditions required for integration in the intra-
moon space are selected inside the PLOs of the database, This is done by means
of a grid of points, as described in Sect. 4.1. Grids are computed with the
following criteria:

1. The border of the grid is tangent to the PLO.

2. The distance between two consecutive points on the grid is constant in
both the directions x and y.

As a consequence of the second criterion above mentioned, nY will vary accord-
ing to the y-amplitude of the PLO. Each grid is then completely parametrized
by nX and nβ . For this application, we choose a gird discretization with nX = 5.
To select the velocity angles β, discrete values in the range R− = [π/2, 3π/2]
are chosen if the TOs are moving towards L2 forward in time; on the other
hand if the TOs are moving towards L1 forward in time, values in the range
R+ = [3π/2, π/2] are selected. Since a TO crosses the equilibrium regions flow-
ing inside the spatial bi-dimensional projection of the same-energy manifold
tube, the right angular range can be inferred looking at the motion provided by
the latter. Analysing the manifold tubes for a transfer Europa-to-Ganymede,
we deduce the range R− must be chosen (see Fig. 18). For this application
we select nβ = 3 with the velocity angles β1 = 3π/4, β2 = π and β3 = 5π/4.
Similarly, the reverse transfer Ganymede-to-Europa requires the range R+ and
we select β4 = 3π/4, β5 = π and β6 = 5π/4. The minimum ∆V in this case
is ∆VMIN = 0.5145 km s−1 in both directions and, again, it is associated with
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(a) Velocity directions for a grid point
inside a PLO around Europa

(b) Velocity directions for a grid point
inside a PLO around Ganymede

Figure 18: Selected velocity directions for the transfer Europa-to-Ganymede
using TOs, i.e., β1 = 3π/4, β2 = π, β3 = 5π/4 (represented by three black
arrows). These values are the same for all the grid points inside the PLOs
around Europa (a) and Ganymede (b).

the highest energies of the two databases. A plot with the transfers in the
Jupiter-centred IRF is reported in Fig. 19.

In conclusion, the transfer performed by means of TOs is clearly faster than
the corresponding coupling with IMs (2.78 days versus 12.38 days) as well as
cheaper in terms of ∆V (514.5 m s−1 versus 881.4 m s−1). In particular, TOs
do not spend any time in asymptotic motion around the PLO. The shorter
time of flight provided by TOs makes them more feasible for a real mission.
In fact, the intense particle radiation due to the Jovian magnetosphere, which
extend almost to the orbit of Ganymede, may represent a serious obstacle to
the practical implementation of trajectories that spends days in the intra-moon
space.

5 Galilean Moons tour
Recursive application of the indirect coupled CR3BP explained in the previous
section can be employed to design a tour of a planetary system with n moons.
In this case we take into account the Galilean moons Europa, Ganymede and
Callisto. Io has been excluded because of the strong influence from Jupiter’s
magnetosphere (more intense with respect to the other moons).

Transit orbits are chosen as a means of transport for the tour; the reason of
this choice is the shorter time of flight provided with respect to IMs trajectories.
Moreover, the tour must be closed, i.e., starting from a state on Europa, the
trajectory must cross the vicinity of all the selected moons and then come back
to the same initial state on Europa. The following constraints are chosen to
recursively apply the indirect coupled CR3BP:
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Figure 19: Transfer from Europa to Ganymede (left) and viceversa (right) as
viewed from the Jupiter-centred IRF with the TOs method inside the CI. The
trajectory is represented with a dashed line as long as the spacecraft is inside
the CI while it is a continuous line on the Keplerian ellipses.

• On Europa and Callisto the trajectory must turn around the respective
moon by an angle of π (see Fig. 20(a)(c)).

• On Ganymede, the trajectory must turn around the moon by an angle of
2π (see Fig. 20(b)).

• The minimum approach distance from the moon surface must be grater
than 50 km.

With outward journey we refer to the trajectory from Europa to Callisto; vicev-
ersa the inward journey is the trajectory from Callisto to Europa. Transit orbits
will be generated using the method described in the previous section, i.e., by
means of grids built around a set of PLO associated to specific Lagrangian points
of each Jupiter-moon system. Setting t = 0 on each grid initial condition, we
talk about time-backward and time-forward TO branches (TBB and TFB re-
spectively): the former refer to the branch integrated backward in time, the
latter to the branch integrated forward in time. Grids are generated according
with the following (refer to figure 20) criteria.

