
Deterministic Sampling-Based Algorithms for Motion

Planning under Differential Constraints

Ernesto Poccia

October 10, 2017





Contents

I Motion Planning 5

1 Introduction 7

1.1 Examples of application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Discrete Planning 13

2.1 Discrete Feasible Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Searching for Feasible Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Particular Forward Search Method . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Discrete Optimal Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Transition to Continuous Spaces . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The Configuration Space 23

3.1 Geometric Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Rigid-Body Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Defining the Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Definition of the Basic Motion Planning Problem . . . . . . . . . . . . . . . 30

4 Sampling-Based Motion Planning 33

4.1 Sampling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Incremental Sampling and Searching . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Rapidly Exploring Dense Trees . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Roadmap Methods for Multiple Queries . . . . . . . . . . . . . . . . . . . . 43

5 Sampling-Based Planning Under Differential Constraints 47

5.1 Differential Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Phase Space Representation of Dynamical Systems . . . . . . . . . . . . . . 49

5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Reachability and Completeness . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 The Discrete-Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6 Sampling-Based Motion Planning Revisited . . . . . . . . . . . . . . . . . . 56

5.7 RDT-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

i



CONTENTS

II Deterministic Sampling-based Motion Planning 61

6 Low-Dispersion Deterministic Sampling 65
6.1 Background material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4 Extension to Kinodynamic Planning . . . . . . . . . . . . . . . . . . . . . . 69

7 Systems with Linear Affine Dynamics 71
7.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Background Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.3 Low G[τ ]−1-Dispersion Sampling Set . . . . . . . . . . . . . . . . . . . . . . 74
7.4 Deterministic Exhaustivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5 Deterministic Convergence to an Optimal Solution . . . . . . . . . . . . . . 79
7.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Driftless Control Affine Dynamical Systems 83
8.1 Background Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 The quest for possible sampling schemes . . . . . . . . . . . . . . . . . . . . 85
8.3 Deterministic Exhausticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9 Conclusion 91

ii



List of Figures

1.1 Several mobile robots attempt to successfully navigate in an indoor environ-
ment while avoiding collisions with the walls and each other. (b) Imagine
using a lantern to search a cave for missing people. . . . . . . . . . . . . . 9

2.1 The state transition graph for an example problem that involves walk- ing
around on an infinite tile floor. . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Every transformation has two interpretations. . . . . . . . . . . . . . . . . . 25

3.2 Any three-dimensional rotation can be described as a sequence of yaw, pitch,
and roll rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 A planning algorithm may have to cross the identification boundary to find
a solution path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Any 3D rotation can be considered as a rotation by an angle θ about the
axis given by the unit direction vector v = [v1v2v3]. . . . . . . . . . . . . . . 29

3.5 There are two ways to encode the same rotation. . . . . . . . . . . . . . . . 29

3.6 Graphic depiction of the basic motion planning problem . . . . . . . . . . . 31

4.1 The sampling-based planning philosophy uses collision detection as a ”black
box” that separates the motion planning from the particular geometric and
kinematic models. C-space sampling and discrete planning (i.e., searching)
are performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Graphic depiction of the dispersion of a set of samples . . . . . . . . . . . . 36

4.3 The Sukharev grid and a nongrid lattice. . . . . . . . . . . . . . . . . . . . . 37

4.4 A topological graph can be constructed during the search and can success-
fully solve a motion planning problem using very few samples. . . . . . . . . 40

4.5 (a) Suppose inductively that this tree has been constructed so far using
algorithm 2. (b) A new edge is added that connects from the sample α(i) to
the nearest point in S, which is the vertex qn. . . . . . . . . . . . . . . . . . 42

4.6 In the early iterations, the RRT quickly reaches the unexplored parts. How-
ever, the RRT is dense in the limit (with probability one), which means that
it gets arbitrarily close to any point in the space. . . . . . . . . . . . . . . . 42

4.7 (If there is an obstacle, the edge travels up to the obstacle boundary, as far
as allowed by the collision detection algorithm. . . . . . . . . . . . . . . . . 43

4.8 The sampling-based roadmap is constructed incrementally by attempting to
connect each new sample, α(i), to nearby vertices in the roadmap. . . . . . 44

iii



LIST OF FIGURES

5.1 An obstacle region Cobs ⊂ C generates a cylindrical obstacle region Xobs ⊂ X
with respect to the phase variables. . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 The discrete-time model results in Ud ⊂ U , which is obtained by partitioning
time into regular intervals and applying a constant action over each interval.
The action is chosen from a finite subset Ud of U . . . . . . . . . . . . . . . . 54

5.3 A reachability tree for the Dubins car with three actions. The kth stage
produces 3k new vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 The BVP is treated as a black box that gives a control sequence as an output
for any couple of start and end points. . . . . . . . . . . . . . . . . . . . . . 58

5.5 (a) Forward, unidirectional search for which the BVP is avoided. (b) Reach-
ing the goal precisely causes a BVP. . . . . . . . . . . . . . . . . . . . . . . 59

5.6 If the nearest point S lies in the state trajectory segment associated to an
edge, then the edge is split into two, and a new vertex is inserted into G. . . 60

6.1 An example of a planning problem with a feasible δ0-clear path. . . . . . . . 67
6.2 (a): Illustration in 2D of σε as the shortest strongly δε-robust feasible path,

as compared to the optimal path σ∗, as used in the proof of the theorem.
(b): Illustration in 2D of the construction of B1, ..., BMN+2 in the proof of
the theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1 Experimental results for the 2-dimensional double integrator. . . . . . . . . 81
7.2 Experimental results for the 3-dimensional double integrator: Plan view of

the 3-dimensional obstacles set. A narrow window is present on each one of
two the red walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.1 3-dimensional representation of the Reeds-Shepp Car sampling set S, for
N = 630 samples, realized with Matlab. . . . . . . . . . . . . . . . . . . . . 88

8.2 Experimental results for the Reeds-Shepp Car. . . . . . . . . . . . . . . . . 89

iv



List of Tables

7.1 Simulation results for the 2-dimensional double integrator. . . . . . . . . . . 82
7.2 Simulation results for the 3-dimensional double integrator. . . . . . . . . . . 82

8.1 Simulation results for the Reeds-Shepp Car. . . . . . . . . . . . . . . . . . . 88

v



LIST OF TABLES

vi



Abstract

Probabilistic sampling-based algorithms, such as the probabilistic roadmap (PRM) and
the rapidly-exploring random tree (RRT) algorithms, represent one of the most successful
approaches to robotic motion planning, due to their strong theoretical properties (in terms
of probabilistic completeness or even asymptotic optimality) and remarkable practical per-
formance. Such algorithms are probabilistic in that they compute a path by connecting
independently and identically distributed (i.i.d.) random points in the configuration space.
Their randomization aspect, however, makes several tasks challenging, including certifi-
cation for safety-critical applications and use of offline computation to improve real-time
execution. Hence, an important open question is whether similar (or better) theoretical
guarantees and practical performance could be obtained by considering deterministic, as
opposed to random sampling sequences. It is natural to wonder whether the theoretical
guarantees and practical performance of sampling-based algorithms would hold if these
algorithms were to be de-randomized, i.e., run on a deterministic, as opposed to ran-
dom sampling sequence. This is an important question, as de-randomized planners would
significantly simplify the certification process (as needed for safety-critical applications),
enable the use of offline computation (particularly important for planning under differen-
tial constraints or in high-dimensional spaces(exactly the regime for which sampling-based
planners are designed), and, in the case of lattice sequences, drastically simplify a number
of operations (e.g., locating nearby samples).

Results in this sense, have been recently achieved by [2] for purely geometric motion
planning problems by employing low L2-dispersion sampling sequences. However, this ap-
proach has proven to be limited for motion planning under differential constraints, probably
because Euclidean distance is no longer an adequate measure of how difficult is to join two
given points in the configuration space.

On the basis of these considerations, an appealing venue for extending the determinis-
tic sampling approach to kino-dynamic motion planning appears to be the development of
system-specific sampling strategies designed ad hoc to cover the configuration space uni-
formly, in terms of the control effort required to steer the systems from a given point to its
nearest sample.

The author aims to develop and theoretically characterize such sampling strategies
for two particular classes of dynamics system: systems with linear affine dynamics and
driftless control affine (DCA) systems as well as outlining possible heuristics to extend
these methodologies to more general examples of non-linear systems.



LIST OF TABLES

2



Preface

This dissertation is structured in two parts. The first part, simply titled ”Motion Planning”
can be considered as a brief introduction to the general subject and introduce the main
concepts an terminology that will be given for granted in the second part. This exposition
essentially summarizes the contents presented more extensively in [1], with a particular
focus on the the so called Sampling-Base Planning Algorithms, which are the the class of
algorithm of greatest interest for this work. This introductory material serves a twofolds
purpose: On the one hand it makes the whole dissertation conceptually self-contained;
on the other hand it provides a thematic context for the analysis presented in the second
parts, that the author believes to be worth including, going the topics of this work partially
beyond the University’s program.

The second part, as opposed to the first, presents many original findings, being in fact
a collection of the theoretical and experimental results obtained by the author during the
period spent at the Autonomous System Lab of Stanford University.

The author is keen to express his gratitude towards the researchers of he ASL for their
availability and technical support, with a particular reference to Prof. Marco Pavone and
Dr. Edward Schmerling, and to the Italian Space Agency (ASI) for his generous financial
sponsorship, in absence of which this project would have hardly taken off.

Ernesto Poccia

3



LIST OF TABLES

4



Part I

Motion Planning

5





Chapter 1

Introduction

In robotics, motion planning is the term used to describe the problem of determining a
sequence of actions in order to steer an autonomous system1 from a given initial configura-
tion to a desired goal configuration while avoiding collision with obstacles. There are many
versions of this very general problem, accordingly to the discrete or continuous nature of
system’s configuration space, to the presence of kino-dynamical constraints on its motion,
or whether the planning task is performed trying to optimize a particular criterium like
energy or time consumption.

However, all these different problems can be placed in the same conceptual frame char-
acterized by few basic elements:

State The state of a system can be imagined as a set of parameters that completely and
uniquely qualify the system at a certain time, according to the mathematical model
used to describe the system itself. The state space is the set of all the possible state
of the system or to put it another way, the state space captures all possible situations
that could arise.

Time All planning problem involve a sequence of decisions that must be applied over
time. Time can be explicitly modeled as in the problem of driving a vehicle through
an obstacle course or, implicitly by simply reflecting the chronological sequence of
actions applied to the system.

Actions also referred as inputs or controls, determine the passage of the system from
the current state to the next one. Their effect is described either by a state transi-
tion function, as in the case of discrete motion planning, or by ordinary differential
equations as in continuous-time systems.

Initial and goal states A planning problems usually involves starting in some initial
state and trying to arrive at a specified goal state or any state in a set of goal states.
The actions are selected in a way that tries to make this happen.

A plan a strategy adopted to reach the goal state. A plan can simply consist of sequence
of actions to be taken, however if it is impossible to predict future states, a plane can
specify as a function of the state, in this case it is customary to talk of feedback plans.

1By the name of autonomous system wee will refer to any robot that performs behaviors or task with a
high degree of autonomy. Examples of these systems are given by spacecraft, drones and industrials robots.
In the following we will designate any of those systems simply as robots

7



CHAPTER 1. INTRODUCTION

Finally depending of the desired outcome of the plan we make a distinction between:

Feasible motion planning problem: Find a plan that arrives at a goal state.

Optimal motion planning problem: Find a feasible plan that optimizes performances
in some specified manner, in addition to arriving in a goal state.

As can be easily understood, achieving optimality is even more challenging than mere
feasibility.

8



1.1. EXAMPLES OF APPLICATION
10 S. M. LaValle: Planning Algorithms

5

4

1

3

2

(a) (b)

Figure 1.6: (a) Several mobile robots attempt to successfully navigate in an indoor
environment while avoiding collisions with the walls and each other. (b) Imagine
using a lantern to search a cave for missing people.

(a) (b) (c)

(d) (e) (f)

Figure 1.7: A mobile robot can reliably construct a good map of its environ-
ment (here, the Intel Research Lab) while simultaneously localizing itself. This
is accomplished using laser scanning sensors and performing efficient Bayesian
computations on the information space [351].

Figure 1.1: Several mobile robots attempt to successfully navigate in an indoor environment while
avoiding collisions with the walls and each other. (b) Imagine using a lantern to search a cave for
missing people.

1.1 Examples of application

In order to fully appreciate the importance and the ubiquity of the motion planning prob-
lem, as formulated previously, in this section are provided a certain number of examples
from the most different fields of application.

1.1.1 Navigate mobile robots

A common task for mobile robots is to request them to navigate in an indoor environment,
as shown in Figure 1.1a A robot might be asked to perform tasks such as building a
map of the environment, determining its precise location within a map, or arriving at a
particular place. Most robots operate in spite of large uncertainties. At one extreme, it
may appear that having many sensors is beneficial because it could allow precise estimation
of the environment and the robot position and orientation. This is the premise of many
existing systems, as shown for the robot system in Figure 1.2, which constructs a map of
its environment. It may alternatively be preferable to develop low-cost and reliable robots
that achieve specific tasks with little or no sensing.

1.1.2 Flighting through the Air or in Space

Planning algorithms can help to navigate autonomous helicopters through obstacles. They
can also compute thrusts for a spacecraft so that collisions are avoided around a complicated
structure, such as a space station. Mission planning for interplanetary spacecraft, including
solar sails, can even be performed using planning algorithms.

9



CHAPTER 1. INTRODUCTION

10 S. M. LaValle: Planning Algorithms

5

4

1

3

2

(a) (b)

Figure 1.6: (a) Several mobile robots attempt to successfully navigate in an indoor
environment while avoiding collisions with the walls and each other. (b) Imagine
using a lantern to search a cave for missing people.

(a) (b) (c)

(d) (e) (f)

Figure 1.7: A mobile robot can reliably construct a good map of its environ-
ment (here, the Intel Research Lab) while simultaneously localizing itself. This
is accomplished using laser scanning sensors and performing efficient Bayesian
computations on the information space [351].

10



1.2. ORGANIZATION OF THE THESIS1.3. BASIC INGREDIENTS OF PLANNING 17

Caffeine Ibuprofen AutoDock

Nicotine THC AutoDock

Figure 1.14: On the left, several familiar drugs are pictured as ball-and-stick
models (courtesy of the New York University MathMol Library [734]). On the
right, 3D models of protein-ligand docking are shown from the AutoDock software
package (courtesy of the Scripps Research Institute).

1.3 Basic Ingredients of Planning

Although the subject of this book spans a broad class of models and problems,
there are several basic ingredients that arise throughout virtually all of the topics
covered as part of planning.

State Planning problems involve a state space that captures all possible situa-
tions that could arise. The state could, for example, represent the position and
orientation of a robot, the locations of tiles in a puzzle, or the position and ve-
locity of a helicopter. Both discrete (finite, or countably infinite) and continuous
(uncountably infinite) state spaces will be allowed. One recurring theme is that
the state space is usually represented implicitly by a planning algorithm. In most
applications, the size of the state space (in terms of number of states or combi-
natorial complexity) is much too large to be explicitly represented. Nevertheless,
the definition of the state space is an important component in the formulation of
a planning problem and in the design and analysis of algorithms that solve it.

Time All planning problems involve a sequence of decisions that must be applied
over time. Time might be explicitly modeled, as in a problem such as driving a
car as quickly as possible through an obstacle course. Alternatively, time may be
implicit, by simply reflecting the fact that actions must follow in succession, as
in the case of solving the Rubik’s cube. The particular time is unimportant, but
the proper sequence must be maintained. Another example of implicit time is a

1.1.3 Designing better drugs

Planning algorithms are even impacting fields as far away from robotics as computational
biology. Two major problems are protein folding and drug design. In both cases, scientists
attempt to explain behaviors in organisms by the way large organic molecules interact. Such
molecules are generally flexible. Drug molecules are small (see Figure 1.3), and proteins
usually have thousands of atoms. The docking problem involves determining whether a
flexible molecule can insert itself into a protein cavity while satisfying other constraints,
such as maintaining low energy. algorithms.

1.2 Organization of the Thesis

This thesis is mainly concerned with the study of algorithms for motion planning under
differential constraint, however we will arrive to this problem gradually, beginning our
analysis from the simpler, purely geometry case in which issues regarding the dynamics of
the system are neglected. There are two main reasons why the author believe this approach
is preferable with respect to dealing directly with the differentially constrained case. First
of all, the basic problem whereby a robot does not have any constraint on its motion is well
understood and solved for a large number of practical scenarios, consequently this material
happens to be more suited to introduce the main aspects of a planning problem. Secondly,
many of the concepts and tools developed in this context have their counterparts in the
kino-dynamic formulation.

