Approaching the CDF Top Quark Mass Legacy Measurement in the Lepton+Jets channel with the Matrix Element Method

Andrea Malara
Università di Pisa (Supervisor: Costas Vellidis, FNAL)
September 22, 2016

Top Quark

Top Mass

$$
m_{t}=173 \mathrm{GeV} / \mathrm{c}^{2}
$$

Top Life-Time
$\tau_{t}=0.3 \times 10^{-24} s$

Top Quark

4 Formilat $95-789$

Top Mass

$$
m_{t}=173 \mathrm{GeV} / \mathrm{c}^{2}
$$

$$
\tau_{Q C D}=\Lambda_{Q C D}^{-1}=5 \times 10^{-24} \mathrm{~s} \longrightarrow \text { No hadronization }
$$

Top Quark Production

Quark

Annihilation

Gluon
Fusion

Tevatron 85%

LHC 15\%

15\%

85\%

Top quark decay mode

DILEPTON EVENTS Low statistic, High S/B

LEPTON + JETS
Good statistics, Good S/B

All JETS
Good statistics, Low S/B

Top quark decay mode

DILEPTON EVENTS
 Low statistic, High S/B

LEPTON + JETS
Good statistics, Good S/B

All JETS
Good statistics, Low S/B

Why we focus on precise top mass measurement

- Mass is the only top property not predicted by theory.
- Close to electroweak symmetry breaking scale: together with W and H precision physics, provides strong lever for testing the internal consistency of SM .
- The EW vacuum stability depends crucially on the precise top mass value: higher top mass value eventually leads to scenario of metastable or unstable Universe.

Status of measurement

- D \emptyset final measurement in lepton+jets: $m_{t}=174.98 \pm 0.76 \mathrm{GeV} / \mathrm{c}^{2}$.
- CMS measurements in all channels: $m_{t}=172.44 \pm 0.48 \mathrm{GeV} / \mathrm{c}^{2}$.
- Discrepancy of $\sim 3 \sigma$.
- We expect that the new CDF top mass measurement will contribute clarifying the discrepancy between the latest D \emptyset and CMS results.
- The goal of the measurement is to reach a total error of less than 0.5%.

Improvements for new CDF data analysis

- More luminosity: from $5.6 \mathrm{fb}^{-1}$ to $9 \mathrm{fb}^{-1} \rightarrow 60 \%$ more data.
- New event categories: 0-tag, 1-tagL, 2-tagL $\rightarrow 30 \%$ more events from loose categories.
- Matrix element integration method \rightarrow most precise method.
- Quasi-Monte Carlo technique \rightarrow better accuracy in less time.
- NLO singal MC: PowHEg + PyTHIA \rightarrow reduction of uncertainty.
- Likelihood background included.

Event selection

	0-tag	1-tagL	1-tagT	2-tagL	2-tagT
Lepton E_{T}	>20	>20	>20	>20	>20
Lepton $\|\eta\|$	<1.0	<1.0	<1.0	<1.0	<1.0
\mathbb{E}_{T}	>20	>20	>20	>20	>20
3 jets E_{T}	>20	>20	>20	>20	>20
3 jets $\|\eta\|$	<2.0	<2.0	<2.0	<2.0	<2.0
$4^{\text {th }}$ jets E_{T}	>20	>12	>20	>12	>20
$4^{\text {th }}$ jets $\|\eta\|$	<2.0	<2.4	<2.0	<2.4	<2.0
Extra jets					
	Any loose	Any loose	Any loose	Any loose	
	or ≥ 1 tight		or ≥ 1 tight		

Sample composition

	0-tag	1-tagL	1-tagT	2-tagL	2-tagT	All
W+ h.f	697	357	161	34	21	1269
W+ I.f	1581	171	77	3	2	1834
Z+ jets	169	25	14	2	1	212
Diboson	166	31	18	3	2	220
Single top	14	17	8	7	5	50
QCD	623	120	60	1	6	811
Background	3251	720	338	49	37	4395
Signal	960	999	1086	331	425	3801
Total	4211	1719	1424	380	462	8196
S/B	0.3	1.4	3.2	6.8	10.6	0.9
Observed	4474	1711	1434	365	375	8359

Luminosity $\mathcal{L}=9 \mathrm{fb}^{-1}$

Monte Carlo Samples

- Signal
- Pythia6.2 for leading-order (LO) \rightarrow Testing.
- Powheg for next-to-leading-order(NLO) + PythiA6.4 \rightarrow Final Calibration.
- Background
- Alpgen + Pythia ($W+j e t s$) and Pythia ($Z+j e t s$).
- MadGraph5 (single top for $m_{t}=172.5 \mathrm{GeV}$) + Pythia (parton shower and hadronization).
- Pythia (Diboson).
- Data sample (QCD background).

