

Approaching the CDF Top Quark Mass Legacy Measurement in the Lepton+Jets channel with the Matrix Element Method

Andrea Malara

Università di Pisa (Supervisor: Costas Vellidis, FNAL) September 22, 2016

Top Quark

Top Quark

 $au_{QCD} = \Lambda_{QCD}^{-1} = 5 imes 10^{-24} s \longrightarrow$ No hadronization

Top quark decay mode

Ve, Vu, Vz q

DILEPTON EVENTS Low statistic, High S/B

Top quark decay mode

DILEPTON EVENTS Low statistic, High S/B

 $\frac{\rm LEPTON\,+\,JETS}{\rm Good\ statistics,\ Good\ S/B}$

 $\begin{array}{c} \mbox{All JETS} \\ \mbox{Good statistics, Low S/B} \end{array}$

Why we focus on precise top mass measurement

- Mass is the only top property not predicted by theory.
- Close to electroweak symmetry breaking scale: together with W and H precision physics, provides strong lever for testing the internal consistency of SM .
- The EW vacuum stability depends crucially on the precise top mass value: higher top mass value eventually leads to scenario of metastable or unstable Universe.

Status of measurement

- ▶ DØ final measurement in lepton+jets: $m_t = 174.98 \pm 0.76 \text{ GeV}/c^2.$
- CMS measurements in all channels: $m_t = 172.44 \pm 0.48 \text{ GeV}/c^2.$
- Discrepancy of $\sim 3\sigma$.
- ▶ We expect that the new CDF top mass measurement will contribute clarifying the discrepancy between the latest DØ and CMS results.
- ▶ The goal of the measurement is to reach a total error of less than 0.5%.

Improvements for new CDF data analysis

- More luminosity: from 5.6 fb^{-1} to 9 $fb^{-1} \rightarrow 60\%$ more data.
- ▶ New event categories: 0-tag, 1-tagL, 2-tagL → 30% more events from loose categories.
- Matrix element integration method \rightarrow most precise method.
- ▶ Quasi-Monte Carlo technique → better accuracy in less time.
- ▶ NLO singal MC: $POWHEG + PYTHIA \rightarrow reduction of uncertainty.$
- Likelihood background included.

Event selection

	0-tag	1-tagL	1-tagT	2-tagL	2-tagT
Lepton E_T	> 20	> 20	> 20	> 20	> 20
Lepton $ \eta $	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
∉ _T	> 20	> 20	> 20	> 20	> 20
3 jets E_T	> 20	> 20	> 20	> 20	> 20
3 jets $ \eta $	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
4^{th} jets E_T	> 20	> 12	> 20	> 12	> 20
4 th jets $ \eta $	< 2.0	< 2.4	< 2.0	< 2.4	< 2.0
Extra into		Any loose	Any loose	Any loose	Any loose
		or ≥ 1 tight		or ≥ 1 tight	

Sample composition

	0-tag	1-tagL	1-tagT	2-tagL	2-tagT	All
W+ h.f	697	357	161	34	21	1269
W+ I.f	1581	171	77	3	2	1834
Z+ jets	169	25	14	2	1	212
Diboson	166	31	18	3	2	220
Single top	14	17	8	7	5	50
QCD	623	120	60	1	6	811
Background	3251	720	338	49	37	4395
Signal	960	999	1086	331	425	3801
Total	4211	1719	1424	380	462	8196
S/B	0.3	1.4	3.2	6.8	10.6	0.9
Observed	4474	1711	1434	365	375	8359

Luminosity $\mathcal{L} = 9 \text{ fb}^{-1}$

Monte Carlo Samples

Signal

- PYTHIA6.2 for leading-order (LO) \rightarrow Testing.
- ▶ POWHEG for next-to-leading-order(NLO) + PYTHIA6.4 \rightarrow Final Calibration.

Background

- ALPGEN+PYTHIA (W + jets) and PYTHIA (Z + jets).
- ▶ MADGRAPH5 (*single top* for $m_t = 172.5 \text{ GeV}$) + Pythia (parton shower and hadronization).
- PYTHIA (Diboson).
- Data sample (QCD background).

- ▶ Full use of topological and kinematic information of a given event.
- Maximization of a suitable likelihood function

$$\blacktriangleright \qquad \qquad L_{tot} = \prod_{i=1}^{N} \left[a\left(f_{sig}\right) L_{i}^{sig}\left(m_{t}, \Delta_{JES}\right) + b\left(f_{back}\right) L_{i}^{back}\left(\Delta_{JES}\right) \right]$$

$$JES = rac{m{
ho}_T^{MC-jet}}{m{
ho}_T^{Cal-jet}} = 1 + \Delta_{JES} \cdot \sigma_{m{
ho}_T}^{Cal-jet}$$

JES is constrained by the ME through the dependence of the matrix element itself on the W mass.