One of the first problems one has to deal with is the transition from discrete to con-
tinuous state spaces. The conceptual roadmap followed in this dissertations start from the
analysis of planning algorithm for discrete systems, that can be handled as classical graph
research problem, followed by the introduction of the configuration space for continuous

11



CHAPTER 1. INTRODUCTION

systems like rigid bodies and chains of rigid bodies, and finally by a possible strategy to
reduce the continuous problem to a discrete one by sampling the configuration space.

12



Chapter 2

Discrete Planning

The planning problem considered here is the simplest to describe because the state space
will be finite, or at most countably infinite. Therefore, no geometric models or differential
equations will be needed to characterize the discrete planning problems. However, despite
of its relative simplicity, this chapter allows us to introduce all the central concepts com-
mon to all the planning problems, regardlessly of their level of complexity. Moreover, the
techniques used in the context of discrete planning represent a fundamental ingredient of
the approach adopted by sampling-based motion planning algorithms, i.e. a very impor-
tant class of algorithm for planning in continuous spaces, which are the main focus of this
work. As mentioned before, there are two different problems to be addressed: feasibility
and optimality.

2.1 Discrete Feasible Planning

The discrete feasible planning model will be defined using state-space models.The basic
idea is that each distinct situation for the world is called a state, denoted by x, and the set
of all possible states is called a state space, X. The world may be transformed through the
application of actions that are chosen by the planner. Each action, u, when applied from
the current state, x, produces a new state, x′, as specified by a state transition function,
f . It is convenient to use f to express a state transition equation,

x′ = f(x, u). (2.1)

Let U(x) denote the action space for each state x, which represents the set of all actions
that could be applied from x. For distinct x, x′ ∈ X, U(x) and U(x′) are not necessarily
disjoint; the same action may be applicable in multiple states.

Therefore, it is convenient to define the set U of all possible actions over all states:

U =
⋃

x∈X
U(x). (2.2)

As part of the planning problem, a set XG ⊂ X of goal states is defined. The task of
a planning algorithm is to find a finite sequence of actions that when applied, transforms
the initial state xI to some state in XG. The model is summarized as:

Formulation 1. (Discrete Feasible Planning)

13



CHAPTER 2. DISCRETE PLANNING
30 S. M. LaValle: Planning Algorithms

Figure 2.1: The state transition graph for an example problem that involves walk-
ing around on an infinite tile floor.

Example 2.2 (Rubik’s Cube Puzzle) Many puzzles can be expressed as dis-
crete planning problems. For example, the Rubik’s cube is a puzzle that looks like
an array of 3 × 3 × 3 little cubes, which together form a larger cube as shown in
Figure 1.1a (Section 1.2). Each face of the larger cube is painted one of six colors.
An action may be applied to the cube by rotating a 3 × 3 sheet of cubes by 90
degrees. After applying many actions to the Rubik’s cube, each face will generally
be a jumble of colors. The state space is the set of configurations for the cube
(the orientation of the entire cube is irrelevant). For each state there are 12 pos-
sible actions. For some arbitrarily chosen configuration of the Rubik’s cube, the
planning task is to find a sequence of actions that returns it to the configuration

Figure 2.2: Interesting planning problems that involve exploring a labyrinth can
be made by shading in tiles.

Figure 2.1: The state transition graph for an example problem that involves walk- ing around on
an infinite tile floor.

1. A nonempty state space X, which is a finite or countably infinite set of states.

2. For each state x ∈ X, a finite action space U(x).

3. A state transition function f that produces a state f(x, u) ∈ X for every x ∈ X and
u ∈ U(x). The state transition equation is derived from f as x′ = f(x, u).

4. An initial state xI ∈ X.

5. A goal set XG ⊂ X.

It is often convenient to express Formulation 1 as a directed state transition graph. The
set of vertices is the state space X. A directed edge from x ∈ X to x′ ∈ X exists in the
graph if and only if there exists an action u ∈ U(x) such that x′ = f(x, u). The initial
state and goal set are designated as special vertices in the graph, which completes the
representation of Formulation 1 in graph form.

2.2 Searching for Feasible Plans

The methods presented in this section are just graph search algorithms, but with the under-
standing that the state transition graph is revealed incrementally through the application
of actions, instead of being fully specified in advance. The presentation in this section can
therefore be considered as visiting graph search algorithms from a planning perspective.
An important requirement for these or any search algorithms is to be systematic. If the
graph is finite, this means that the algorithm will visit every reachable state, which enables
it to correctly declare in finite time whether or not a solution exists. To be systematic, the
algorithm should keep track of states already visited; otherwise, the search may run forever
by cycling through the same states. Ensuring that no redundant exploration occurs is suffi-
cient to make the search systematic. If the graph is infinite, then we are willing to tolerate

14



2.2. SEARCHING FOR FEASIBLE PLANS

a weaker definition for being systematic. If a solution exists, then the search algorithm
still must report it in finite time; however, if a solution does not exist, it is acceptable for
the algorithm to search forever. This systematic requirement is achieved by ensuring that,
in the limit, as the number of search iterations tends to infinity, every reachable vertex in
the graph is explored. Since the number of vertices is assumed to be countable, this must
always be possible.

2.2.1 General Forward Search

The following is a general template of search algorithms, expressed using the state-space
representation.

Algorithm 1 FORWARD SEARCH

1: Q.Insert(XI) and mark xI as visited
2: while Q not empty do
3: x← Q.GetF irst()
4: if x ∈ XG then
5: return success
6: for all u ∈ U(x) do
7: x′ ← f(x, u)
8: if x′ not visited then
9: Q.Insert(x′)

10: else
11: Resolve duplicate x′

return failure

At any point during the search, there will be three kinds of states:

Unvisited: States that have not been visited yet. Initially, this is every state except xI .

Dead: States that have been visited, and for which every possible next state has also been
visited. A next state of x is a state x′ for which there exists a u ∈ U(x) such that
x′ = f(x, u). In a sense, these states are dead because there is nothing more that
they can contribute to the search; there are no new leads that could help in finding
a feasible plan.

Alive: States that have been encountered, but possibly have unvisited next states. These
are considered alive. Initially, the only alive state is xI .

The set of alive states is stored in a priority queue, Q, for which a priority function
must be specified. The only significant difference between various search algorithms is
the particular function used to sort Q. Many variations will be described later, but for
the time being, it might be helpful to pick one. Therefore, assume for now that Q is a
common FIFO (First-In First-Out) queue; whichever state has been waiting the longest
will be chosen when Q.GetF irst() is called. The rest of the general search algorithm is
quite simple. Initially, Q contains the initial state xI . A while loop is then executed,
which terminates only when Q is empty. This will only occur when the entire graph has
been explored without finding any goal states, which results in a FAILURE (unless the
reachable portion of X is infinite, in which case the algorithm should never terminate). In

15



CHAPTER 2. DISCRETE PLANNING

each while iteration, the highest ranked element, x, of Q is removed. If x lies in XG, then
it reports success and terminates; otherwise, the algorithm tries applying every possible
action, u ∈ U(x). For each next state, x′ = f(x, u), it must determine whether x′ is being
encountered for the first time. If it is unvisited, then it is inserted into Q; otherwise, there
is no need to consider it because it must be either dead or already in Q.

One important detail is that the existing algorithm only indicates whether a solution
exists, but does not seem to produce a plan, which is a sequence of actions that achieves
the goal. This can be fixed by inserting a line after line 7 that associates with x′ its parent,
x. If this is performed each time, one can simply trace the pointers from the final state
to the initial state to recover the plan. For convenience, one might also store which action
was taken, in addition to the pointer from x′to x.

Lines 8 and 9 are conceptually simple, but how can one tell whether x′ has been visited?
For some problems the state transition graph might actually be a tree, which means that
there are no repeated states. Although this does not occur frequently, it is wonderful when
it does because there is no need to check whether states have been visited. If the states in
X all lie on a grid, one can simply make a lookup table that can be accessed in constant
time to determine whether a state has been visited. In general, however, it might be quite
difficult because the state x′ must be compared with every other state in Q and with all of
the dead states. If the representation of each state is long, as is sometimes the case, this will
be very costly. A good hashing scheme or another clever data structure can greatly alleviate
this cost, but in many applications the computation time will remain high. One alternative
is to simply allow repeated states, but this could lead to an increase in computational cost
that far outweighs the benefits. Even if the graph is very small, search algorithms could
run in time exponential in the size of the state transition graph, or the search may not
terminate at all, even if the graph is finite.

2.3 Particular Forward Search Method

This section presents several search algorithms, each of which constructs a search tree.
Each search algorithm is a special case of algorithm 1, obtained by defining a different
sorting function for Q. Most of these are just classical graph search algorithms [16].

2.3.1 Breadth First

The method given in Section 2.2.1 specifies Q as a First-In First- Out (FIFO) queue, which
selects states using the first-come, first-serve principle. This causes the search frontier to
grow uniformly and is therefore referred to as breadth-first search. All plans that have
k steps are exhausted before plans with k + 1 steps are investigated. Therefore, breadth
first guarantees that the first solution found will use the smallest number of steps. On
detection that a state has been revisited, there is no work to do in line 12. Since the
search progresses in a series of wavefronts, breadth-first search is systematic. In fact, it
even remains systematic if it does not keep track of repeated states (however, it will waste
time considering irrelevant cycles).

The asymptotic running time of breadth-first search is O(|V |+ |E|), in which |V | and
|E| are the numbers of vertices and edges, respectively, in the state transition graph (recall,
however, that the graph is usually not the input; for example, the input may be the rules

16



2.3. PARTICULAR FORWARD SEARCH METHOD

of the Rubik’s cube). This assumes that all basic operations, such as determining whether
a state has been visited, are performed in constant time. In practice, these operations will
typically require more time and must be counted as part of the algorithm’s complexity.
The running time can be expressed in terms of the other representations. Recall that
|V | = |X| is the number of states. If the same actions U are available from every state, then
|E| = |U ||X|. If the action sets U(x1) and U(x2) are pairwise disjoint for any x1, x2 ∈ X,
then |E| = |U |.

2.3.2 Depth First

By making Q a stack (Last-In, First-Out; or LIFO), aggressive exploration of the state
transition graph occurs, as opposed to the uniform expansion of breadth-first search. The
resulting variant is called depth-first search because the search dives quickly into the graph.
The preference is toward investigating longer plans very early. Although this aggressive
behavior might seem desirable, note that the particular choice of longer plans is arbitrary.
Actions are applied in the forall loop in whatever order they happen to be defined. Once
again, if a state is revisited, there is no work to do in line 12. Depth-first search is systematic
for any finite X but not for an infinite X because the search could easily focus on one
direction and completely miss large portions of the search space as the number of iterations
tends to infinity. The running time of depth first search is also O(|V |+ |E|).

2.3.3 Dijkstra’s Algorithm

Up to this point, there has been no reason to prefer one action over any other in the search.
Section 2.3 will formalize optimal discrete planning and will present several algorithms that
find optimal plans. Before go- ing into that, we present a systematic search algorithm that
finds optimal plans because it is also useful for finding feasible plans. The result is the
well-known Dijkstra’s algorithm for finding single-source shortest paths in a graph [which
is a special form of dynamic programming.

Suppose that every edge, e ∈ E, in the graph representation of a discrete planning
problem has an associated nonnegative cost l(e), which is the cost to apply the action. The
cost l(e) could be written using the state-space representation as l(x, u), indicating that it
costs l(x, u) to apply action u from state x. The total cost of a plan is just the sum of the
edge costs over the path from the initial state to a goal state.

The priority queue, Q, will be sorted according to a function C : X → [0,∞], called the
cost-to-come. For each state x, the value C∗(x) is called the optimal1 cost-to-come from the
initial state xI . This optimal cost is obtained by summing edge costs,l(e), over all possible
paths from xI to x and using the path that produces the least cumulative cost. If the
cost is not known to be optimal, then it is written as C(x). The cost-to-come is computed
incrementally during the execution of the search algorithm1. Initially, C∗(xI) = 0. Each
time the state x′ is generated, a cost is computed as C(x′) = C∗(x) + l(e), in which e is
the edge from x to x′ (equivalently, we may write C(x′) = C∗(x) + l(x, u)). Here, C(x′)
represents the best cost-to-come that is known so far, but we do not write C∗ because it
is not yet known whether x′ was reached optimally. Due to this, some work is required in
line 12. If x′ already exists in Q, then it is possible that the newly discovered path to x′ is
more efficient. If so, then the cost-to-come value C(x′) must be lowered for x′, and Q must
be reordered accordingly.

17



CHAPTER 2. DISCRETE PLANNING

When does C(x) finally become C∗(x) for some state x? Once x is removed from Q
using Q.GetF irst(), the state becomes dead, and it is known that x cannot be reached with
a lower cost. This can be argued by induction. For the initial state, C∗(xI) is known, and
this serves as the base case. Now assume that every dead state has its optimal cost-to-come
correctly determined. This means that their cost-to-come values can no longer change. For
the first element, x, of Q, the value must be optimal because any path that has a lower total
cost would have to travel through another state in Q, but these states already have higher
costs. All paths that pass only through dead states were already considered in producing
C(x). Once all edges leaving x are explored, then x can be declared as dead, and the
induction continues.

The running time is O(|V | log |V |+ |E|), in which |V | and |E| are the numbers of edges
and vertices, respectively, in the graph representation of the discrete planning problem.
This assumes that the priority queue is implemented with a Fibonacci heap, and that all
other operations, such as determining whether a state has been visited, are performed in
constant time. If other data structures are used to implement the priority queue, then
higher running times may be obtained.

2.3.4 Other General Search Schemes

In alternative to forward searching methods there backward and bilateral methods. The
former are essentially similar to the methods seen so far, but they start from the goal state
xG and work backward until the initial state is reached. The former build two (or more)
trees that are merged at certain point in order to find a possible path. One tree is grown
from the initial state, and the other is grown from the goal state. The search terminates
with success when the two trees meet.

2.4 Discrete Optimal Planning

This section extends Formulation 1 to allow optimal planning problems to be defined.
Rather than being satisfied with any sequence of actions that leads to the goal set, suppose
we would like a solution that optimizes some criterion, such as time, distance, or energy
consumed. Three important extensions will be made: 1) A stage index will be used to
conveniently indicate the current plan step; 2) a cost functional will be introduced, which
behaves like a taxi meter by indicating how much cost accumulates during the plan execu-
tion; and 3) a termination action will be introduced, which intuitively indicates when it is
time to stop the plan and fix the total cost.

The presentation involves three phases. First, the problem of finding optimal paths of
a fixed length is covered in Section 2.3.1. The approach, called value iteration, involves
iteratively computing optimal cost-to-go functions over the state space. Although this
case is not very useful by itself, it is much easier to understand than the general case of
variable-length plans. Once the concepts from this section are understood, their extension
to variable-length plans will be much clearer and is covered in Section 2.3.2. Finally, Section
2.3.3 explains the close relationship between value iteration and Dijkstra?s algorithm, which
was covered in Section 2.2.1.

The fixed-length optimal planning formulation will be given shortly, but first we intro-
duce some new notation. Let πK denote a K-step plan, which is a sequence (u1, u2, ..., uK)

18



2.4. DISCRETE OPTIMAL PLANNING

of K actions. If πK and xI are given, then a sequence of states, (x1, x2, ..., x−K + 1), can
be derived using the state transition function, f . Initially, x1 = xI , and each subsequent
state is obtained by xk+1 = f(xk, uk).

The model is now given; the most important addition with respect to Formulation 1 is
L, the cost functional.

Formulation 2. (Discrete Fixed-Length Optimal Planning)

1. All of the components from Formulation 1 are inherited directly: X, U(x), f , xI , and
XG, except here it is assumed that X is finite (some algorithms may easily extend to
the case in which X is countably infinite, but this will not be considered here).

2. A number, K, of stages, which is the exact length of a plan (measured as the number
of actions, u1, u2, ..., uK). States may also obtain a stage index. For example, xk+1

denotes the state obtained after uk is applied.

3. Let L denote a stage-additive cost (or loss) functional, which is applied to a K-step
plan, πK . This means that the sequence (u1, ..., uK ) of actions and the sequence
(x1, ..., xK+1) of states may appear in an expression of L. For convenience, let F
denote the final stage, F = K + 1 (the application of uK advances the stage to
K + 1). The cost functional is

L(πK) =
K∑

k=1

l(xk, uk) + lF (xF ). (2.3)

The cost term l(xk, uk) yields a real value for every xk ∈ X and uk ∈ U(xk). The
final term lF (xF ) is outside of the sum and is defined as lF (xF ) = 0 if xF ∈ XG, and
lF (xF ) =∞ otherwise.

Now the task is to find a plan that minimizes L.