Matrix Element Method

- Full use of topological and kinematic information of a given event.
- Maximization of a suitable likelihood function

$$
\begin{gathered}
L_{\text {tot }}=\prod_{i=1}^{N}\left[a\left(f_{\text {sigg }}\right) L_{i}^{\text {sig }}\left(m_{t}, \Delta_{\text {JES }}\right)+b\left(f_{\text {back }}\right) L_{i}^{\text {back }}\left(\Delta_{\text {JES }}\right)\right] \\
\text { JES }=\frac{p_{T}^{M C-j e t}}{p_{T}^{\text {CIl-jet }}}=1+\Delta_{\text {JES }} \cdot \sigma_{P_{T}}^{C_{a l}-\text { jet }}
\end{gathered}
$$

- JES is constrained by the ME through the dependence of the matrix element itself on the W mass.

Matrix Element Method

Likelihood

$\left.L_{i}^{\text {sig }}\left(m_{t}, \Delta_{J E S}\right)=\frac{1}{\sigma\left(m_{t}\right)} \frac{1}{A\left(m_{t}, \Delta_{J E S}\right)} \sum_{j=1}^{24} w_{i j} \right\rvert\, P^{s i g}\left(\vec{x}_{i} \mid m_{t}, \Delta_{J E S}\right)$

Matrix Element Method

Likelihood

$$
L_{i}^{\text {sig }}\left(m_{t}, \Delta_{J E S}\right)=\frac{1}{\sigma\left(m_{t}\right)} \frac{1}{A\left(m_{t}, \Delta_{J E S}\right)} \sum_{j=1}^{24} w_{i j} P^{\text {sig }}\left(\vec{x}_{i} \mid m_{t}, \Delta_{J E S}\right)
$$

$$
\begin{aligned}
P^{\text {sig }}\left(\vec{x}_{i} \mid m_{t}, \Delta_{J E S}\right)=\int & \epsilon\left(\vec{x}_{i} \mid \vec{y}_{i}, \Delta_{J E S}\right) T\left(\vec{x}_{i} \mid \vec{y}_{i}, \Delta_{J E S}\right)\left|M_{2 p \rightarrow l \nu_{l}+4 p}^{t \bar{t}}\left(m_{t}, \vec{y}_{i}\right)\right|^{2} \\
& \times\left.\frac{f\left(z_{1}, Q^{2}\right) f\left(z_{2}, Q^{2}\right)}{z_{1} z_{2}}\right|_{Q^{2}=4 m_{t}^{2}} d z_{1} d z_{2} d \Phi\left(\vec{y}_{i}\right)
\end{aligned}
$$

Transfer Functions

$$
\begin{aligned}
P^{\text {sig }}\left(\vec{x}_{i} \mid m_{t}, \Delta_{\text {JES }}\right)=\int & \epsilon\left(\vec{x}_{i} \mid \overrightarrow{y_{i}}, \Delta_{\text {JES }}\right) T\left(\vec{x}_{i} \mid \vec{y}_{i}, \Delta_{J E S}\right)\left|M_{2 p \rightarrow / \nu_{l}+4 p}^{t \bar{t}}\left(m_{t}, \vec{y}_{i}\right)\right|^{2} \\
& \times\left.\frac{f\left(z_{1}, Q^{2}\right) f\left(z_{2}, Q^{2}\right)}{z_{1} z_{2}}\right|_{Q^{2}=4 m_{t}^{2}} d z_{1} d z_{2} d \Phi\left(\vec{y}_{i}\right)
\end{aligned}
$$

$$
T_{\text {old }}=F_{1}\left(\frac{p_{T}^{j}}{p_{T}^{p}} ; p_{T}^{p}, \eta_{p}, m_{p}\right) \times F_{2}\left(\Delta \eta_{j-p}, \Delta \phi_{j-p} ; p_{T}^{p}, \eta_{p}, m_{p}\right)
$$

$$
T_{\text {new }}=F_{3}\left(\frac{p_{T}^{j}}{p_{T}^{p}}, \Delta R_{j-p} ; p_{T}^{p}, \eta_{p}, m_{p}\right)
$$

$$
\Delta R_{j-p}=\sqrt{\left(\Delta \eta_{j-p}\right)^{2}+\left(\Delta \phi_{j-p}\right)^{2}}
$$

Transfer Functions

$T_{\text {old }}$

- Derived from Pythia6.2.
- Only LO.
- Angular variables factorised as $\Delta \eta_{j-p}$ vs $\Delta \phi_{j-p}$.
- $T_{\text {old }}$ are constructed for tight event categories.