Matrix Element Method

Likelihood $L_{i}^{sig}(m_{t}, \Delta_{JES}) = \frac{1}{\sigma(m_{t})} \frac{1}{A(m_{t}, \Delta_{JES})} \sum_{j=1}^{24} w_{ij} P^{sig}(\vec{x}_{i}|m_{t}, \Delta_{JES})$

11 / 29

$$P^{sig}(\vec{x}_{i}|m_{t}, \Delta_{JES}) = \int \epsilon(\vec{x}_{i}|\vec{y}_{i}, \Delta_{JES}) T(\vec{x}_{i}|\vec{y}_{i}, \Delta_{JES}) \left| M_{2\rho \to l\nu_{l} + 4\rho}^{t\bar{t}}(m_{t}, \vec{y}_{i}) \right|^{2} \\ \times \frac{f(z_{1}, Q^{2}) f(z_{2}, Q^{2})}{z_{1}z_{2}} \bigg|_{Q^{2} = 4m_{t}^{2}} dz_{1} dz_{2} d\Phi(\vec{y}_{i})$$

Likelihood

$$L_{i}^{sig}(m_{t}, \Delta_{JES}) = \frac{1}{\sigma(m_{t})} \frac{1}{A(m_{t}, \Delta_{JES})} \sum_{j=1}^{24} w_{ij} P^{sig}(\vec{x}_{i}|m_{t}, \Delta_{JES})$$

Transfer Functions

$$P^{sig}\left(\vec{x}_{i}|m_{t},\Delta_{JES}\right) = \int \epsilon\left(\vec{x}_{i}|\vec{y}_{i},\Delta_{JES}\right) \frac{T\left(\vec{x}_{i}|\vec{y}_{i},\Delta_{JES}\right)}{T\left(\vec{x}_{i}|\vec{y}_{i},\Delta_{JES}\right)} \left|M_{2p \to l\nu_{l}+4p}^{t\bar{t}}\left(m_{t},\vec{y}_{i}\right)\right|^{2} \times \frac{f\left(z_{1},Q^{2}\right)f\left(z_{2},Q^{2}\right)}{z_{1}z_{2}} \left|dz_{1}dz_{2}d\Phi\left(\vec{y}_{i}\right)\right|^{2}$$

$$T_{old} = F_1\left(\frac{p_T^j}{p_T^p}; p_T^p, \eta_p, m_p\right) \times F_2\left(\Delta\eta_{j-p}, \Delta\phi_{j-p}; p_T^p, \eta_p, m_p\right)$$

$$T_{new} = F_3\left(\frac{p_T^j}{p_T^\rho}, \Delta R_{j-\rho}; p_T^\rho, \eta_\rho, m_\rho\right)$$

$$\Delta R_{j-p} = \sqrt{\left(\Delta \eta_{j-p}\right)^2 + \left(\Delta \phi_{j-p}\right)^2}$$

Transfer Functions

T_{old}

- Derived from PYTHIA6.2.
- Only LO.
- Angular variables factorised as Δη_{j-ρ} vs Δφ_{j-ρ}.
- *T*_{old} are constructed for tight event categories.

T_{new}

- Derived from POHWEG + PYTHIA6.4.
- Extra parton emission at NLO requires jet-to-parton matching.
- Angular decomposition is made through the Jacobian: $\Delta R_{i-p} \rightarrow (\Delta \eta_{i-p}, \Delta \phi_{i-p}).$
- *T_{new}* include also loose event categories.

Grids scanned for the T_{old} and T_{new}

- ► The T_{old} are projected on $\Delta \phi_{j-p}$ axis of a 2D histograms of $\Delta \eta_{j-p} vs \Delta \phi_{j-p}$.
- ► The T_{old} are projected on $\Delta \phi_{j-p}$ axis of a 2D histograms of $\frac{p'_T}{p_T^{\rho}}$ vs $\Delta \phi_{j-p}$.
- ► They both depend on m_p , p_T^p , η_p , Δ_{JES} and the parton type (isB = 0 for light quarks or isB = 1 for b-quarks).
- The kinematic variables are shown in the following table:

isB	0	1	
m _p	10	20	
p_T^p	40	60	
η_p	-1	0	+1
Δ_{JES}	-2	0	+2
$\Delta \eta_{j-p}$	-0.2	0	+0.2

Central kinematics

Wide kinematics

isB	0	1	
m _p	0.5	5	50
p_T^p	5	25	100
η_p	-2	0	+2
Δ_{JES}	-2	0	+2
$\Delta \eta_{j-p}$	-0.2	0	+0.2

Figure: $\Delta \eta \text{ vs } \Delta \phi$ plot projected on $\Delta \phi$ Figure: $\frac{p_T'}{p_T^{\rho}} \text{ vs } \Delta \phi$ plot projected on $\Delta \phi$ axis for T_{old} . axis for T_{new} with $\Delta \eta_{i-\rho} = 0$.