2.4.1 Optimal Fixed-Length Plans

Consider computing an optimal plan under Formulation 2. One could naively generate all
length-K sequences of actions and select the sequence that produces the best cost, but
this would require O(|U |K) running time (imagine K nested loops, one for each stage),
which is clearly prohibitive. Luckily, the dynamic programming principle helps. The main
observation is that portions of optimal plans are themselves optimal. It would be absurd
to be able to replace a portion of an optimal plan with a portion that produces lower total
cost; this contradicts the optimality of the original plan.

The principle of optimality leads directly to an iterative algorithm, called value iteration,
that can solve a vast collection of optimal planning problems. The idea is to iteratively
compute optimal cost-to-go (or cost-to-come) functions over the state space. In some cases,
the approach can be reduced to Dijkstra’s algorithm; however, this only occurs under some
special conditions.

Backward value iteration

As for the search methods, there are both forward and backward versions of the approach.
We will cover backward case, the forward case is analogous.

19



CHAPTER 2. DISCRETE PLANNING

The key to deriving long optimal plans from shorter ones lies in the construction of
optimal cost-to-go functions over X. For k from 1 to F , let G∗k denote the cost that
accumulates from stage k to F under the execution of the optimal plan:

G∗k(xk) = min
uk,...,uK

{ K∑

i=k

l(xi, ui) + lF (xF )
}
. (2.4)

The optimal cost-to-go for the boundary condition of k = F reduces to

G∗F (xF ) = lF (xF ). (2.5)

Since there are no stages in which an action can be applied, the final stage cost is immedi-
ately received.

Now consider an algorithm that makes K passes over X, each time computing G∗k from
G∗k+1, as k ranges from F down to 1. In the first iteration, G∗F is copied from lF without
significant effort. In the second iteration, G∗K is computed for each xK ∈ X as

G∗K(xK) = min
uK

{
l(xK , uK) + lF (xF )

}
. (2.6)

Since lF = G∗F and xF = f(xK , uK),substitutions can be made into (2.7) to obtain

G∗K(xK) = min
uK

{
l(xK , uK) +G∗F (f(xK , uK))

}
. (2.7)

which is straightforward to compute for each xK ∈ X. This computes the costs of all
optimal one-step plans from stage K to stage F = K + 1. It will be shown next that G∗k
can be computed similarly once G∗k+1 is given. Note that (2.5) it can be written as

G∗k(xk) = min
uk,

{
min

uk+1,...,uK

{
l(xk, uk) +

K∑

i=k+1

l(xi, ui) + lF (xF )
}}

. (2.8)

by pulling the first term out of the sum and by separating the minimization over uk from
the rest, which range from uk+1 to uK . The second min does not affect the l(xk, uk) term;
thus, l(xk, uk) can be pulled outside to obtain

G∗k(xk) = min
uk,

{
l(xk, uk) + min

uk+1,...,uK

{ K∑

i=k+1

l(xi, ui) + lF (xF )
}}

. (2.9)

The inner min is exactly the definition of the optimal cost-to-go function G∗k+1. Upon
substitution, this yields the recurrence

G∗K(xk) = min
uk

{
l(xK , uK) +G∗k+1(xk+1)

}
, (2.10)

in which xk+1 = f(xk, uk). Now that the right side of (2.11) depends only on xk, uk, and
G∗k+1, the computation of G∗k easily proceeds in O(|X||U |) time. This computation is called
a value iteration. Note that in each value iteration, some states receive an infinite value
only because they are not reachable; a (K − k)- step plan from xk to XG does not exist.
This means that there are no actions, uk ∈ U(xk), that bring xk to a state xk+1 ∈ X from
which a (K − k − 1)-step plan exists that terminates in XG.

Summarizing, the value iterations proceed from G∗F to G∗1 in O(K|X||U |) time. The
resulting G∗1 may be applied to yield G∗1(xI), the optimal cost to go to the goal from xI .
It also conveniently gives the optimal cost-to-go from any other initial state. This cost is
infinity for states from which XG cannot be reached in K stages.

20



2.5. TRANSITION TO CONTINUOUS SPACES

2.4.2 Optimal Plans of Unspecified Lengths

The value-iteration method for fixed-length plans can be generalized nicely to the case in
which plans of different lengths are allowed. There will be no bound on the maximal length
of a plan; therefore, the current case is truly a generalization of Formulation 1 because
arbitrarily long plans may be attempted in efforts to reach XG. The model for the general
case does not require the specification of K but instead introduces a special action, uT .

Formulation 3. (Discrete Optimal Planning)

1. All of the components from Formulation 1 are inherited directly: X, U(x), f , xI , and
XG. Also, the notion of stages from Formulation 2 is used.

2. Let L denote a stage-additive cost functional, which may be applied to any K-step
plan, πK , to yield

L(πK) =
K∑

k=1

l(xk, uk) + lF (xF ). (2.11)

In comparison with L from Formulation 2, the present expression does not consider
K as a predetermined constant. It will now vary, depending on the length of the plan.
Thus, the domain of L is much larger.

3. Each U(x) contains the special termination action, uT . If uT is applied at xk, then
the action is repeatedly applied forever, the state remains unchanged, and no more
cost accumulates. Thus, for alli ≥ k, ui = uT , xi = xk, and l(xi, uT ) = 0.

The next step is to remove the dependency on K. Consider running backward value
iterations indefinitely. At some point, G∗1 will be computed, but there is no reason why the
process cannot be continued onward to G∗0, G

∗
−1, and so on.

Eventually, enough iterations will have been executed so that an optimal plan is known
from every state that can reach XG. From that stage, say k, onward, the cost-to-go
values from one value iteration to the next will be stationary, meaning that for all i ≤ k,
G∗i−1(x) = G∗i(x) for all x ∈ X. Once the stationary condition is reached, the cost-to-go
function no longer depends on a particular stage k. In this case, the stage index may be
dropped, and the recurrence becomes

G∗(x) = min
u

{
l(x, u) +G∗(f(x, u))

}
. (2.12)

Since the particular stage index is unimportant, let k = 0 be the index of the final stage,
which is the stage at which the backward value iterations begin. Hence, G∗0 is the final
stage cost, which is obtained directly from lF . Let −K denote the stage index at which
the cost-to-go values all become stationary. At this stage, the optimal cost-to-go function,
G∗ : X → R ∪ {∞}, is expressed by assigning G∗ = G∗−K . In other words, the particular
stage index no longer matters. The value G∗(x) gives the optimal cost to go from state
x ∈ X to the specific goal state xG.

2.5 Transition to Continuous Spaces

A central theme throughout motion planning is to transform the continuous model into a
discrete one. Due to this transformation, many algorithms from Chapter 2 are embedded in
motion planning algorithms. There are two alternatives to achieving this transformation:

21



CHAPTER 2. DISCRETE PLANNING

• combinatorial motion planning ;

• sampling-based motion planning

Combinatorial motion planning builds a discrete representation that exactly represents
the original problem. This leads to complete planning approaches, which are guaranteed
to find a solution when it exists, or correctly report failure if one does not exist. Sampling-
based motion planning instead refers to algorithms that use collision detection methods to
sample the configuration space and conduct discrete searches that utilize these samples.
In this case, completeness is sacrificed, but it is often replaced with a weaker notion, such
as resolution completeness or probabilistic completeness.Combinatorial methods can solve
virtually any motion planning problem, and in some restricted cases, very elegant solutions
may be efficiently constructed in practice. However, for the majority of ?industrial-grade?
motion planning problems, the running times and implementation difficulties of these al-
gorithms make them un- appealing. Sampling-based algorithms have fulfilled much of this
need in recent years by solving challenging problems in several settings, such as automobile
assembly, humanoid robot planning, and conformational analysis in drug design.

This thesis will focus only on sampling-based motion planning, the reader can refer to
[1] for more detail about combinatorial methods.

22



Chapter 3

The Configuration Space

The state space for motion planning is a set of possible transformations that could be
applied to the robot. This will be referred to as the configuration space, or briefly C-space.
Once the configuration space is clearly understood, many motion planning problems that
appear different in terms of geometry and kinematics can be solved by the same planning
algorithms. This level of abstraction is therefore very important.

3.1 Geometric Modeling

Formulating and solving motion planning problems require defining and manipulating com-
plicated geometric models of a system of bodies in space.

The first step is to define the world W for which there are two possible choices: a
2D world, in which W = R2, and a 3D-world, in which W = R3. These choices should
be sufficient for most problems; however, one might also want to allow more complicated
worlds, such as the surface of a sphere or even a higher dimensional space. Unless otherwise
stated, the world generally contains two kinds of entities:

obstacles: Portions of the world that are permanently occupied, for example, as in the
walls of a building.

robots: Bodies that are modeled geometrically and are controllable via a motion plan.

Both obstacles and robots will be considered as (closed) subsets of W. Let O refer to
the obstacle region, which is a subset of W. Let A refer to the robot, which is a subset
of R2 or R3, matching the dimension of W. Although O remains fixed in the world, W,
motion planning problems will require moving the robot, A. The motion of a robot can
be described in terms of kinematic transformation applied to the ”original” configuration
of the robot. Even if this framework allows modeling of very complicate systems such as
chains of bodies or flexible organic molecules, in the following the focus will be only on rigid
bodies. The reason behind this choice lies in part in its simplicity and familiarity, and in
part in the fact that many robots can be considered as assembly of many parts singularly
modeled as rigid.

23



CHAPTER 3. THE CONFIGURATION SPACE

3.2 Rigid-Body Transformation

Suppose that a rigid robot, A, is defined as a subset of R2 or R3. A rigid-body transforma-
tion is a function, h : A →W, that maps every point of A into W with two requirements:
1) The distance between any pair of points of A must be preserved, and 2) the orientation
of A must be preserved.

Using standard function notation, h(a) for some a ∈ A refers to the point in W that is
occupied by a. Let

h(A) = {h(a) ∈ W|a ∈ A} (3.1)

which is the image of h and indicates all points in W occupied by the transformed robot.
It will become important to study families of transformations, in which some parameters

are used to select the particular transformation. Therefore, it makes sense to generalize
h to accept two variables: a parameter vector, q ∈ Rn, along with a ∈ A. The resulting
transformed point a is denoted by h(q, a), and the entire robot is transformed to h(q, A) ∈
W.

It was assumed so far that A is defined in R2 or R3, but before it is transformed, it is
not considered to be a subset of W. The transformation h places the robot in W. In the
coming material, it will be convenient to indicate this distinction using coordinate frames.
The origin and coordinate basis vectors of W will be referred to as the world frame.Thus,
any point w ∈ W is expressed in terms of the world frame.

The coordinates used to define A are initially expressed in the body frame, which rep-
resents the origin and coordinate basis vectors of R2 or R3. In the case of A ⊂ R2, it
can be imagined that the body frame is painted on the robot. Transforming the robot is
equivalent to converting its model from the body frame to the world frame. This has the
effect of placing A into W at some position and orientation.

3.2.1 2D Transformations

Translation

A rigid robot A ⊂ R2 is translated by using two parameters, xt, yt ∈ R. Taking q = (xt, yt)
as the transformation parameter, h is defined as

h(x, y) = (x+ xt, y + yt). (3.2)

Now consider a solid representation of A, defined in terms of primitives. Each primitive of
the form

Hi = {(x, y) ∈ R2|f(x, y) ≤ 0} (3.3)

is transformed to
h(Hi) = {(x, y) ∈ W|f(x− xt, y − yt) ≤ 0} (3.4)

The translated robot is denoted as A(xt, yt). Translation by (0, 0) is the identity trans-
formation, which results in A(0, 0) = A, if it is assumed that A ⊂ W (recall that A does
not necessarily have to be initially embedded in W). It will be convenient to use the term
degrees of freedom to refer to the maximum number of independent parameters that are
needed to completely characterize the transformation applied to the robot. If the set of
allowable values for xt and yt forms a two-dimensional subset of R2, then the degrees of
freedom is two.

24



3.2. RIGID-BODY TRANSFORMATION
3.2. RIGID-BODY TRANSFORMATIONS 95

Moving
the Robot

Moving the
Coordinate
Frame

(a) Translation of the robot (b) Translation of the frame

Figure 3.7: Every transformation has two interpretations.

which is the familiar equation for a disc centered at (xt, yt). In this example, the
inverse, h−1 is used, as described in Section 3.2.1. !

The translated robot is denoted as A(xt, yt). Translation by (0, 0) is the iden-
tity transformation, which results in A(0, 0) = A, if it is assumed that A ⊂ W
(recall that A does not necessarily have to be initially embedded in W). It will be
convenient to use the term degrees of freedom to refer to the maximum number of
independent parameters that are needed to completely characterize the transfor-
mation applied to the robot. If the set of allowable values for xt and yt forms a
two-dimensional subset of R2, then the degrees of freedom is two.

Suppose that A is defined directly in W with translation. As shown in Figure
3.7, there are two interpretations of a rigid-body transformation applied to A: 1)
The world frame remains fixed and the robot is transformed; 2) the robot remains
fixed and the world frame is translated. The first one characterizes the effect of
the transformation from a fixed world frame, and the second one indicates how
the transformation appears from the robot’s perspective. Unless stated otherwise,
the first interpretation will be used when we refer to motion planning problems
because it often models a robot moving in a physical world. Numerous books cover
coordinate transformations under the second interpretation. This has been known
to cause confusion because the transformations may sometimes appear “backward”
from what is desired in motion planning.

Rotation The robot, A, can be rotated counterclockwise by some angle θ ∈
[0, 2π) by mapping every (x, y) ∈ A as

(x, y) #→ (x cos θ − y sin θ, x sin θ + y cos θ). (3.30)

Figure 3.1: Every transformation has two interpretations.

Rotation

The robot, A, can be rotated counterclockwise by some angle θ ∈ [0, 2π) by mapping every
(x, y) ∈ A as

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ) (3.5)

Using a 2× 2 rotation matrix,

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (3.6)

the transformation can be written as
(
x
y

)
7→ R(θ)

(
x
y

)
. (3.7)

The column vectors of R(θ) are unit vectors, and their inner product (or dot product) is
zero, indicating that they are orthogonal. Note that the rotation is performed about the
origin. Thus, when defining the model of A, the origin should be placed at the intended
axis of rotation. Using the semi-algebraic model, the entire robot model can be rotated by
transforming each primitive, yielding A(θ). The inverse rotation, R(?θ), must be applied
to each primitive.

Combining translation and rotation

Suppose a rotation by θ is performed, followed by a translation byxt, yt. This can be used
to place the robot in any desired position and orientation. If the operations are applied
successively, each (x, y) ∈ A is transformed to

(
x cos θ − y sin θ + xt
x sin θ + y cos θ + yt

)
. (3.8)

The following matrix multiplication yields the same result for the first two vector com-
ponents: 


cos θ − sin θ xt
sin θ cos θ yt

0 0 1





x
y
1


 =



x cos θ − y sin θ + xt
x sin θ + y cos θ + yt

1


 . (3.9)

25



CHAPTER 3. THE CONFIGURATION SPACE

This implies that the 3× 3 matrix,




cos θ − sin θ xt
sin θ y cos θ yt

0 0 1


 , (3.10)

represents a rotation followed by a translation. The matrix T will be referred to as a
homogeneous transformation matrix.

The transformed robot is denoted by A(xt, yt, θ), and in this case there are three degrees
of freedom.

3.2.2 3D Transformation

Rigid-body transformations for the 3D case are conceptually similar to the 2D case; how-
ever, the 3D case appears more difficult because rotations are significantly more compli-
cated.

3D translation

The robot, A, is translated by some xt, yt, zt ∈ R using

(x, y, z) 7→ (x+ xt, y + yy, z + zt). (3.11)

A primitive of the form
Hi = {(x, y) ∈ R2|f(x, y, z) ≤ 0} (3.12)

is transformed to

h(Hi) = {(x, y) ∈ W|f(x− xt, y − yt, z − z − t) ≤ 0} (3.13)

The translated robot is denoted as A(xt, yt, zt).

Yaw, Pitch and Roll rotations

A 3D body can be rotated about three orthogonal axes, as shown in Figure 3.2. Borrowing
aviation terminology, these rotations will be referred to as yaw, pitch, and roll:

Denoting with α, β, γ the Euler’s angles, the transformed robot can be indicated as
A(α, β, γ).

The homogeneous transformation matrix for 3D bodies is perfectly analogous to its 2D
counterpart. A 3D rigid body that is capable of translation and rotation therefore has six
degrees of freedom.

26



3.3. DEFINING THE CONFIGURATION SPACE
3.2. RIGID-BODY TRANSFORMATIONS 97

Yaw

z

y

x

PitchRoll

γ

β

α

Figure 3.8: Any three-dimensional rotation can be described as a sequence of yaw,
pitch, and roll rotations.

represents a rotation followed by a translation (not the other way around). Each
primitive can be transformed using the inverse of T , resulting in a transformed
solid model of the robot. The transformed robot is denoted by A(xt, yt, θ), and
in this case there are three degrees of freedom. The homogeneous transformation
matrix is a convenient representation of the combined transformations; therefore,
it is frequently used in robotics, mechanics, computer graphics, and elsewhere.
It is called homogeneous because over R3 it is just a linear transformation with-
out any translation. The trick of increasing the dimension by one to absorb the
translational part is common in projective geometry [804].