$T_{\text {new }}$

- Derived from Pohweg + Pythia6.4.
- Extra parton emission at NLO requires jet-to-parton matching.
- Angular decomposition is made through the Jacobian:

$$
\Delta R_{j-p} \rightarrow\left(\Delta \eta_{j-p}, \Delta \phi_{j-p}\right)
$$

- $T_{\text {new }}$ include also loose event categories.

Grids scanned for the $T_{\text {old }}$ and $T_{\text {new }}$

- The $T_{\text {old }}$ are projected on $\Delta \phi_{j-p}$ axis of a 2D histograms of $\Delta \eta_{j-p} \mathrm{vs} \Delta \phi_{j-p}$.

The $T_{\text {old }}$ are projected on $\Delta \phi_{j-p}$ axis of a 2D histograms of $\frac{p_{T}^{j}}{p_{T}^{p_{T}}}$ vs $\Delta \phi_{j-p}$.
They both depend on $m_{p}, p_{T}^{p}, \eta_{p}, \Delta_{\text {JES }}$ and the parton type (is $B=0$ for light quarks or is $B=1$ for b -quarks).

- The kinematic variables are shown in the following table:

Central kinematics

is B	0	1	
m_{p}	10	20	
p_{T}^{p}	40	60	
η_{p}	-1	0	+1
$\Delta_{\text {JES }}$	-2	0	+2
$\Delta \eta_{j-p}$	-0.2	0	+0.2

Wide kinematics

isB	0	1	
m_{p}	0.5	5	50
p_{T}^{p}	5	25	100
η_{p}	-2	0	+2
$\Delta_{\text {JES }}$	-2	0	+2
$\Delta \eta_{j-p}$	-0.2	0	+0.2

Comparison of the old and new TFs

TRANsFER Functions

$$
\begin{array}{c|c|c|c|c}
m_{p} & p_{T} & \eta_{p} & \text { isB } & \Delta_{J E S} \\
\hline 50 & 100 & 0 & 0 & 0
\end{array}
$$

Figure: $\Delta \eta$ vs $\Delta \phi$ plot projected on $\Delta \phi$ axis for $T_{\text {old }}$.

Figure: $\frac{p_{T}^{j}}{p_{T}^{j}}$ vs $\Delta \phi$ plot projected on $\Delta \phi$ axis for $T_{\text {new }}$ with $\Delta \eta_{j-p}=0$.

Comparison of the old and new TFs

Transfer Functions

m_{p}	p_{T}	η_{p}	isB	$\Delta_{\text {JES }}$
50	100	0	1	0

Figure: $\frac{p_{T}^{j}}{p_{T}^{p_{1}^{\prime}}}$ plot for $T_{\text {old }}$.

Figure: $\frac{p_{T}^{j}}{p_{T}^{\top}}$ plot for $T_{\text {new }}$ with $\Delta \eta_{j-p}=0$.

Comparison of the old and new TFs

Transfer Functions

m_{p}	p_{T}	η_{p}	is B	$\Delta_{J E S}$
5	5	0	0	0

Figure: $\Delta \eta$ vs $\Delta \phi$ plot projected on $\Delta \phi$ Figure: $\frac{p_{T}^{j}}{p_{T}^{\top}}$ vs $\Delta \phi$ plot projected on $\Delta \phi$ axis for $T_{\text {old }}$. axis for $T_{\text {new }}$ with $\Delta \eta_{j-p}=0$.

Comparison of the old and new TFs

Transfer Functions

m_{p}	p_{T}	η_{p}	is B	\triangle JES
50	5	2	0	0

Figure: $\Delta \eta$ vs $\Delta \phi$ plot projected on $\Delta \phi$ axis for $T_{\text {old }}$.

Figure: $\frac{p_{T}^{j}}{p_{T}^{\rho_{T}}}$ vs $\Delta \phi$ plot projected on $\Delta \phi$ axis for $T_{\text {new }}$ with $\Delta \eta_{j-p}=0$.