• For Jupiter-Europa, grids are built by means of PLOs around L2. TFBs
point towards Ganymede.

• For Jupiter-Ganymede (outward journey), grids are built by means of
PLOs around L1. The spacecraft is approaching the CI from Europa
through the TBB and is pointing towards Callisto passing through the
TFB.

• For Jupiter-Callisto, PLOs around Jupiter-Callisto L1 will be used. The
spacecraft is coming from Ganymede through the TBB.
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Figure 20: Transit morphologies. Europa is represented in figure (c) with Jupiter
towards the right. Callisto (the outer moon), is represented in figure (a). Time-
forward and time-backward TOs are represented in green and orange respec-
tively. CIs are represented in blue and, for the sake of clarity, the PLO with the
same energy of the corresponding TO is plotted in red.

• For Jupiter-Ganymede (inward journey), grids are built by means of PLOs
around L2. The spacecraft is approaching the CI from Callisto through
the TBB and is pointing towards Europa passing through the TFB.

Recursively applying the coupled CR3BP at each connection (Europa to Ganymede,
Ganymede to Callisto, Callisto to Ganymede and Ganymede to Europa) with
a similar method as the one described in the previous section, a set of initial
conditions that provide close tours can be found. Since, in general, the mini-
mum approach distance to the moon is high for the resulting TOs, we decided
to select the tour that minimizes this parameter. This tour is characterized by:

∆V = 1.067 + 1.142 + 1.156 + 1.229 = 4.59 km s−1, (23)
TOF = 4.355 + 15.343 + 18.681 + 10.723 = 49.102 days, (24)

The trajectories of this tour in the intra-moon space are displayed in Fig. 21.

5.1 Rephasing
Each of the four coupled CR3BPs that define the tour requires a specific angular
displacement ∆αij between the two moons i and j (i, j = 1, 2, 3, i 6= j, 1: Eu-
ropa, 2: Ganymede, 3: Callisto) when the spacecraft leaves the initial condition
from moon i. This value depends on the tangency configuration between the
corresponding Keplerian ellipses as well as on the time the spacecraft spends
inside each CI. We define Tij the time of flight required from the spacecraft to
go from the initial condition on the moon i to the initial condition on the moon
j. Once fixed an initial angular position α01 of Europa at the beginning of the
outward journey, i.e., at t = 0 (where t is the cumulative time of the tour), the
initial angular position on Ganymede must be

α02 = α01 + ∆α12 − ω2T12, (25)
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Figure 21: The resulting trajectories of the selected minimum-approaching-
distance tour in the intra-moon space for Europa (top-right), Callisto (top-left),
Ganymede outgoing (bottom-left) and Ganymede ingoing (bottom-right).
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where ωi is the angular velocity of the ith moon. Similarly, the angular position
required by Callisto at t = 0 must be

α03 = α01 + ∆α12 + ∆α23 − ω3(T12 + T23). (26)

When the spacecraft reaches Callisto and therefore ends the outward journey,
the coupled CR3BP with Ganymede to start the inward journey requires a
specific angular displacement ∆α32 between these two moons. Therefore, the
requisite on the initial angular position at t = 0 for Ganymede would now be

α′02 = α01 + ∆α12 + ∆α23 + ∆α32 − ω2(T12 + T23 + T32), (27)

which, in general, is different from the angle in Eq. (25). Therefore, it is nec-
essary to “pause” the tour once the spacecraft leaves Callisto; in other words,
in order for the tour to exist, we should find a suitable parking (or rephasing)
orbit where the spacecraft can temporary wait until Callisto and Ganymede are
in the correct relative angular position ∆α32. It can be easily proved that the
necessary rephasing time is

TREPH = ∆α′02 −∆α02

ω2 − ω2
+ n

2π
ω3 − ω2

(28)

= T ∗ + nTSYN, n ∈ N. (29)

The first therm T ∗ of Eq. (28) is a constant and it depends only on the difference
between ∆α′02 and ∆α02, which is a parameter of the tour; the second term is
a multiple of the synodic period, therefore it is independent from the tour.

For example, in the case of Callisto, the required rephasing time is T 3
REPH(n) =

2.68 +n15.21. For a given value of n. The following algorithm has been created
to find suitable rephasing orbits.

1. We select a set of points P on the TO in Callisto (Fig. 21(a)), such that
their distance from the centre of the moon is below a given value.