3.2.3 3D Transformations

Rigid-body transformations for the 3D case are conceptually similar to the 2D case;
however, the 3D case appears more difficult because rotations are significantly more
complicated.

3D translation The robot, A, is translated by some xt, yt, zt ∈ R using

(x, y, z) "→ (x + xt, y + yt, z + zt). (3.36)

A primitive of the form

Hi = {(x, y, z) ∈W | fi(x, y, z) ≤ 0} (3.37)

is transformed to

{(x, y, z) ∈W | fi(x− xt, y − yt, z − zt) ≤ 0}. (3.38)

The translated robot is denoted as A(xt, yt, zt).

Figure 3.2: Any three-dimensional rotation can be described as a sequence of yaw, pitch, and roll
rotations.

3.3 Defining the Configuration Space

The configuration space of a robot can be thought as a mainfold of dimension n where n
is the the number of degrees of freedom of the robot. To solve a motion planning problem,
algorithms must conduct a search in the C-space. The C-space provides a powerful abstrac-
tion that converts the complicated models that describe the mechanics of the particular
system under examination into the general problem of computing a path that traverses a
manifold. By developing algorithms directly for this purpose, they apply to a wide variety
of different kinds of robots and transformations. In order to make this discussion more
concrete, in the following we provides some examples of configuration space for two simple
but import example of robots: the 2-dimensional and 3-dimensional rigid body.

3.3.1 2D Rigid Bodies: SE(2)

Section 3.2.1 expressed how to transform a rigid body in R2 by a homogeneous transforma-
tion matrix, T . The task in this chapter is to characterize the set of all possible rigid-body
transformations.

Since any xt, yt ∈ R can be selected for translation, this alone yields a manifoldM1 = R2.
Independently, any rotation, θ ∈ [0, 2π), can be applied. Since 2π yields the same rotation
as 0, they can be identified, which makes the set of 2D rotations into a manifold, M2

= S1. To obtain the manifold that corresponds to all rigid-body motions, simply take
C = M1 ×M2 = R2 × S1. The answer to the question is that the C-space is a kind of
cylinder.

It is important to consider the topological implications of C. Since S1 is multiply
connected, R2 × S1 is multiply connected. It is difficult to visualize C because it is a 3D
manifold; however, there is a nice interpretation using identification. Start with the open
unit cube, (0, 1)3 ⊂ R3. Include the boundary points of the form (x, y, 0) and (x, y, 1),
and make the identification (x, y, 0) ∼ (x, y, 1) for all x, y ∈ (0, 1). This means that when
traveling in the x and y directions, there is a ?frontier? to the C-space; however, traveling
in the z direction causes a wraparound.

It is very important for a motion planning algorithm to understand that this wraparound

27



CHAPTER 3. THE CONFIGURATION SPACE148 S. M. LaValle: Planning Algorithms

qI

qG

Figure 4.8: A planning algorithm may have to cross the identification boundary
to find a solution path.

at the beginning of this section. Thus, the C-space of a 2D rigid body that can
translate and rotate in the plane is

C = R2 × S1. (4.17)

To be more precise, ∼= should be used in the place of = to indicate that C could
be any space homeomorphic to R2 × S1; however, this notation will mostly be
avoided.

Interpreting the C-space It is important to consider the topological impli-
cations of C. Since S1 is multiply connected, R × S1 and R2 × S1 are multiply
connected. It is difficult to visualize C because it is a 3D manifold; however,
there is a nice interpretation using identification. Start with the open unit cube,
(0, 1)3 ⊂ R3. Include the boundary points of the form (x, y, 0) and (x, y, 1), and
make the identification (x, y, 0) ∼ (x, y, 1) for all x, y ∈ (0, 1). This means that
when traveling in the x and y directions, there is a “frontier” to the C-space;
however, traveling in the z direction causes a wraparound.

It is very important for a motion planning algorithm to understand that this
wraparound exists. For example, consider R× S1 because it is easier to visualize.
Imagine a path planning problem for which C = R × S1, as depicted in Figure
4.8. Suppose the top and bottom are identified to make a cylinder, and there is
an obstacle across the middle. Suppose the task is to find a path from qI to qG. If
the top and bottom were not identified, then it would not be possible to connect
qI to qG; however, if the algorithm realizes it was given a cylinder, the task is
straightforward. In general, it is very important to understand the topology of C;
otherwise, potential solutions will be lost.

The next section addresses SE(n) for n = 3. The main difficulty is determining
the topology of SO(3). At least we do not have to consider n > 3 in this book.

4.2.2 3D Rigid Bodies: SE(3)

One might expect that defining C for a 3D rigid body is an obvious extension of the
2D case; however, 3D rotations are significantly more complicated. The resulting

Figure 3.3: A planning algorithm may have to cross the identification boundary to find a solution
path.

exists. For example, consider R×S1 because it is easier to visualize. Imagine a path planning
problem for which C = R× S1, as depicted in Figure 3.3. Suppose the top and bottom are
identified to make a cylinder, and there is an obstacle across the middle. Suppose the task
is to find a path from qI to qG. If the top and bottom were not identified, then it would not
be possible to connect qI to qG; however, if the algorithm realizes it was given a cylinder,
the task is straightforward. In general, it is very important to understand the topology of
C; otherwise, potential solutions will be lost.

3.3.2 3D Rigid Bodies: SE(3)

The C-space for a 3D rigid body is the six-dimensional mainfold C = R3×RP3, where R∗n
represents the n-dimensional real projective space. The standard definition of of RPn is the
set of all lines in Rn+1 that pass through the origin. Each line is considered as a point in
RPn. Defining the n-dimensional hypersphere Sn as

Sn := {x ∈ Rn+1| ||x|| ≤ 1}, (3.14)

each line of Rn+1 intersects Sn in exactly two places. These intersection points are called
antipodal, which means that they are as far from each other as possible on Sn. The pair is
also unique for each line. If we identify all pairs of antipodal points of Sn, a homeomorphism
can be defined between each line through the origin ofRn+1 and each antipodal pair on the
sphere. This means that the resulting manifold, Sn/ ∼, is homeomorphic to RPn.

The main problem in this section is to determine the topology of SO(3). Is it possible
to parametrize the set of rotation using the Euler’s angles, however there are some cases
in which nonzero angles yield the identity rotation matrix, which is equivalent to α = β =
γ = 0. There are also cases in which a continuum of values for yaw, pitch, and roll angles
yield the same rotation matrix. These problems destroy the topology, which causes both
theoretical and practical difficulties in motion planning. For this reason, unit quaternions
will be used to represent 3D rotations. Let H represent the set of quaternions, in which each
quaternion, h ∈ H, is represented as h = a+ bi+ cj + dk, and a, b, c, d ∈ R. A quaternion
can be considered as a four-dimensional vector. The symbols i, j, and k are used to denote
three imaginary components of the quaternion. The following relationships are defined:
i2 = j2 = k2 = ijk =?1,from which it follows that ij = k, jk = i, andki = j. Using these,
multiplication of two quaternions, h1 = a1 + b1i+ c1j + d1k and h2 = a2 + b2i+ c2j + d2k,

28



3.3. DEFINING THE CONFIGURATION SPACE

4.2. DEFINING THE CONFIGURATION SPACE 151

v

θ

Figure 4.9: Any 3D rotation can be considered as a rotation by an angle θ about
the axis given by the unit direction vector v = [v1 v2 v3].

v

θ
2π − θ

−v

Figure 4.10: There are two ways to encode the same rotation.

which a2 + b2 + c2 + d2 = 1. Note that this forms a subgroup because the multi-
plication of unit quaternions yields a unit quaternion, and the other group axioms
hold.

The next step is to describe a mapping from unit quaternions to SO(3). Let
the unit quaternion h = a + bi + cj + dk map to the matrix

R(h) =

⎛
⎝

2(a2 + b2)− 1 2(bc− ad) 2(bd + ac)
2(bc + ad) 2(a2 + c2)− 1 2(cd− ab)
2(bd− ac) 2(cd + ab) 2(a2 + d2)− 1

⎞
⎠ , (4.20)

which can be verified as orthogonal and det R(h) = 1. Therefore, it belongs to
SO(3). It is not shown here, but it conveniently turns out that h represents the
rotation shown in Figure 4.9, by making the assignment

h = cos
θ

2
+

(
v1 sin

θ

2

)
i +

(
v2 sin

θ

2

)
j +

(
v3 sin

θ

2

)
k. (4.21)

Unfortunately, this representation is not unique. It can be verified in (4.20)
that R(h) = R(−h). A nice geometric interpretation is given in Figure 4.10.
The quaternions h and −h represent the same rotation because a rotation of θ
about the direction v is equivalent to a rotation of 2π− θ about the direction −v.
Consider the quaternion representation of the second expression of rotation with
respect to the first. The real part is

cos

(
2π − θ

2

)
= cos

(
π − θ

2

)
= − cos

(
θ

2

)
= −a. (4.22)

The i, j, and k components are

− v sin

(
2π − θ

2

)
= −v sin

(
π − θ

2

)
= −v sin

(
θ

2

)
= [−b − c − d]. (4.23)

Figure 3.4: Any 3D rotation can be considered as a rotation by an angle θ about the axis given
by the unit direction vector v = [v1v2v3].

4.2. DEFINING THE CONFIGURATION SPACE 151

v

θ

Figure 4.9: Any 3D rotation can be considered as a rotation by an angle θ about
the axis given by the unit direction vector v = [v1 v2 v3].

v

θ
2π − θ

−v

Figure 4.10: There are two ways to encode the same rotation.

which a2 + b2 + c2 + d2 = 1. Note that this forms a subgroup because the multi-
plication of unit quaternions yields a unit quaternion, and the other group axioms
hold.

The next step is to describe a mapping from unit quaternions to SO(3). Let
the unit quaternion h = a + bi + cj + dk map to the matrix

R(h) =

⎛
⎝

2(a2 + b2)− 1 2(bc− ad) 2(bd + ac)
2(bc + ad) 2(a2 + c2)− 1 2(cd− ab)
2(bd− ac) 2(cd + ab) 2(a2 + d2)− 1

⎞
⎠ , (4.20)

which can be verified as orthogonal and det R(h) = 1. Therefore, it belongs to
SO(3). It is not shown here, but it conveniently turns out that h represents the
rotation shown in Figure 4.9, by making the assignment

h = cos
θ

2
+

(
v1 sin

θ

2

)
i +

(
v2 sin

θ

2

)
j +

(
v3 sin

θ

2

)
k. (4.21)

Unfortunately, this representation is not unique. It can be verified in (4.20)
that R(h) = R(−h). A nice geometric interpretation is given in Figure 4.10.
The quaternions h and −h represent the same rotation because a rotation of θ
about the direction v is equivalent to a rotation of 2π− θ about the direction −v.
Consider the quaternion representation of the second expression of rotation with
respect to the first. The real part is

cos

(
2π − θ

2

)
= cos

(
π − θ

2

)
= − cos

(
θ

2

)
= −a. (4.22)

The i, j, and k components are

− v sin

(
2π − θ

2

)
= −v sin

(
π − θ

2

)
= −v sin

(
θ

2

)
= [−b − c − d]. (4.23)

Figure 3.5: There are two ways to encode the same rotation.

can be derived to obtain h1 · h2 = a3 + b3i+ c3j + d3k, in which





a3 = a1a2 − b1b2 − c1c2 − d1d2

b3 = a1b2 + a2b1 + c1d2 − c2d1

c3 = a1c2 + a2c1 + b2d1 − b1d2

d3 = a1d2 + a2d1 + b1c2 − b2c1

(3.15)

Using this operation, it can be shown that H is a group with respect to quaternion mul-
tiplication. Note, however, that the multiplication is not commutative. For convenience,
quaternion multiplication can be expressed in terms of vector multiplications, a dot prod-
uct, and a cross product. Let v = [b c d] be a three-dimensional vector that represents
the final three quaternion components. The first component of h1 ·h2 is a1a2− v1 · v2. The
final three components are given by the three-dimensional vector a1v2 + a2v1 + v1 × v2.
Unit quaternions are quaternions for which a2 + b2 + c2 + d2 = 1. Note that this forms a
subgroup because the multi- plication of unit quaternions yields a unit quaternion, and the
other group axioms hold. The next step is to describe a mapping from unit quaternions to
SO(3). It may be proved that the quaternion

h = cos
θ

2
+
(
v1 sin

θ

2

)
i+
(
v2 sin

θ

2

)
j +

(
v3 sin

θ

2

)
k (3.16)

maps to the rotation shown in Figure 3.4.

Unfortunately, this representation is not unique. As illustrated in Figure 3.5 the quater-
nions h and −h represent the same rotation because a rotation of θ about the direction v
is equivalent to a rotation of 2π − θ about the direction ?v.

29



CHAPTER 3. THE CONFIGURATION SPACE

Note that the set of unit quaternions is homeomorphic to S3 because of the constraint
a2 + b2 + c2 + d2 = 1. . Using identification, declare h ∼ −h for all unit quaternions. This
means that the antipodal points of S3 are identified. Recall that when antipodal points
are identified, RPn ∼= Sn/ ∼. Hence, SO(3) ∼= RP3. Now that the complicated part of
representing SO(3) has been handled, the representation of SE(3) is straightforward. The
general form of a matrix T in SE(3) is determined by a rotation matrix R ∈ SO(3) and
and a vector v ∈ R3. Since SO(3) ∼= RP3, and translations can be chosen independently,
the resulting C-space for a rigid body that rotates and translates in R3 is

C = R3 × RP3. (3.17)

As expected, the dimension of C is exactly the number of degrees of freedom of a free-floating
body in space.

3.4 Definition of the Basic Motion Planning Problem

3.4.1 The Obstacle Region

Suppose that the world, W = R2 or W = R3, contains an obstacle region,O ⊂ W. Assume
here that a robot, AW, is defined. Let q ⊂ C denote the configuration of A.

The obstacle region, Cobs ⊂ C, is defined as

Cobs = {q ∈ C|A(q) ∩ O 6=}, (3.18)

which is the set of all configurations, q, at which A(q), the transformed robot, intersects
the obstacle region,O. Since O and A(q) are closed sets inW, the obstacle region is a closed
set in C.

The leftover configurations are called the free space, which is defined and denoted as
Cfree = C
Cobs. Since C is a topological space and Cobs is closed, Cfree must be an open set. This
implies that the robot can come arbitrarily close to the obstacles while remaining in Cfree.

The idea of getting arbitrarily close may be nonsense in practical robotics, but it makes a
clean formulation of the motion planning problem. Since Cfree is open, it becomes impossible
to formulate some optimization problems, such as finding the shortest path. In this case,
the closure, cl(Cfree), should instead be used.

Finally, enough tools have been introduced to precisely define the motion planning
problem. The main difficulty is that it is neither straightforward nor efficient to construct
an explicit boundary or solid representation of either Cfree or Cobs. The components are as
follows:

Formulation 4. The Piano Mover’s Problem

1. A world W that can be either W = R2 or W = R3.

2. An obstacle region O ∈ W in the world.

3. A robot defined in W. It may be for example a rigid robot A or a collection of m
links,A1,A2, ...,Am.

30



3.4. DEFINITION OF THE BASIC MOTION PLANNING PROBLEM
4.3. CONFIGURATION SPACE OBSTACLES 157

Cobs

qI

qG
Cfree

Cobs

Cobs

Figure 4.11: The basic motion planning problem is conceptually very simple using
C-space ideas. The task is to find a path from qI to qG in Cfree. The entire blob
represents C = Cfree ∪ Cobs.

Thus, a configuration q ∈ C is in Cobs if at least one link collides with O or a pair
of links indicated by P collide with each other.

Definition of basic motion planning Finally, enough tools have been intro-
duced to precisely define the motion planning problem. The problem is concep-
tually illustrated in Figure 4.11. The main difficulty is that it is neither straight-
forward nor efficient to construct an explicit boundary or solid representation of
either Cfree or Cobs. The components are as follows:

Formulation 4.1 (The Piano Mover’s Problem)

1. A world W in which either W = R2 or W = R3.

2. A semi-algebraic obstacle region O ⊂W in the world.

3. A semi-algebraic robot is defined in W . It may be a rigid robot A or a
collection of m links, A1, A2, . . . , Am.

4. The configuration space C determined by specifying the set of all possible
transformations that may be applied to the robot. From this, Cobs and Cfree

are derived.

5. A configuration, qI ∈ Cfree designated as the initial configuration.

Figure 3.6: Graphic depiction of the basic motion planning problem

4. The configuration space C determined by specifying the set of all possible transforma-
tions that may be applied to the robot. From this, Cobs and Cfree are derived.