Grid scanned for the $\epsilon_{\text {old }}$ and $\epsilon_{\text {new }}$

- The efficiencies are displayed as 2D histograms of p_{T}^{p} vs $\Delta_{\text {JES, }}$, given m_{p}, η_{p} and the parton type (is $B=0$ for light quarks or is $B=1$ for b-quarks).

is B	0	1				
η_{p}	-2	-1	0	+1	+2	
m_{p}	0.5	1.5	5	10	20	40

- The values $\eta_{p}=-2$ and $\eta_{p}=-1$ is chosen to show the symmetry of the efficiencies about $\eta_{p}=0$.

Comparison of the old and new TFs

Efficiencies

$$
m_{p}=0.5
$$

$$
\text { is } B=0 \quad \eta_{p}=0
$$

Figure: Efficiency plot for $\epsilon_{\text {old }}$.

Figure: Efficiency plot for $\epsilon_{\text {new }}$.

Comparison of the old and new TFs

Efficiencies

$$
m_{p}=0.5 \quad \text { is } B=0 \quad \eta_{p}=-2
$$

Figure: Efficiency plot for $\epsilon_{\text {old }}$.

Figure: Efficiency plot for $\epsilon_{\text {new }}$.

Comparison of the old and new TFs

Efficiencies

$$
m_{p}=5.0 \quad \text { is } B=1 \quad \eta_{p}=-2
$$

Figure: Efficiency plot for $\epsilon_{\text {new }}$.

Figure: Efficiency plot for $\epsilon_{\text {new }}$.

Comparison of the old and new TFs

Possible causes of discrepancy

- Numerical problem with decomposition for $T_{\text {new }}$.
- Physics differences between the MC used.
- Extra emission misidentified as a top decay product in $T_{\text {new }}$.

Integration method

What we do

$$
\int_{[0,1]^{s}} f(\vec{x}) d \vec{x} \approx \frac{V\left([0,1]^{s}\right)}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right) \quad \text { error } \epsilon \equiv\left|\int_{[0,1]^{s}} f(\vec{x})-\frac{1}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right)\right|
$$

Integration method

What we do

$$
\int_{[0,1]^{s}} f(\vec{x}) d \vec{x} \approx \frac{V\left([0,1]^{s}\right)}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right) \quad \text { error } \epsilon \equiv\left|\int_{[0,1]^{s}} f(\vec{x})-\frac{1}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right)\right|
$$

How we do
pseudo-Monte Carlo: $\quad \epsilon_{p M C} \propto \frac{1}{\sqrt{N}} \quad$ quasi-Monte Carlo: $\quad \epsilon_{q M C} \propto \frac{(\ln N)^{s}}{N}$

Integration method

What we do

$$
\int_{[0,1]^{s}} f(\vec{x}) d \vec{x} \approx \frac{V\left([0,1]^{s}\right)}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right) \quad \text { error } \epsilon \equiv\left|\int_{[0,1]^{s}} f(\vec{x})-\frac{1}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right)\right|
$$

How we do
pseudo-Monte Carlo: $\quad \epsilon_{\rho M C} \propto \frac{1}{\sqrt{N}}$ quasi-Monte Carlo: $\quad \epsilon_{q M C} \propto \frac{(\ln N)^{s}}{N}$

Pull Distribution

- It is the distribution of the variables

$$
\delta_{i}=\frac{x_{i}-\mu}{\sigma}
$$

where μ is the arithmetic mean and σ is the standard deviation of the data x_{i}.
∇x_{i} refers to the same event set but with different integration seeds.

- It has been used to analyse background event.
- It has been created through pseudo Monte Carlo samples.
- Up to now acceptance is not included.

Pull Distribution

- Pull distribution for background events (W+jets)

Pull Distribution

- Pull distribution for background events (W+jets)

Pull Distribution

- Mean and standard deviation of pull distribution as a function of the JES shift for background events

Conclusion

Summary

- Discrepancy between TFs has been noticed.
- Problem in TFs for signal events may hint problems in background TFs because of similar construction.
- Acceptance need to be included in background pulls.
- Event statistic needs to be improved for pulls.

Step to be done

- Solve differences between old and new TFs.
- Better understanding of background TFs.
- Complete background acceptance: this could lead to more precise pulls.
- Combination of signal and background likelihood.
- Lots of work yet . . .

THANKS FOR THE ATTENTION

