

Construction of a test stand for the tracker and assembly and component testing for calorimeter calibration in the "Muon g-2"

Alessia Renardi Final Report 22 September 2016

Outline

1th PART with Brendan Casey:

- Working in Lab3 into a clean room on a tracking detector;
- Testing the channels of HV modules;
- About the tracker in the "Muon g-2" experiment;
- Data analysis on Cosmic Rays;
- 2th PART with Carlo Ferrari:
- About the calorimeter calibration;
- Optic chain: laser, diffusors, bundle, panel;
- Diffusers testing;
- Assembly;
- Conclusions.

HV system

C.A.E.N mod SY127

C.A.E.N mod A333

HV testing

- I designed some loads with 20 Mohm, for 1mA and 2kV;
- I built them and tested with a smoke-test;
- I tested all of HV channels.

Tracking Detector

The primary physics goal of the tracking detectors is to measure the muon beam profile at multiple locations around the ring as a function of time throughout the muon fill.

- Two couples of layers of straws oriented ±7.5° from the vertical direction;
- straws (5mmx10cm) of Al Mylar;
- Sense wire of Au-plated W, at 1500V;
- Ar:Et in the tubes at 1 Atm and vacuum in the chamber.

Position into the ring

Configuration system

Detector testing

Scintillators for testing the MWPC with cosmic rays

Tracker is placed on horizontal direction

Data analysis (1)

Spike of noise at the 26th wire From the total number of of the layer nº 1 entries of wires strawHits.Wire htemp 80000 Entries 693597 17.03 Mean 70000 RMS 9.228 60000 50000 40000 30000 20000 10000 °ò

15

20

25

30

strawHits.Wire

5

10

Data analysis (2)

- I wrote a root code to select only the near wires of different layers;
- I did the difference in time between the selected wire to found the coincidence;
- I looked for the cross points of the wires that were hitting;
- Data's path: /gm2/data/t1042-straws/lab3-teststand/Lab3TreeDump_00294_00297_00298.root

Cross points 2D

Plan view

‡ Fermilab

Cross points 3D

Analysis with two modules

For two modules I did the difference between the hit times to match tracks in the U layer with tracks in the V layer (coincidence). I looked for two cross points, one for module and now I can found the particle path like as a line between two points.

Difference of time

After selecting the wires, I did the difference between the hit time of the chosen wires for the module 1 and 2. The values around zero are for hits in the same time, in this way I select the coincidence between the layer U and V.

Data's path: /gm2/data/t1042-straws/lab3-teststand/ Lab3TreeDumper_00695_00696_00697_00698_00699_00702_ 00706_00707_00708.root

Path of a particles

These lines are some examples of a particles that through the two modules.

Fermilab

Calorimeter calibration

Time reference

The 24 calorimeters are not syncronized: we send a laser pulse before the Muon fill to each photosensor (SiPM);

Energy calibration

The photon detection efficiency of the SiPM must be calibrated: we send laser puls with different intensity;

Calorimeter calibration

Optic chain

Fibers for the Local Monitor

Bundle fibers and Diffuser

Panel with 54 Prisms

Diffuser testing (1)

Choose ISO: 100 Choose time exposure: 1/10s Test on 24 optic diffusers

🚰 Fermilab

I used the program "Image J" to analyze the photos and the function "Plot Profile" to get the profile of a selected photo's area.

<u>ISO</u>: light sensibility of the sensor; <u>Time exposure</u>: indicates the width of the interval of time during which the shutter is open.

Diffuser testing (2)

ISO: 100 Increasing the exposure time 1/13s to 0"5s

ISO: 100 e.t.: 1/10s curve for each diffuser

Bundle testing

Testing with a Power meter the power of the laser, alone and with a diffuser and bundle, for each fiber(60).

> P_{laser}=2,82 mW; P_{fiber}=4,5 uW; E=10%.

Polishing the fibers

Four sand papers of:

- 5 um;
- 3 um;
- 1 um;
- 0,3 um.

To adapt the fiber with the laser wavelength of 400 nm

Final assembly

Laser and fibers for the local monitor inside the straw

‡ Fermilab

Conclusions

During this internship at Fermilab I worked on "Muon g-2" experiment, with the help of Brendan and Carlo, about:

- Tracker detector in the clean room and testing HV modules;
- Analysis data on cosmic Rays to select the path of a particle that cross the detector;
- Testing and assembling the laser instruments to calorimeter calibration.

In two months I was part of a team of international physicists and I learned to collaborate with other people in a big experiment!

THANK YOU to give me this opportunity!

🛠 Fermilab