5. A configuration, qI ∈ Cfree designated as the initial configuration.

6. A configuration qG ∈ Cfree designated as the goal configuration. The initial and goal
configurations together are often called a query pair (or query) and designated as
(qI , qG).

7. A complete algorithm must compute a (continuous) path, τ : [0, T ]→ Cfree, such that
τ(0) = qI and τ(T ) = qG, or correctly report that such a path does not exist.

It was shown that this problem is PSPACE-hard, which implies NP-hard. The main
problem is that the dimension of C is unbounded.

31



CHAPTER 3. THE CONFIGURATION SPACE

32



Chapter 4

Sampling-Based Motion Planning

This Chapter presents, sampling-based motion planning, one of the two main philosophies
for addressing motion planning problems. The central idea is to avoid the explicit con-
struction of Cobs and instead conduct a search that probes the C-space with a sampling
scheme. This probing is enabled by a collision detection module, which the motion planning
algorithm considers as a ”black box”. This enables the development of planning algorithms
that are independent of the particular geometric models. This general philosophy has been
very successful in recent years for solving problems from robotics, manufacturing, and bio-
logical applications that involve thousands and even millions of geometric primitives. Such
problems would be practically impossible to solve using techniques that explicitly represent
Cobs.

It is useful to define several notions of completeness for sampling-based algorithms.
These algorithms have the drawback that they result in weaker guarantees that the prob-
lem will be solved. An algorithm is considered complete if for any input it correctly reports
whether there is a solution in a finite amount of time. If a solution exists, it must return
one in finite time. Unfortunately, such completeness is not achieved with sampling-based
planning. Instead, weaker notions of completeness are tolerated. The notion of denseness
becomes important, which means that the samples come arbitrarily close to any configura-
tion as the number of iterations tends to infinity. A deterministic approach that samples
densely will be called resolution complete. This means that if a solution exists, the algo-
rithm will find it in finite time; however, if a solution does not exist, the algorithm may run
forever. Many sampling-based approaches are based on random sampling, which is dense
with probability one. This leads to algorithms that are probabilistically complete, which

Chapter 5

Sampling-Based Motion Planning

There are two main philosophies for addressing the motion planning problem, in
Formulation 4.1 from Section 4.3.1. This chapter presents one of the philosophies,
sampling-based motion planning, which is outlined in Figure 5.1. The main idea is
to avoid the explicit construction of Cobs, as described in Section 4.3, and instead
conduct a search that probes the C-space with a sampling scheme. This probing
is enabled by a collision detection module, which the motion planning algorithm
considers as a “black box.” This enables the development of planning algorithms
that are independent of the particular geometric models. The collision detection
module handles concerns such as whether the models are semi-algebraic sets, 3D
triangles, nonconvex polyhedra, and so on. This general philosophy has been very
successful in recent years for solving problems from robotics, manufacturing, and
biological applications that involve thousands and even millions of geometric prim-
itives. Such problems would be practically impossible to solve using techniques
that explicitly represent Cobs.

Notions of completeness It is useful to define several notions of complete-
ness for sampling-based algorithms. These algorithms have the drawback that
they result in weaker guarantees that the problem will be solved. An algorithm
is considered complete if for any input it correctly reports whether there is a so-

Sampling−Based
Motion Planning AlgorithmCollision

Detection
Geometric
Models

Discrete
Searching

C−Space
Sampling

Figure 5.1: The sampling-based planning philosophy uses collision detection as
a “black box” that separates the motion planning from the particular geometric
and kinematic models. C-space sampling and discrete planning (i.e., searching)
are performed.

185

Figure 4.1: The sampling-based planning philosophy uses collision detection as a ”black box”
that separates the motion planning from the particular geometric and kinematic models. C-space
sampling and discrete planning (i.e., searching) are performed.

33



CHAPTER 4. SAMPLING-BASED MOTION PLANNING

means that with enough points, the probability that it finds an existing solution converges
to one. The most relevant information, however, is the rate of convergence, which is usually
very difficult to establish.

4.1 Sampling Theory

The state space for motion planning, C, is uncountably infinite, yet a sampling- based
planning algorithm can consider at most a countable number of samples. If the algorithm
runs forever, this may be countably infinite, but in practice we expect it to terminate early
after only considering a finite number of samples. This mismatch between the cardinal-
ity of C and the set that can be probed by an algorithm motivates careful consideration
of sampling techniques. Once the sampling component has been defined, discrete plan-
ning methods from Chapter 2 may be adapted to the current setting. Their performance,
however, hinges on the way the C-space is sampled. Since sampling-based planning algo-
rithms are often terminated early, the particular order in which samples are chosen becomes
critical. Therefore, a distinction is made between a sample set and a sample sequence. A
unique sample set can always be constructed from a sample sequence, but many alternative
sequences can be constructed from one sample set.

4.1.1 Random Sampling

Consider constructing an infinite sample sequence over C. Ideally, the sequence eventually
should reach every point in C, but this is impossible because C is uncountably infinite.
However, it is still possible for a sequence to get arbitrarily close to every element of C
(assuming C ⊂ Rm). In topology, this is the notion of denseness. Let U and V be any
subsets of a topological space. The set U is said to be dense in V if cl(U) = V . This means
adding the boundary points to U produces V . A simple example is that (0, 1) ⊂ R is dense
in [0, 1] ⊂ R. A more interesting example is that the set Q of rational numbers is both
countable and dense in R. For any real number, such as π ∈ R, there exists a sequence of
fractions that converges to it. This sequence of fractions must be a subset of Q. A sequence
(as opposed to a set) is called dense if its underlying set is dense. The bare minimum for
sampling methods is that they produce a dense sequence.

Interestingly, a random sequence is probably dense. Suppose that C = [0, 1]. One of
the simplest ways conceptually to obtain a dense sequence is to pick points at random.
Suppose I ⊂ [0, 1] is an interval of length e. If k samples are chosen independently at
random, the probability that none of them falls into I is (1− e)k. As k approaches infinity,
this probability converges to zero. This means that the probability that any nonzero-
length interval in [0, 1] contains no points converges to zero. However, the infinite sequence
of independently, randomly chosen points is only dense with probability one, which is not
the same as being certainly dense. The probability is just the Lebesgue measure, which is
zero for a set of measure zero.

Random sampling is the easiest of all sampling methods to apply to C-spaces. One
of the main reasons is that C-spaces are formed from Cartesian products, and indepen-
dent random samples extend easily across these products. If X = X1 × X2, and uniform
random samples x1 and x2 are taken from X1 and X2, respectively, then (x1, x2) is a
uniform random sample for X. This is very convenient in implementations. For exam-
ple, suppose the motion planning problem involves 15 robots that each translate for any

34



4.1. SAMPLING THEORY

(xt, yt) ∈ [0, 1]2; this yields C = [0, 1]30. In this case, 30 points can be chosen uniformly at
random from [0, 1] and combined into a 30-dimensional vector. Samples generated this way
are uniformly randomly distributed over C. Combining samples over Cartesian products
is much more difficult for nonrandom (deterministic) methods. Although there are advan-
tages to uni- form random sampling, there are also several disadvantages. This motivates
the consideration of deterministic alternatives. Since there are trade-offs, it is important
to understand how to use both kinds of sampling in motion planning. One of the first
issues is that computer-generated numbers are not random. A pseudo-random number gen-
erator is usually employed, which is a deterministic method that simulates the behavior
of randomness. Since the samples are not truly random, the advantage of extending the
samples over Cartesian products does not necessarily hold. Sometimes problems are caused
by unforeseen deterministic dependencies.

35



CHAPTER 4. SAMPLING-BASED MOTION PLANNING
202 S. M. LaValle: Planning Algorithms

(a) L2 dispersion (b) L∞ dispersion

Figure 5.4: Reducing the dispersion means reducing the radius of the largest empty
ball.

(a) 196-point Sukharev grid (b) 196 lattice points

Figure 5.5: The Sukharev grid and a nongrid lattice.

Figure 5.4 gives an interpretation of the definition for two different metrics.
An alternative way to consider dispersion is as the radius of the largest empty
ball (for the L∞ metric, the balls are actually cubes). Note that at the boundary
of X (if it exists), the empty ball becomes truncated because it cannot exceed
the boundary. There is also a nice interpretation in terms of Voronoi diagrams.
Figure 5.3 can be used to help explain L2 dispersion in R2. The Voronoi vertices
are the points at which three or more Voronoi regions meet. These are points in
C for which the nearest sample is far. An open, empty disc can be placed at any
Voronoi vertex, with a radius equal to the distance to the three (or more) closest
samples. The radius of the largest disc among those placed at all Voronoi vertices
is the dispersion. This interpretation also extends nicely to higher dimensions.

Figure 4.2: Graphic depiction of the dispersion of a set of samples

4.1.2 Low-Dispersion Sampling

This section describes an alternative to random sampling. Here, the goal is to optimize a
criterion called dispersion. Intuitively, the idea is to place samples in a way that makes the
largest uncovered area be as small as possible. This generalizes of the idea of grid resolution.
For a grid, the resolution may be selected by defining the step size for each axis. As the step
size is decreased, the resolution increases. If a grid-based motion planning algorithm can
increase the resolution arbitrarily, it becomes resolution complete. Using the concepts in
this section, it may instead reduce its dispersion arbitrarily to obtain a resolution complete
algorithm. Thus, dispersion can be considered as a powerful generalization of the notion
of ”resolution”.

Definition 1. The dispersion of a finite set P of samples in a metric space (X, ρ) is

δ(P ) := sup
x∈X
{min
p∈P
{ρ(x, p)}}. (4.1)

The figure gives an interpretation of the definition for two different metrics. An alter-
native way to consider dispersion is as the radius of the largest empty ball (for the L∞
metric, the balls are actually cubes). Note that at the boundary of X (if it exists), the
empty ball becomes truncated because it cannot exceed the boundary.

Optimizing dispersion forces the points to be distributed more uniformly over C. This
causes them to fail statistical tests, but the point distribution is often better for motion
planning purposes. Consider the best way to reduce dispersion if ρ is the L∞ metric and
X = [0, 1]n. Suppose that the number of samples, k, is given. Optimal dispersion is
obtained by partitioning [0, 1] into a grid of cubes and placing a point at the center of each
cube, as shown for n = 2 and k = 196 in Figure. The number of cubes per axis must be
bk1/nc, in which b·c denotes the floor function. If k1/n is not an integer, then there are
leftover points that may be placed anywhere without affecting the dispersion. Notice that
k1/n just gives the number of points per axis for a grid of k points in n dimensions. The
resulting grid will be referred to as a Sukharev grid.

The dispersion obtained by the Sukharev grid is the best possible. Therefore, a useful
lower bound can be given for any set P of k samples:

δ(P ) ≥ 1

2bk1/nc . (4.2)

36



4.2. INCREMENTAL SAMPLING AND SEARCHING

202 S. M. LaValle: Planning Algorithms

(a) L2 dispersion (b) L∞ dispersion

Figure 5.4: Reducing the dispersion means reducing the radius of the largest empty
ball.

(a) 196-point Sukharev grid (b) 196 lattice points

Figure 5.5: The Sukharev grid and a nongrid lattice.

Figure 5.4 gives an interpretation of the definition for two different metrics.
An alternative way to consider dispersion is as the radius of the largest empty
ball (for the L∞ metric, the balls are actually cubes). Note that at the boundary
of X (if it exists), the empty ball becomes truncated because it cannot exceed
the boundary. There is also a nice interpretation in terms of Voronoi diagrams.
Figure 5.3 can be used to help explain L2 dispersion in R2. The Voronoi vertices
are the points at which three or more Voronoi regions meet. These are points in
C for which the nearest sample is far. An open, empty disc can be placed at any
Voronoi vertex, with a radius equal to the distance to the three (or more) closest
samples. The radius of the largest disc among those placed at all Voronoi vertices
is the dispersion. This interpretation also extends nicely to higher dimensions.

Figure 4.3: The Sukharev grid and a nongrid lattice.

This implies that keeping the dispersion fixed requires exponentially many points in the
dimension, n.

The reason why we decided to optimize the L∞ dispersion instead of the more natural
L2 is that the latter is extremely difficult to optimize (except in R2, where a tiling of
equilateral triangles can be made, with a point in the center of each one). Even the simple
problem of determining the best way to distribute a fixed number of points in [0, 1]3 is
unsolved for most values of k.

Suppose now that other topologies are considered instead of [0, 1]n. Let X = [0, 1]/ ∼,
in which the identification produces a torus. The situation is quite different because X
no longer has a boundary. The Sukharev grid still produces optimal dispersion, but it can
also be shifted without increasing the dispersion. In this case, a standard grid may also be
used, which has the same number of points as the Sukharev grid but is translated to the
origin. Thus, the first grid point is (0, 0), which is actually the same as 2n− 1 other points
by identification. If X represents a cylinder and the number of points, k, is given, then it
is best to just use the Sukharev grid. It is possible, however, to shift each coordinate that
behaves like S1. If X is rectangular but not a square, a good grid can still be made by tiling
the space with cubes. In some cases this will produce optimal dispersion. For complicated
spaces such as SO(3), no grid exists in the sense defined so far. It is possible, however, to
generate grids on the faces of an inscribed Platonic solid and lift the samples to Sn with
relatively little distortion.

4.2 Incremental Sampling and Searching

The algorithms in this section follow the single-query model, which means (qI , qG) is given
only once per robot and obstacle set. This means that there are no advantages to pre-
computation, and the sampling-based motion planning problem can be considered as a
kind of search. The multiple-query model, which favors pre-computation, is covered in
Section 5.6.

The sampling-based planning algorithms presented in the present section are concep-
tually similar to the family of search algorithms summarized in Chapter 2. The main
difference lies in step 3 below, in which applying an action, u, is replaced by generating a
path segment, τs. Another difference is that the search graph, G, is undirected, with edges

37



CHAPTER 4. SAMPLING-BASED MOTION PLANNING

that represent paths, as opposed to a directed graph in which edges represent actions. Most
single-query, sampling-based planning algorithms follow this template:

Initialization: Let G(V,E) represent an undirected search graph, for which V contains at
least one vertex and E contains no edges. Typically, V contains qI , qG, or both. In
general, other points in Cfree may be included.

Vertex Selection Method (VSM): Choose a vertex qcur ∈ V for expansion.

Local Planning Method (LPM): For some qnew ∈ Cfree that may or may not be rep-
resented by a vertex in V , attempt to construct a path τs : [0, 1] → Cfree such that
τ(0) = qcur and τ(1) = qnew. τs must be checked with a collision detection method to
ensure that it does not cause a collision. If this step fails to produce a collision-free
path segment, then go to step 2.

Insert an Edge in the Graph: Insert τs into E, as an edge from qcur to qnew. If qnew is
not already in V , then it is inserted.

Check for a Solution: Determine whether G encodes a solution path. As in the discrete
case, if there is a single search tree, then this is trivial; otherwise, it can become
complicated and expensive.

Return to step 2: Iterate unless a solution has been found or some termination condition
is satisfied, in which case the algorithm reports failure.

A large family of sampling-based algorithms can be described by varying the implementa-
tions of steps 2 and 3. Implementations of the other steps may also vary, but this is less
important and will be described where appropriate. For convenience, step 2 will be called
the vertex selection method (VSM) and step 3 will be called the local planning method
(LPM). The role of the VSM is similar to that of the priority queue, Q, in Section 2.2.1.
The role of the LPM is to compute a collision-free path segment that can be added to
the graph. It is called local because the path segment is usually simple (e.g., the shortest
path) and travels a short distance. It is not global in the sense that the LPM does not
try to solve the entire planning problem; it is expected that the LPM may often fail to
construct path segments. As in the case of discrete search algorithms, there are several
classes of algorithms based on the number of search trees: unidirectional, bidirectional and
multidirectional methods.

4.2.1 Adapting Discrete Search Algorithms

One of the most convenient and straightforward ways to make sampling-based planning
algorithms is to define a grid over C and conduct a discrete search using the algorithms of
Chapter 2.

Discretization: Assume that C is discretized by using the resolutions k1, k2, ..., andkn, in
which each ki is a positive integer. This allows the resolution to be different for each
C-space coordinate. Either a standard grid or a Sukharev grid can be used. Let

∆qi = [0 · · · 1/ki0 · · · 0...0], (4.3)

38



4.3. RAPIDLY EXPLORING DENSE TREES

in which the first i− 1 components and the lastn− i components are 0. A grid point
is a configuration q ∈ C that can be expressed in the form

n∑

i=1

ji∆qi, (4.4)

in which each ji ∈ {0, 1, ..., ki}. The integers j1, ..., jn can be imagined as array indices
for the grid. Let the term boundary grid pointrefer to a grid point for which ji = 0
or ji = ki for some i.