Figure: $\Delta \eta \text{ vs } \Delta \phi$ plot projected on $\Delta \phi$ Figure: $\frac{p_T'}{p_T^{\rho}} \text{ vs } \Delta \phi$ plot projected on $\Delta \phi$ axis for T_{old} . axis for T_{new} with $\Delta \eta_{i-\rho} = 0$.

m _p	p _T	η_p	isB	Δ_{JES}
50	5	2	0	0

Figure: $\Delta \eta \text{ vs } \Delta \phi$ plot projected on $\Delta \phi$ Figure: $\frac{p_T'}{p_T^p} \text{ vs } \Delta \phi$ plot projected on $\Delta \phi$ axis for T_{old} . axis for T_{new} with $\Delta \eta_{i-p} = 0$.

Grid scanned for the ϵ_{old} and ϵ_{new}

• The efficiencies are displayed as 2D histograms of p_T^p vs Δ_{JES} , given m_p , η_p and the parton type (*isB* = 0 for light quarks or *isB* = 1 for b-quarks).

The values $\eta_p = -2$ and $\eta_p = -1$ is chosen to show the symmetry of the efficiencies about $\eta_p = 0$.

Efficiencies

$$m_p = 0.5$$
 is $B = 0$ $\eta_p = 0$

Figure: Efficiency plot for ϵ_{old} .

Figure: Efficiency plot for ϵ_{new} .

Efficiencies

$$m_p = 0.5$$
 $isB = 0$ $\eta_p = -2$

Figure: Efficiency plot for ϵ_{old} .

Figure: Efficiency plot for ϵ_{new} .

Efficiencies

$$m_p = 5.0$$
 $isB = 1$ $\eta_p = -2$

Figure: Efficiency plot for ϵ_{new} .

Figure: Efficiency plot for ϵ_{new} .

Possible causes of discrepancy

- Numerical problem with decomposition for T_{new} .
- Physics differences between the MC used.
- Extra emission misidentified as a top decay product in T_{new} .

Integration method

What we do

$$\int_{[\mathbf{0},\mathbf{1}]^s} f(\vec{x}) d\vec{x} \approx \frac{V\left([0,1]^s\right)}{N} \sum_{i=1}^N f(\vec{x}_i) \quad \text{ error } \epsilon \equiv \left| \int_{[\mathbf{0},\mathbf{1}]^s} f(\vec{x}) - \frac{1}{N} \sum_{i=1}^N f(\vec{x}_i) \right|$$

Integration method

 $|\rangle s$

What we do

$$\int_{[\mathbf{0},\mathbf{1}]^s} f(\vec{x}) d\vec{x} \approx \frac{V\left([\mathbf{0},\mathbf{1}]^s\right)}{N} \sum_{i=1}^N f(\vec{x}_i) \quad \text{ error } \epsilon \equiv \left| \int_{[\mathbf{0},\mathbf{1}]^s} f(\vec{x}) - \frac{1}{N} \sum_{i=1}^N f(\vec{x}_i) \right|$$

How we do

pseudo-Monte Carlo:
$$~~\epsilon_{_{pMC}} \propto rac{1}{\sqrt{I}}$$

$$_{_{MC}}\propto rac{(InN)}{N}$$

 ϵ

Integration method

What we do

$$\int_{[\mathbf{0},\mathbf{1}]^s} f(\vec{x}) d\vec{x} \approx \frac{V\left([\mathbf{0},\mathbf{1}]^s\right)}{N} \sum_{i=1}^N f(\vec{x}_i) \quad \text{ error } \epsilon \equiv \left| \int_{[\mathbf{0},\mathbf{1}]^s} f(\vec{x}) - \frac{1}{N} \sum_{i=1}^N f(\vec{x}_i) \right|$$

How we do

pseudo-Monte Carlo:
$$~~\epsilon_{_{
m pMC}} \propto rac{1}{\sqrt{N}}$$

quasi-Monte Carlo:
$$\epsilon_{_{qMO}}$$

$$\propto \frac{(lnN)^{s}}{N}$$

It is the distribution of the variables

$$\delta_i = \frac{x_i - \mu}{\sigma}$$

where μ is the arithmetic mean and σ is the standard deviation of the data x_i .

 \triangleright x_i refers to the same event set but with different integration seeds.

- It has been used to analyse background event.
- ▶ It has been created through pseudo Monte Carlo samples.
- Up to now acceptance is not included.

Pull distribution for background events (W+jets)

Pull distribution for background events (W+jets)

Mean and standard deviation of pull distribution as a function of the JES shift for background events

Conclusion

Summary

- Discrepancy between TFs has been noticed.
- Problem in TFs for signal events may hint problems in background TFs because of similar construction.
- Acceptance need to be included in background pulls.
- Event statistic needs to be improved for pulls.

Step to be done

- Solve differences between old and new TFs.
- Better understanding of background TFs.
- Complete background acceptance: this could lead to more precise pulls.
- Combination of signal and background likelihood.
- Lots of work yet ...

THANKS FOR THE ATTENTION