2. For each of these points ri we consider the corresponding velocity vector
vi of the TO. The flight path angle γi is given by cos γi = ri · vi

rivi
, being

ri and vi the magnitudes of ri and vi. A new set of velocity directions is
computed varying the flight path angle in a given range [γi−∆γ , γi+∆γ ],
being ∆γ > 0, for a given discretization. We call vij the jth direction of
the point ri

3. In turn, we let the magnitude of each velocity vector vij varying in a given
range [vij −∆v,vij + ∆v], being ∆v > 0. We call vijk the kth magnitude
of the jth velocity direction of the point ri ∈ P .

4. Each state {ri,vijk} is integrated for three revolutions around the moon.
∆V 1

ijk is the required difference in velocity to change the state from {ri,vi}
to {ri,vijk}. If the trajectory remains inside the P2 region, the distance
δ (see Fig. 22) is evaluated after each revolution.
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Figure 22: δ is the distance between ri and the end point of the trajectory
resulting by integration of the state {ri,vijk} after each revolution around the
moon. T1 is the period after one revolution.

5. If δ < 10−3 for all the three revolutions, we consider the orbit as stable
and we store the corresponding state {ri,vijk} in a database. Moreover,
we evaluate the time of flight T1 to complete the first revolution. Since
δ is very small, T1 is an approximation of the time required to complete
every complete revolution around the moon.

6. The time performance parameter is then defined as

η =

 mod
(
TREPH(n)

T1

)
, if mod

(
TREPH(n)

T1

)
< 0.5,

1− mod
(
TREPH(n)

T1

)
, if mod

(
TREPH(n)

T1

)
> 0.5,

(30)

When η = 0, TREPH(n) is a multiple of T1. Therefore, values of η close to
0 identify more suitable stable rephasing orbits.

7. We select a range [η−, η+]. In this case we chose η− = η+ = 0.1. Each
state {ri,vijk} in this range is propagated for m revolutions such that

TREPH −
m∑
n=1

Tn ≈ T1. (31)

In other words, the states are propagated until approximately one more
revolution is needed to reach the required rephasing time.
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Figure 23

8. The last revolution is stopped after half-turn. We call Tf the cumulative
time of flight required for the integration from the initial state {ri,vijk}
until this half-turn. At this point a single-shooting algorithm with control
on the velocity is used to target the initial position ri with a constraint
on the time of flight:

TOF = TREPH − Tf . (32)

∆V 2
ijk is the required magnitude of the difference in velocity to target ri.

9. Eventually we evaluate the ∆V 3
ijk to re-insert the spacecraft in the original

TO.

10. A plot of the total ∆V REPH
ijk = ∆V 1

ijk + ∆V 2
ijk + ∆V 3

ijk for every state
{ri,vijk} within the range [η−, η+] is represented in Fig. 23 for the rephas-
ing around Callisto. The minimum is

∆V REPH
min = 124 + 8 + 116 = 248 m s−1. (33)

A plot of the resulting trajectory required for the rephasing on Callisto is showed
in Fig. 24a. The same procedure is applied around Ganymede. In this case, the
required rephasing time is T 2

REPH = 5.65 + n7.08 days where, again, we use
n = 1. In this case, the minimum ∆V is

∆V REPH
min = 150 + 29 + 133 = 312 m s−1, (34)

and the corresponding rephasing trajectory is showed in Fig. 24b.

6 Conclusions
In conclusion, we presented an efficient method to find low-energy connections
between moons of a planetary system. In the case of Jupiter’s moons Europa,
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(a) Rephasing trajectory around Callisto

(b) Rephasing trajectory around Ganymede

Figure 24: Plot of the rephasing trajectories required for Europa (top) and
Ganymede (bottom). Each “x” represents the position in which a ∆V is applied.
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Ganymede and Callisto the total ∆V is on the order of 4 km s−1 plus 560 m s−1

requested for the rephasing. The first value is in agreement with previous studies
[5] and substantially lower than the corresponding total ∆V expected for a
Hohmann transfer, i.e., 10.88 km s−1. On the other hand, the total time of
flight is about 77 days including the rephasing, which is more feasible than
other studies involving multiple flybys [11] (in the quoted paper the time of
flight to perform a tour of the four Galilean Moons is about 4 years). Since the
∆V in each of the four section is around 1 km s−1, low-thrust engines are more
advisable to perform the manoeuvres. Conversion of the impulsive ∆V s into
low-thrust arcs is currently under development.
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