Neighborhoods: For each grid point q we need to define the set of nearby grid points
for which an edge may be constructed. Special care must be given to defining the
neighborhood of a boundary grid point to ensure that identifications and the C-space
boundary (if it exists) are respected. If q is not a boundary grid point, then the
1-neighborhood is defined as

N1(q) = {q ±∆q1, ..., q ±∆qn}. (4.5)

For an n-dimensional C-space there at most 2n 1-neighbors. In two dimensions, this
yields at most four 1-neighbors, which can be thought of as up, down, left, and right.
There are at most four because some directions may be blocked by the obstacle region.
A 2-neighborhood is defined as

N1(q) = {q ±∆qi ±∆qj |1 ≤ i, j ≤ n, i 6= j} ∪N1(q). (4.6)

Similarly, a k-neighborhood can be defined for any positive integer k ≤ n. For an n-
neighborhood, there are at most 3n−1 neighbors; there may be fewer due to boundaries
or collisions. The definitions can be easily extended to handle the boundary points.

Obtaining a discrete planning problem: Once the grid and neighborhoods have been
defined, a discrete planning problem is obtained. Figure 4.4 depicts the process
for a problem in which there are nine Sukharev grid points in [0, 1]2. Using 1-
neighborhoods, the potential edges in the search graph, G(V,E), appear in Figure
4.4a. If qI and qG do not coincide with grid points, they need to be connected to
some nearby grid points, as shown in Figure 4.4b. Usually, all of the vertices and
edges shown in Figure 4.4b do not appear in G because some intersect with Cobs.
Figure 4.4c shows a more typical situation, in which some of the potential vertices
and edges are removed because of collisions. In this section, it is assumed that G is
revealed during the search. This is the same situation that occurs for the discrete
planning methods from Chapter 2. In the current setting, the potential edges of G
are validated during the search. The candidate edges to evaluate are given by the
definition of the k-neighborhoods. During the search, any edge or vertex that has
been checked for collision explicitly appears in a data structure so that it does not
need to be checked again. At the end of the search, a path is found, as depicted in
Figure 4.4d.

4.3 Rapidly Exploring Dense Trees

This section introduces an incremental sampling and searching approach that yields
good performance in practice without any parameter tuning. The idea is to incre-

39



CHAPTER 4. SAMPLING-BASED MOTION PLANNING

222 S. M. LaValle: Planning Algorithms

(a) (b)

(c) (d)

Figure 5.14: A topological graph can be constructed during the search and can
successfully solve a motion planning problem using very few samples.

coincide with grid points, they need to be connected to some nearby grid points,
as shown in Figure 5.14b. What grid points should qI and qG be connected to?
As a general rule, if k-neighbors are used, then one should try connecting qI and
qG to any grid points that are at least as close as the furthest k-neighbor from a
typical grid point.

Usually, all of the vertices and edges shown in Figure 5.14b do not appear in G
because some intersect with Cobs. Figure 5.14c shows a more typical situation, in
which some of the potential vertices and edges are removed because of collisions.
This representation could be computed in advance by checking all potential vertices
and edges for collision. This would lead to a roadmap, which is suited for multiple
queries and is covered in Section 5.6. In this section, it is assumed that G is
revealed “on the fly” during the search. This is the same situation that occurs
for the discrete planning methods from Section 2.2. In the current setting, the
potential edges of G are validated during the search. The candidate edges to
evaluate are given by the definition of the k-neighborhoods. During the search,

Figure 4.4: A topological graph can be constructed during the search and can successfully solve
a motion planning problem using very few samples.

40



4.3. RAPIDLY EXPLORING DENSE TREES

mentally construct a search tree that gradually improves the resolution but does not
need to explicitly set any resolution parameters. In the limit, the tree densely covers
the space. A dense sequence of samples is used as a guide in the incremental con-
struction of the tree. If this sequence is random, the resulting tree is called a rapidly
exploring random tree (RRT). In general, this family of trees, whether the sequence is
random or deterministic, will be referred to as rapidly exploring dense trees (RDTs)
to indicate that a dense covering of the space is obtained.

4.3.1 The Exploration Algorithm

Before explaining how to use these trees to solve a planning query, imagine that
the goal is to get as close as possible to every configuration, starting from an initial
configuration. The method works for any dense sequence. Once again, let α denote an
infinite, dense sequence of samples in C. The ith sample is denoted by α(i). This may
possibly include a uniform, random sequence, which is only dense with probability
one. Random sequences that induce a nonuniform bias are also acceptable, as long
as they are dense with probability one. An RDT is a topological graph, G(V,E). Let
S ⊂ Cfree indicate the set of all points reached by G. Since each e ∈ E is a path, this
can be expressed as the swath, S, of the graph, which is defined as

S =
⋃

e∈E
e([0, 1]), (4.7)

where e([0, 1]) ⊂ Cfree is the image of the path e.

Algorithm 2 RDT

G.init(q0)
for 1 ≤ i ≤ k do
G.addvertex(α(i))
qn ← NEAREST(S(G), α(i))
G.addedge(qn, α(i))

The exploration algorithm is first explained in Algorithm 2 without any obstacles or
boundary obstructions. It is assumed that C is a metric space. Initially, a vertex is made
at q0. For k iterations, a tree is iteratively grown by connecting α(i) to its nearest point in
the swath, S. The connection is usually made along the shortest possible path. In every
iteration, α(i) becomes a vertex. Therefore, the resulting tree is dense.

Figures 4.5-4.6 illustrate an iteration graphically. Suppose the tree has three edges and
four vertices, as shown in Figure 4.5a. If the nearest point, qn ∈ S, to α(i) is a vertex, as
shown in Figure 4.5b, then an edge is made from qn to α(i). However, if the nearest point
lies in the interior of an edge, as shown in Figure 4.6, then the existing edge is split so that
qn appears as a new vertex, and an edge is made from qnto α(i). The edge splitting, if
required, is assumed to be handled in line 4 by the method that adds edges. Note that the
total number of edges may increase by one or two in each iteration.

Figure 4.7 shows an execution of Algorithm 2 for the case in which C = [0, 1]2 and
q0 = (1/2, 1/2). It exhibits a kind of fractal behavior. Several main branches are first

41



CHAPTER 4. SAMPLING-BASED MOTION PLANNING

5.5. RAPIDLY EXPLORING DENSE TREES 229

SIMPLE RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 G.add vertex(α(i));
4 qn ← nearest(S(G),α(i));
5 G.add edge(qn,α(i));

Figure 5.16: The basic algorithm for constructing RDTs (which includes RRTs
as a special case) when there are no obstacles. It requires the availability of a
dense sequence, α, and iteratively connects from α(i) to the nearest point among
all those reached by G.

q0

qn

α(i)

q0

(a) (b)

Figure 5.17: (a) Suppose inductively that this tree has been constructed so far
using the algorithm in Figure 5.16. (b) A new edge is added that connects from
the sample α(i) to the nearest point in S, which is the vertex qn.

5.5.1 The Exploration Algorithm

Before explaining how to use these trees to solve a planning query, imagine that
the goal is to get as close as possible to every configuration, starting from an
initial configuration. The method works for any dense sequence. Once again, let α
denote an infinite, dense sequence of samples in C. The ith sample is denoted by
α(i). This may possibly include a uniform, random sequence, which is only dense
with probability one. Random sequences that induce a nonuniform bias are also
acceptable, as long as they are dense with probability one.

An RDT is a topological graph, G(V, E). Let S ⊂ Cfree indicate the set of all
points reached by G. Since each e ∈ E is a path, this can be expressed as the
swath, S, of the graph, which is defined as

S =
⋃

e∈E

e([0, 1]). (5.40)

In (5.40), e([0, 1]) ⊆ Cfree is the image of the path e.
The exploration algorithm is first explained in Figure 5.16 without any obsta-

cles or boundary obstructions. It is assumed that C is a metric space. Initially,
a vertex is made at q0. For k iterations, a tree is iteratively grown by connecting

Figure 4.5: (a) Suppose inductively that this tree has been constructed so far using algorithm 2.
(b) A new edge is added that connects from the sample α(i) to the nearest point in S, which is the
vertex qn.

230 S. M. LaValle: Planning Algorithms

qn

α(i)q0

Figure 5.18: If the nearest point in S lies in an edge, then the edge is split into
two, and a new vertex is inserted into G.

45 iterations 2345 iterations

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts.
However, the RRT is dense in the limit (with probability one), which means that
it gets arbitrarily close to any point in the space.

Figure 4.6: In the early iterations, the RRT quickly reaches the unexplored parts. However, the
RRT is dense in the limit (with probability one), which means that it gets arbitrarily close to any
point in the space.

constructed as it rapidly reaches the far corners of the space. Gradually, more and more
area is filled in by smaller branches. From the pictures, it is clear that in the limit, the
tree densely fills the space. Thus, it can be seen that the tree gradually improves the
resolution (or dispersion) as the iterations continue. This behavior turns out to be ideal
for sampling-based motion planning.

Recall that in sampling-based motion planning, the obstacle region Cobs is not explicitly
represented. Therefore, it must be taken into account in the construction of the tree. Below
is indicated how to modify Algorithm 2 so that collision checking is taken into account.
The modified algorithm appears in Figure 5.8.

The procedure stopping-configuration yields the nearest configuration possible to the
boundary of Cfree, along the direction toward α(i). The nearest point qn ∈ S is defined to
be same (obstacles are ignored); however, the new edge might not reach to α(i). In this
case, an edge is made from qn to qs, the last point possible before hitting the obstacle. The
minimum distance allowed from the obstacle depends on the implementation.

42



4.4. ROADMAP METHODS FOR MULTIPLE QUERIES

Algorithm 3 RDT

G.init(q0)
for 1 ≤ i ≤ k do

qn ← NEAREST (S, α(i))
qs ← STOPPING− CONFIGURATION(qn, α(i))
if qs 6= qn then
G.addvertex(qs)
G.addedge(qn, qs)
5.5. RAPIDLY EXPLORING DENSE TREES 231

qn

q0

Cobs

qs

α(i)

Figure 5.20: If there is an obstacle, the edge travels up to the obstacle boundary,
as far as allowed by the collision detection algorithm.

α(i) to its nearest point in the swath, S. The connection is usually made along
the shortest possible path. In every iteration, α(i) becomes a vertex. Therefore,
the resulting tree is dense. Figures 5.17–5.18 illustrate an iteration graphically.
Suppose the tree has three edges and four vertices, as shown in Figure 5.17a. If
the nearest point, qn ∈ S, to α(i) is a vertex, as shown in Figure 5.17b, then an
edge is made from qn to α(i). However, if the nearest point lies in the interior of an
edge, as shown in Figure 5.18, then the existing edge is split so that qn appears as
a new vertex, and an edge is made from qn to α(i). The edge splitting, if required,
is assumed to be handled in line 4 by the method that adds edges. Note that the
total number of edges may increase by one or two in each iteration.

The method as described here does not fit precisely under the general frame-
work from Section 5.4.1; however, with the modifications suggested in Section
5.5.2, it can be adapted to fit. In the RDT formulation, the nearest function
serves the purpose of the VSM, but in the RDT, a point may be selected from
anywhere in the swath of the graph. The VSM can be generalized to a swath-point
selection method, SSM. This generalization will be used in Section 14.3.4. The
LPM tries to connect α(i) to qn along the shortest path possible in C.

Figure 5.19 shows an execution of the algorithm in Figure 5.16 for the case
in which C = [0, 1]2 and q0 = (1/2, 1/2). It exhibits a kind of fractal behavior.15

Several main branches are first constructed as it rapidly reaches the far corners of
the space. Gradually, more and more area is filled in by smaller branches. From
the pictures, it is clear that in the limit, the tree densely fills the space. Thus, it
can be seen that the tree gradually improves the resolution (or dispersion) as the
iterations continue. This behavior turns out to be ideal for sampling-based motion
planning.

Recall that in sampling-based motion planning, the obstacle region Cobs is not
explicitly represented. Therefore, it must be taken into account in the construction
of the tree. Figure 5.20 indicates how to modify the algorithm in Figure 5.16 so that
collision checking is taken into account. The modified algorithm appears in Figure
5.21. The procedure stopping-configuration yields the nearest configuration
possible to the boundary of Cfree, along the direction toward α(i). The nearest

15If α is uniform, random, then a stochastic fractal [586] is obtained. Deterministic fractals
can be constructed using sequences that have appropriate symmetries.

Figure 4.7: (If there is an obstacle, the edge travels up to the obstacle boundary, as far as allowed
by the collision detection algorithm.

4.4 Roadmap Methods for Multiple Queries

Previously, it was assumed that a single initial-goal pair was given to the planning algo-
rithm. Suppose now that numerous initial-goal queries will be given to the algorithm, while
keeping the robot model and obstacles fixed. This leads to a multiple-query version of the
motion planning problem. In this case, it makes sense to invest substantial time to prepro-
cess the models so that future queries can be answered efficiently. The goal is to construct
a topological graph called a roadmap, which efficiently solves multiple initial-goal queries.
Intuitively, the paths on the roadmap should be easy to reach from each of qI and qG, and
the graph can be quickly searched for a solution. The general framework presented here
was initially introduced under the name probabilistic roadmaps (PRMs). The probabilistic
aspect, however, is not important to the method. Therefore, we refer to this family of
methods as sampling-based roadmaps, with distinction from the combinatorial roadmaps.

4.4.1 The Basic Method

Let G(V,E) represent a topological graph in which V is a set of vertices and E is the set of
paths that map into Cfree. Under the multiple-query philosophy, motion planning is divided
into two phases of computation:

Preprocessing Phase: During the preprocessing phase, substantial effort is invested to
build G in a way that is useful for quickly answering future queries. For this reason,
it is called a roadmap, which in some sense should be accessible from every part of
Cfree.

Query Phase: During the query phase, a pair, qI and qG, is given. Each configuration
must be connected easily to G using a local planner. Following this, a discrete search

43



CHAPTER 4. SAMPLING-BASED MOTION PLANNING

238 S. M. LaValle: Planning Algorithms

BUILD ROADMAP
1 G.init(); i← 0;
2 while i < N
3 if α(i) ∈ Cfree then
4 G.add vertex(α(i)); i← i + 1;
5 for each q ∈ neighborhood(α(i),G)
6 if ((not G.same component(α(i), q)) and connect(α(i), q)) then
7 G.add edge(α(i), q);

Figure 5.25: The basic construction algorithm for sampling-based roadmaps. Note
that i is not incremented if α(i) is in collision. This forces i to correctly count the
number of vertices in the roadmap.

α(i)

Cobs

Cobs

Figure 5.26: The sampling-based roadmap is constructed incrementally by at-
tempting to connect each new sample, α(i), to nearby vertices in the roadmap.

Generic preprocessing phase Figure 5.25 presents an outline of the basic
preprocessing phase, and Figure 5.26 illustrates the algorithm. As seen throughout
this chapter, the algorithm utilizes a uniform, dense sequence α. In each iteration,
the algorithm must check whether α(i) ∈ Cfree. If α(i) ∈ Cobs, then it must
continue to iterate until a collision-free sample is obtained. Once α(i) ∈ Cfree,
then in line 4 it is inserted as a vertex of G. The next step is to try to connect α(i)
to some nearby vertices, q, of G. Each connection is attempted by the connect
function, which is a typical LPM (local planning method) from Section 5.4.1.
In most implementations, this simply tests the shortest path between α(i) and
q. Experimentally, it seems most efficient to use the multi-resolution, van der
Corput–based method described at the end of Section 5.3.4 [379]. Instead of the
shortest path, it is possible to use more sophisticated connection methods, such
as the bidirectional algorithm in Figure 5.24. If the path is collision-free, then
connect returns true.

The same component condition in line 6 checks to make sure α(i) and q are
in different components of G before wasting time on collision checking. This en-
sures that every time a connection is made, the number of connected components

Figure 4.8: The sampling-based roadmap is constructed incrementally by attempting to connect
each new sample, α(i), to nearby vertices in the roadmap.

is performed using any of the algorithms in Chapter 2 to obtain a sequence of edges
that forms a path from qI to qG.

Generic preprocessing phase

Algorithm 3 presents an outline of the basic preprocessing phase, and Figure4.7 illustrates
the algorithm. The algorithm utilizes a uniform, dense sequence α. In each iteration, the
algorithm must check whether α(i) ∈ Cfree. If α(i) ∈ Cobs, then it must continue to iterate
until a collision-free sample is obtained. Once α(i) ∈ Cfree, then in line 4 it is inserted as a
vertex of G. The next step is to try to connect α(i) to some nearby vertices, q, of G. Each
connection is attempted by the connect function, which is a typical LPM (local planning
method). In most implementations, this simply tests the shortest path between α(i) and
q.

Algorithm 4 BUILD ROADMAP

G.init(); i← 0
while i < N do

if α(i) ∈ Cfree then
G.addvertex(α(i)); i← i+ 1
for all q ∈ NEIGHBORHOOD(α(i),G) do

if (( not G.samecomponent(α(i), q)) and CONNECT (α(i), q)) then
G.addedge(α(i), q)

The same component condition in line 6 checks to make sure α(i) and q are in different
components of G before wasting time on collision checking. This ensures that every time a
connection is made, the number of connected components of G is decreased.

Selecting neighboring samples

Several possible implementations of line 5 can be made. In all of these, it seems best to sort
the vertices that will be considered for connection in order of increasing distance from α(i).
This makes sense because shorter paths are usually less costly to check for collision, and

44



4.4. ROADMAP METHODS FOR MULTIPLE QUERIES

they also have a higher likelihood of being collision-free. If a connection is made, this avoids
costly collision checking of longer paths to configurations that would eventually belong to
the same connected component. Several useful implementations of NEIGHBORHOOD are

Nearest K: The K closest points to α(i) are considered. This requires setting the param-
eter K (a typical value is 15).

Component K: Try to obtain up to K nearest samples from each connected component
of G. A reasonable value is K = 1; otherwise, too many connections would be tried.

Radius: Take all points within a ball of radius r centered at α(i). An upper limit, K, may
be set to prevent too many connections from being attempted.

Query phase

In the query phase, it is assumed that G is sufficiently complete to answer many queries,
each of which gives an initial configuration, qI , and a goal configuration, qG. First, the
query phase pretends as if qI and qG were chosen from α for connection to G. This requires
running two more iterations of the algorithm in algorithm 3. If qI and qG are successfully
connected to other vertices in G, then a search is performed for a path that connects the
vertex qI to the vertex qG. The path in the graph corresponds directly to a path in Cfree,
which is a solution to the query. Unfortunately, if this method fails, it cannot be determined
conclusively whether a solution exists. If the dispersion is known for a sample sequence,
α, then it is at least possible to conclude that no solution exists for the resolution of the
planner. In other words, if a solution does exist, it would require the path to travel through
a corridor no wider than the radius of the largest empty ball.

45



CHAPTER 4. SAMPLING-BASED MOTION PLANNING

46



Chapter 5

Sampling-Based Planning Under
Differential Constraints

In the models and methods presented in Chapter 4, it was assumed that a path can be
easily determined between any two configurations in the absence of obstacles. For example,
the sampling-based roadmap approach assumed that two nearby configurations could be
connected by a straight line in the configuration space. The constraints on the path are
global in the sense that the restrictions are on the set of allowable configurations.

In this chapter differential constraints are introduced, which restrict the allowable ve-
locities at each point. These can be considered as local constraints, in contrast to the global
constraints that arise due to obstacles. In robotics, most problems involve differential
constraints that arise from the kinematics and dynamics of a robot.

A possible approach in two steps is to ignore differential constraints in the planning
process and then smoothing the resulting path until it satisfies the constraints . If it is
practical, a better approach is to consider differential constraints in the planning process.
This yields plans that directly comply with the natural motions of a mechanical system.
Differential models are generally expressed as ẋ = f(x, u), which is the continuous-time
counterpart of the state transition equation, xk+1 = f(xk, uk).

The main topic of this Chapter is extending the incremental sampling and searching
framework of Chapter 5 to kino-dynamic motion planning to develop resolution-complete
algorithms.This is complicated by the discretization of three spaces (state space, action
space, and time), whereas in Chapter 5 resolution completeness only involved discretization
of the C-space. The focus is limited to sampling-based approaches because very little can
be done with combinatorial methods if differential constraints exist.

5.1 Differential Models

This section provides a continuous-time counterpart to the state transition equation, xk+1 =
f(xk, uk), presented in Chapter 2. On a continuous state space, X (assumed to be a smooth
manifold), it will be defined as ẋ = f(x, u), which intentionally looks similar to the discrete
version. It will still be referred to as a state transition equation. It will also be called a
system (short for control system), which is a term used in control theory. In continuous
time, the state transition function f(x, u) yields a velocity as opposed to the next state.
Since the transitions are no longer discrete, it does not make sense to talk about a ”next”

47



CHAPTER 5. SAMPLING-BASED PLANNING UNDER DIFFERENTIAL
CONSTRAINTS

state. Future states that satisfy the differential constraints are obtained by integration of
the velocity. Therefore, it is natural to specify only velocities. This relies on the notions of
tangent spaces of a vector fields.

5.1.1 Velocity Constraints on the Configuration Space

There are two general ways to represent differential constraints: parametric and implicit.
The intuitive difference is that implicit representations express velocities that are prohib-
ited, whereas parametric representations directly express the velocities that are allowed.

Implicit representation

Assume that the C-space C is a smooth manifold. Now consider placing velocity constraints
on C. In general, constraints expressed in the form shown in (5.1) are called implicit.

g(q, q̇) ./ 0, (5.1)

where ./ could be ant one of =, , >,≤,≥. Generally, it can be very complicated to obtain
a parametric representation of the solutions of implicit equations.

Parametric constraint

The parametric way of expressing velocity constraints gives a different interpretation to
U(q). Rather than directly corresponding to a velocity, each u ∈ U(q) is interpreted as an
abstract action vector. The set of allowable velocities is then obtained through a function
that maps an action vector into Tq(C). This yields the configuration transition equation
(or system)

q̇ = f(q, u), (5.2)

in which f is a continuous-time version of the state transition function that was developed
in Chapter 2. There are two interesting ways to interpret (5.2):

Subspace of the tangent space: If q is fixed, then f maps from U into Tq(C). This
parameterizes the set of allowable velocities at q because a velocity vector, f(q, u), is
obtained for every u ∈ U(q).

Vector field: If u is fixed, then f can be considered as a function that maps each q ∈ C
into Tq(C). This means that f defines a vector field over C for every fixed u ∈ U .

5.1.2 A example of velocity constraint: an airplane

A simple aircraft flight model that may be obtained as follows. Suppose that the aircraft
is flying with a constant speed v. A configuration is represented as q = (x, y, z, ψ) where
x, y, z are the coordinate of the center of mass of the aircraft and ψ define the flight’s
direction. Let uz denote an action that directly causes a change in the altitude: ż = uz.
The steering action uψ control ψ. The configuration transition equation is





ẋ = v cosψ

ẏ = v sinψ

ż = uz

ψ̇ = uφ

(5.3)

48



5.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS

5.2 Phase Space Representation of Dynamical Systems

The differential constraints defined in 5.1 are often called kinematic because they can
be expressed in terms of velocities on the C-space. This formulation is useful for many
problems, such as modeling the possible directions of motions for a wheeled mobile robot.
It does not, however, enable dynamics to be expressed. To account for momentum and
other aspects of dynamics, higher order differential equations are needed. There are usually
constraints on acceleration q̈, which is defined as dq̇/dt. The models for dynamics therefore
involve acceleration q̈ in addition to velocity q̇ and configuration q. Once again, both
implicit and parametric models exist. For an implicit model, the constraints are expressed
as

gi(q̈.q̇, q) = 0. (5.4)

For a parametric model, they are expressed as

q̈ = f(q̇, q, u). (5.5)

To deal with higher order derivatives it is useful the introduction of a phase space, which
has more dimensions than the original C-space. Suppose that q represents a configuration,
expressed using a coordinate neighborhood on a smooth n-dimensional manifold C. Second-
order constraints of the form can be expressed as first-order constraints in a 2n-dimensional
state space. Let x denote the 2n-dimensional phase vector. The new state x is defined
as follows: for each integer i such that 1 ≤ i ≤ n xi = qi, while for each i such that
n + 1 ≤ i ≤ 2n, xi = q̇i−n. Suppose that a set of n differential equations is expressed in
parametric form as q̈ = h(q, q̇, u). In the phase space, there are 2n differential equations.
The first n correspond to the phase space definition ẋi = xn+i, for each i such that 1 ≤ i ≤ n.
These hold because xn+i = q̇i and xi is the time derivative of q̇i for i ≤ n. The remaining
n components of ẋ = f(x, u) follow directly from h by substituting the first n components
of x in the place of q and the remaining n in the place of q̇ in the expression h(q, q̇, u). The
result can be denoted as h(x, u) (obtained directly from h(q, q̇, u)). This yields the final
n equations as ẋi = hi−n(x, u), for each i such that n + 1 ≤ i ≤ 2n. These 2n equations
define a phase (or state) transition equation of the form ẋ = f(x, u). Now it is clear that
constraints on acceleration can be manipulated into velocity constraints on the phase space.
Constraints on higher order derivatives can be handled in a similar way.

Now that we have introduced differential constraint and phase spaces, we can in incor-
porate these concepts in motion planning, however it is important to point out that the
physical details regarding how the dynamic systems have been modeled can be neglected,
considering for any systems its state transition equation ẋ = f(x, u) as an input of the
problem.

5.3 Problem Formulation

Motion planning under differential constraints can be considered as a variant of classical
two-point boundary value problems (BVPs). In that setting, initial and goal states are
given, and the task is to compute a path through a state space that connects initial and
goal states while satisfying differential constraints. Motion planning involves the additional
complication of avoiding obstacles in the state space. Techniques for solving BVPs are un-
fortunately not well-suited for motion planning because they are not designed for handling

49



CHAPTER 5. SAMPLING-BASED PLANNING UNDER DIFFERENTIAL
CONSTRAINTS

obstacle regions. For some methods, adaptation may be possible; however, the obstacle
constraints usually cause these classical methods to become inefficient or incomplete.

It is assumed that the differential constraints are expressed in a state transition equa-
tion, ẋ = f(x, u), on a smooth manifold X, called the state space, which may be a C-space
C or a phase space of a C-space. A solution path will not be directly expressed as in Chap-
ter 2 and 4 but is instead derived from an action trajectory via integration of the state
transition equation.

Let the action space U be a bounded subset of Rm. A planning algorithm computes
an action trajectory ũ, which is a function of the form ũ : [0,∞) → U . The action at a
particular time t is expressed as u(t). If the action space is state-dependent, then u(t) must
additionally satisfy u(t) ∈ U(x(t)) ⊂ U . It will also be assumed that a termination action
uT is used, which makes it possible to specify all action trajectories over [0,∞) with the
understanding that at some time tF , the termination action is applied.

The connection between the action and state trajectories needs to be formulated. Start-
ing from some initial state x(0) at time t = 0, a state trajectory is derived from an action
trajectory ũ as

x(t) = x(0) +

∫ t

0
f(x(t′), u(t′))dt′. (5.6)

The problem of motion planning under differential constraints can be formulated as an
extension of the Piano Mover’s Problem in Formulation 4. The main differences in this
extension are 1) the introduction of time, 2) the state or phase space, and 3) the state
transition equation. The resulting formulation follows.

Formulation 5. (Motion Planning under Differential Constraints)

1. A world W, a robot A, an obstacle region O, and a configuration space C, which are
defined the same as in Formulation 4.

2. An unbounded time interval T = [0,∞).

3. A smooth manifold X, called the state space, which may be X = C or it may be a phase
space derived from C if dynamics is considered. Let κ : X → C denote a function that
returns the configuration q ∈ C associated with x ∈ X. Hence, q = κ(x).

4. An obstacle region Xobs is defined for the state space. If X = C, then Xobs = Cobs.
For general phase spaces, Xobs is described in detail later. The notation Xfree = X
Xobs indicates the states that avoid collision and satisfy any additional global con-
straints.

5. For each state x ∈ X, a bounded action space U(x) ⊂ Rm ∪ uT , which includes
a termination action uT and m is some fixed integer called the number of action
variables. Let U denote the union of U(x) over all x ∈ X.

6. A system is specified using a state transition equation ẋ = f(x, u), defined for ev-
ery x ∈ X and u ∈ U(x). If the termination action is applied, it is assumed that
f(x, uT ) = 0 (and no cost accumulates, if a cost functional is used).

7. A state xI ∈ Xfree is designated as the initial state.

8. A set XG ⊂ Xfree is designated as the goal region.

50



5.3. PROBLEM FORMULATION
794 S. M. LaValle: Planning Algorithms

Cobs

Xobs

X

C

Figure 14.1: An obstacle region Cobs ⊂ C generates a cylindrical obstacle region
Xobs ⊂ X with respect to the phase variables.

Symmetric systems Finally, one property of systems that is important in some
planning algorithms is symmetry.1 A system ẋ = f(x, u) is symmetric if the
following condition holds. If there exists an action trajectory that brings the
system from some xI to some xG, then there exists another action trajectory that
brings the system from xG to xI by visiting the same points in X, but in reverse
time. At each point along the path, this means that the velocity can be negated by
a different choice of action. Thus, it is possible for a symmetric system to reverse
any motions. This is usually not possible for systems with drift. An example of
a symmetric system is the differential drive of Section 13.1.2. For the simple car,
the Reeds-Shepp version is symmetric, but the Dubins version is not because the
car cannot travel in reverse.

14.1.3 Obstacles in the Phase Space

In Formulation 14.1, the specification of the obstacle region in Item 4 was inten-
tionally left ambiguous. Now it will be specified in more detail. If X = C, then
Xobs = Cobs, which was defined in (4.34) for a rigid robot and in (4.36) for a robot
with multiple links. The more interesting case occurs if X is a phase space that
includes velocity variables in addition to configuration information.

Any state for which its associated configuration lies in Cobs must also be a
member of Xobs. The velocity is irrelevant if a collision occurs in the world W . In
most cases that involve a phase space, the obstacle region Xobs is therefore defined

1Sometimes in control theory, the term symmetry applies to Lie groups. This is a different
concept and means that the system is invariant with respect to transformations in a group such
as SE(3). For example, the dynamics of a car should not depend on the direction in which the
car is pointing.

Figure 5.1: An obstacle region Cobs ⊂ C generates a cylindrical obstacle region Xobs ⊂ X with
respect to the phase variables.

9. A complete algorithm must compute an action trajectory ũ : T → U , for which the
state trajectory x̃, resulting from integration, satisfies: 1)x(0) = xI , and 2) there
exists some t > 0 for which u(t) = uT and x(t) ∈ XG.

Additional constraints may be placed on ũ, such as continuity or smoothness over time.
At the very least, ũ must be chosen so that the integrand of (5.5) is integrable over time.
Let U denote the set of all permissible action trajectories over T = [0,∞). By default, U
is assumed to include any integrable action trajectory.

5.3.1 Obstacles in the Phase Space

In Formulation 5, the specification of the obstacle region in Item 4 was intentionally left
ambiguous. Now it will be specified in more detail. Any state for which its associated
configuration lies in Cobs must also be a member of Xobs. The velocity is irrelevant if a
collision occurs in the world W. In most cases that involve a phase space, the obstacle
region Xobs is therefore defined as

Xobs = {x ∈ X|κ(x) ∈ Cobs}, (5.7)

in which κ(x) is the configuration associated with the state x ∈ X. If the first n variables
of X are configuration parameters, then Xobs has the cylindrical structure shown in Figure
14.1 with respect to the other variables. If κ is a complicated mapping, as opposed to simply
selecting the configuration coordinates, then the structure might not appear cylindrical. In
these cases, (5.6) still indicates the correct obstacle region in X.

5.3.2 The Region of Inevitable Collision

One of the most challenging aspects of planning can be visualized in terms of the region of
inevitable collision, denoted by Xric. This is the set of states from which entry into Xobs will
eventually occur, regardless of any actions that are applied. As a simple example, imagine
that a robotic vehicle is traveling 100 km/hr toward a large wall and is only 2 meters away.

51



CHAPTER 5. SAMPLING-BASED PLANNING UNDER DIFFERENTIAL
CONSTRAINTS

Clearly the robot is doomed. Due to momentum, collision will occur regardless of any
efforts to stop or turn the vehicle. At low enough speeds, Xric and Xobs are approximately
the same; however, Xric grows dramatically as the speed increases.

Let U∞ denote the set of all trajectories ũ : [0,∞)→ U for which the termination action
uT is never applied (we do not want inevitable collision to be avoided by simply applying
uT ). The region of inevitable collision is defined as

Xric = {x(0) ∈ X|∀ũ ∈ U∞, ∃t > 0 such that x(t) ∈ Xobs}, (5.8)

in which x(t) is the state at time t obtained by applying (5.5) from x(0).
In sampling-based planning under differential constraints, Xric is not computed because

it is too complicated. It is not even known how to make a ”collision detector” for Xric. By
working instead with Xobs, challenges arise due to momentum. There may be large parts
of the state space that are never worth exploring because they lie in Xric. Unfortunately,
there is no practical way at present to accurately determine whether states lie in Xric. As
the momentum and amount of clutter increase, this becomes increasingly problematic.

5.4 Reachability and Completeness

In Chapter 4, sampling over C was of fundamental importance. The most important con-
sideration was that a sequence of samples should be dense so that samples get arbitrarily
close to any point in Cfree. Planning under differential constraints is complicated by the
specification of solutions by an action trajectory instead of a path through Xfree. For
sampling-based algorithms to be resolution complete, sampling and searching performed
on the space of action trajectories must somehow lead to a dense set in Xfree.

5.4.1 Reachable Sets

For the algorithms in Chapter 4, resolution completeness and probabilistic completeness
rely on having a sampling sequence that is dense on C. In the present setting, this would
require dense sampling on X. Differential constraints, however, substantially complicate
the sampling process. It is generally not reasonable to prescribe precise samples in X that
must be reached because reaching them may be impossible or require solving a BVP. Since
paths in X are obtained indirectly via action trajectories, completeness analysis begins
with considering which points can be reached by integrating action trajectories. Assume
temporarily that there are no obstacles: Xfree = X. Let U be the set of all permissible
action trajectories on the time interval [0,∞). From each ũ ∈ U , a state trajectory x̃(x0, ũ)
is defined using (5.5). Which states in X are visited by these trajectories? It may be
possible that all of X is visited, but in general some states may not be reachable due to
differential constraints. Let R(x0,U) ⊂ X denote the reachable set from x0, which is the
set of all states that are visited by any trajectories that start at x0 and are obtained from
some ũ ∈ U by integration. This can be expressed formally as

R(x0,U) = {x1 ∈ X|∃ũ ∈ U and ∃t ∈ [0,∞) such that x(t) = x1} (5.9)

in which x(t) is given by (5.5) and requires that x(0) = x0.
So far the obstacle region has not been considered. Let Ufree ⊂ U denote the set of

all action trajectories that produce state trajectories that map into Xfree. In other words,

52



5.5. THE DISCRETE-TIME MODEL

Ufree is obtained by removing from U all action trajectories that cause entry into Xobs

for some t > 0. The reachable set that takes the obstacle region into account is denoted
R(x0,Ufree), which replaces U by Ufree in (5.7). This assumes that for the trajectories in
Ufree, the termination action can be applied to avoid inevitable collisions due to momentum.
A smaller reachable set could have been defined that eliminates trajectories for which
collision inevitably occurs without applying uT . The completeness of an algorithm can
be expressed in terms of reachable sets. For any given pair xI , xG ∈ Xfree, a complete
algorithm must report a solution action trajectory if xG ∈ R(xI ,Ufree), or report failure
otherwise. Completeness is too difficult to achieve, except for very limited cases; therefore,
sampling- based notions of completeness are more valuable.

Time-limited reachable set

Consider the set of all states that can be reached up to some fixed time limit. Let the
time-limited reachable setR(x0,U , t) be the subset of R(x0,U) that is reached up to and
including time t. Formally, this is

R(x0,U , t) = {x1 ∈ X|∃ũ ∈ U and ∃t′ ∈ [0, t] such that x(t′) = x1}. (5.10)

Backward reachable sets

The reachability definitions have a nice symmetry with respect to time. Rather than
describing all points reachable from some x ∈ X, it is just as easy to describe all points
from which some x ∈ X can be reached.

Let the backward reachable set be defined as

B(xf ,U) = {x0 ∈ X|∃ũ ∈ U and ∃t ∈ [0,∞) such that x(t) = xf}, (5.11)

in which x(t) is given by (5.5) and requires that x(0) = x0. The time-limited backward
reachable set is defined as

B(xf ,U , t) = {x0 ∈ X|∃ũ ∈ U and ∃t ∈ [0, t] such that x(t′) = xf}, (5.12)

which once again requires that x(0) = x0 in (5.5). At this point, there appear to be close
parallels between forward, backward, and bidirectional searches from Chapter 2. The same
possibilities exist in sampling- based planning under differential constraints. The forward
and backward reachable sets indicate the possible states that can be reached under such
schemes. The algorithms explore subsets of these reachable sets.

5.5 The Discrete-Time Model

Under differential constraints, sampling-based motion planning algorithms all work by sam-
pling the space of action trajectories. This results in a reduced set of possible action trajec-
tories. To ensure some form of completeness, a motion planning algorithm should carefully
construct and refine the sample set. As in Chapter 4, the qualities of a sample set can be
expressed in terms of dispersion and denseness. The main difference in the current setting
is that the algorithms here work with a sample sequence over U , as opposed to over C as
in Chapter 4. This is required because solution paths can no longer be expressed directly
on C (or X).

The discrete-time model is depicted in Figure 5.3 and is characterized by three aspects:

53



CHAPTER 5. SAMPLING-BASED PLANNING UNDER DIFFERENTIAL
CONSTRAINTS802 S. M. LaValle: Planning Algorithms

T

U

T

U

A trajectory in U A trajectory in Ud

Figure 14.5: The discrete-time model results in Ud ⊂ U , which is obtained by
partitioning time into regular intervals and applying a constant action over each
interval. The action is chosen from a finite subset Ud of U .

The first two discretize time and the action spaces. The third condition is needed
to relate the time discretization to the space of action trajectories. Let Ud denote
the set of all action trajectories allowed under a given time discretization. Note
that Ud completely specifies the discrete-time model.

For some problems, U may already be finite. Imagine, for example, a model of
firing one of several thrusters (turn them on or off) on a free-floating spacecraft. In
this case no discretization of U is necessary. In the more general case, U may be a
continuous set. The sampling methods of Section 5.2 can be applied to determine
a finite subset Ud ⊆ U .

Any action trajectory in Ud can be conveniently expressed as an action sequence
(u1, u2, . . . , uk), in which each ui ∈ Ud gives the action to apply from time (i−1)∆t
to time i∆t. After stage k, it is assumed that the termination action is applied.

14.2.2.1 Reachability graph

After time discretization has been performed, the reachable set can be adapted to
Ud to obtain R(x0, Ud). An interesting question is: What is the effect of sampling
on the reachable set? In other words, how do R(x0, U) and R(x0, Ud) differ?
This can be addressed by defining a reachability graph, which will be revealed
incrementally by a planning algorithm.

Let Tr(x0, Ud) denote a reachability tree, which encodes the set of all trajectories
from x0 that can be obtained by applying trajectories in Ud. Each vertex of
Tr(x0, Ud) is a reachable state, x ∈ R(x0, Ud). Each edge of Tr(x0, Ud) is directed; its
source represents a starting state, and its destination represents the state obtained
by applying a constant action u ∈ Ud over time ∆t. Each edge e represents an
action trajectory segment, e : [0, ∆t] → U . This can be transformed into a state
trajectory, x̃e, via integration using (14.1), from 0 to ∆t of f(x, u) from the source

Figure 5.2: The discrete-time model results in Ud ⊂ U , which is obtained by partitioning time
into regular intervals and applying a constant action over each interval. The action is chosen from
a finite subset Ud of U .

1. Time T is partitioned into intervals of length ∆t. This enables stages to be assigned,
in which stage k indicates that (k − 1)∆t units of time have elapsed.

2. A finite subset Ud of the action space U is chosen. If U is already finite, then this
selection may be Ud = U .

3. The action u(t) ∈ Ud must remain constant over each time interval.

The first two discretize time and the action spaces. The third condition is needed to
relate the time discretization to the space of action trajectories. Let Ud denote the set of
all action trajectories allowed under a given time discretization. Note that Ud completely
specifies the discrete-time model.

Any action trajectory in Ud can be conveniently expressed as an action sequence (u1, u2, ..., uk),
in which each ui ∈ Ud gives the action to apply from time (i − 1)∆t to time i∆t. After
stage k, it is assumed that the termination action is applied.

5.5.1 Reachability Graph

After time discretization has been performed, the reachable set can be adapted to Ud to
obtain R(x0,Ud). An interesting question is: What is the effect of sampling on the reachable
set? In other words, how do R(x0,U) and R(x0,Ud) differ? This can be addressed by
defining a reachability graph, which will be revealed incrementally by a planning algorithm.

Let Tr(x0,Ud) denote a reachability tree, which encodes the set of all trajectories from x0

that can be obtained by applying trajectories in Ud. Each vertex of Tr(x0,Ud) is a reachable
state, x ∈ R(x0,Ud). Each edge of Tr(x0,Ud) is directed; its source represents a starting
state, and its destination represents the state obtained by applying a constant action u ∈ Ud
over time ∆t. Each edge e represents an action trajectory segment, e : [0,∆t] → U . This
can be transformed into a state trajectory, x̃e, via integration, from 0 to ∆t of f(x, u) from
the source state of e.

Thus, in terms of x̃e, Tr can be considered as a topological graph in X (Tr will be used
as an abbreviation of Tr(x0,Ud)). The swath S(Tr) of Tr is

S(Tr) =
⋃

e∈E

⋃

t∈[0,∆t]

xe(t), (5.13)

54



5.5. THE DISCRETE-TIME MODEL
14.2. REACHABILITY AND COMPLETENESS 803

Two stages Four stages

Figure 14.6: A reachability tree for the Dubins car with three actions. The kth
stage produces 3k new vertices.

state of e.
Thus, in terms of x̃e, Tr can be considered as a topological graph in X (Tr will

be used as an abbreviation of Tr(x0, Ud)). The swath S(Tr) of Tr is

S(Tr) =
⋃

e∈E

⋃

t∈[0,∆t]

xe(t), (14.8)

in which xe(t) denotes the state obtained at time t from edge e. (Recall topological
graphs from Example 4.6 and the swath from Section 5.5.1.)

Example 14.4 (Reachability Tree for the Dubins Car) Several stages of the
reachability tree for the Dubins car are shown in Figure 14.6. Suppose that there
are three actions (straight, right-turn, left-turn), and ∆t is chosen so that if the
right-turn or left-turn action is applied, the car travels enough to rotate by π/2.
After the second stage, there are nine leaves in the tree, as shown in Figure 14.6a.

Figure 5.3: A reachability tree for the Dubins car with three actions. The kth stage produces 3k

new vertices.

in which xe(t) denotes the state obtained at time t from edge e.

5.5.2 Resolution Completeness

Beyond the trivial case of ẋ = u, the reachability graph is usually not a simple grid. Even if
X is bounded, the reachability graph may have an infinite number of vertices, even though
∆t is fixed and Ud is finite.

Suppose that ẋ = f(x, u) and the discrete-time model is used. To ensure convergence
of the discrete-time approximation, f must be well-behaved. This can be established by
requiring that all of the derivatives of f with respect to u and x are bounded above and
below by a constant. More generally, f is assumed to be Lipschitz, which is an equivalent
condition for cases in which the derivatives exist, but it also applies at points that are
not differentiable. If U is finite, then the Lipschitz condition is that there exists some
L ∈ (0,∞) such that

||f(x, u)− f ′(x′, u)|| ≤ L||x− x′||, (5.14)

for all x, x′ ∈ X,for all u ∈ U ,and || · || denotes a norm on X. If U is infinite, then the
condition is that there must exist some L ∈∈ (0,∞) such that

||f(x, u)− f ′(x′, u)|| ≤ L(||x− x′||+ ||u− u′||) (5.15)

for all x, x′ ∈ X ,and for all u, u′ ∈ U . Intuitively, the Lipschitz condition indicates
that if x and u are approximated by ẋ and u̇, then the error when substituted into f will

55



CHAPTER 5. SAMPLING-BASED PLANNING UNDER DIFFERENTIAL
CONSTRAINTS

be manageable. If convergence to optimal trajectories with respect to a cost functional
is important, then Lipschitz conditions are also needed for l(x, u). Under such mild as-
sumptions, if ∆t and the dispersion of samples of Ud is driven down to zero, then the
trajectories obtained from integrating discrete action sequences come arbitrarily close to
solution trajectories. In other words, action sequences provide arbitrarily close approxima-
tions to anyũ ∈ U . If f is Lipschitz, then the integration of (5.6) yields approximately the
same result for ũ as the approximating action sequence.

In the limit as ∆t and the dispersion of Ud approach zero, the reachability graph be-
comes dense in the reachable set R(xI ,U). Ensuring a systematic search for the case of a
grid was not difficult because there is only a finite number of vertices at each resolution.
Unfortunately, the reachability graph may generally have a countably infinite number of
vertices for some fixed discrete-time model, even if X is bounded.

5.6 Sampling-Based Motion Planning Revisited

Now that the preliminary concepts have been defined for motion planning under differential
constraints, the focus shifts to extending the sampling-based planning methods of Chapter
4. This primarily involves extending the incremental sampling and searching framework
from Section 4.2 to incorporate differential constraints. If an efficient BVP solver is avail-
able, then it may also be possible to extend sampling-based roadmaps of Section 4.4 to
handle differential constraints.

5.6.1 Basic Components

Sampling theory

There are at least two continuous spaces: X, and the time interval T . In most cases, the
action space U is also continuous. Each continuous space must be sampled in some way. In
the limit, it is important that any sample sequence is dense in the space on which sampling
occurs. This was required for the resolution completeness concepts of Section 5.5.

Sampling of T and U can be performed by directly using the random or deterministic
methods of Chapter 4. Time is just an interval of R, and U is typically expressed as a
convex m-dimensional subset of Rm.

Some planning methods may require sampling on X. The definitions of discrepancy and
dispersion from Chaptern 4 can be easily adapted to any measure space and metric space,
respectively. Even though it may be straightforward to define a good criterion, generating
samples that optimize the criterion may be difficult or impossible.

Collision detection

As in Chapter 4, efficient collision detection algorithms are a key enabler of sampling-based
planning. If X = C, then the methods of Chapter 4 directly apply. If X includes phase
constraints, then additional tests must be performed.

In sintesys, determining whether x ∈ Xfree involves

1. Using a collision detection algorithm to ensure that κ(x) ∈ Cfree.

2. Checking x to ensure that other constraints of the form hi(x) ≤ 0 have been satisfied.

56



5.6. SAMPLING-BASED MOTION PLANNING REVISITED

System simulator

new component is needed for sampling-based planning under differential constraints be-
cause of (5.6). Motions are now expressed in terms of an action trajectory, but collision
detection and constraint satisfaction tests must be performed in X. Therefore, the system,
ẋ = f(x, u) needs to be integrated frequently during the planning process. Similar to the
modeling of collision detection as a ”black box”, the integration process is modeled as a
module called the system simulator.

Integration can be considered as a module that implements (5.6) by computing the
state trajectory resulting from a given initial state x(0), an action trajectory ũ(t), and time
t. The incremental simulator encapsulates the details of integrating the state transition
equation so that they do not need to be addressed in the design of planners. However,
that information from the particular state transition equation may still be important in
the design of the planning algorithm.

5.6.2 Local Planning

The methods of Chapter 4 were based on the existence of a local planning method (LPM)
that is simple and efficient. This represented an important part of both the incremental
sampling and searching framework of Section 4.2 and the sampling- based roadmap frame-
work of Section 4.4 In the absence of obstacles and differential constraints, it is trivial to
define an LPM that connects two configurations. They can, for example, be connected us-
ing the shortest path (geodesic) in C. The sampling-based roadmap approach from Section
4.4 relies on this simple LPM. n the presence of differential constraints, the problem of
constructing an LPM that connects two configurations or states is considerably more chal-
lenging. Recall that this is the classical BVP, which is difficult to solve for most systems.
There are two main alternatives to handle this difficulty in a sampling- based planning
algorithm:

1. Design the sampling scheme, which may include careful selection of motion primitives,
so that the BVP can be trivially solved.

2. Design the planning algorithm so that as few as possible BVPs need to be solved.
The LPM in this case does not specify precise goal states that must be reached.

If the BVP is efficiently solved, then virtually any sampling-based planning algorithm
from Chapter 4 can be adapted to the case of differential constraints. This is achieved
by using the module in Figure 5.2 as the LPM. For example, a sampling-based roadmap
can use the computed solution in the place of the shortest path through C. If the BVP
solver is not efficient enough, then this approach becomes impractical because it must
typically be used thousands of times to build a roadmap. Under the second alternative, it is
assumed that solving the BVP is very costly. The planning method in this case should avoid
solving BVPs whenever possible. Some planning algorithms may only require an LPM that
approximately reaches intermediate goal states, which is simpler for some systems. Other
planning algorithms may not require the LPM to make any kind of connection. The LPM
may return a motion primitive that appears to make some progress in the search but is not
designed to connect to a prescribed state.

57



CHAPTER 5. SAMPLING-BASED PLANNING UNDER DIFFERENTIAL
CONSTRAINTS

14.3. SAMPLING-BASED MOTION PLANNING REVISITED 817

Two-Point
Boundary-Value
Solver

ũt

xI

xG

Figure 14.10: Some methods in Chapter 15 can solve two-point boundary value
problems in the absence of Xobs. This is difficult to obtain for most systems, but
it is more powerful than the system simulator. It is very valuable, for example, in
making a sampling-based roadmap that satisfies differential constraints.

2. Design the planning algorithm so that as few as possible BVPs need to be
solved. The LPM in this case does not specify precise goal states that must
be reached.

Under the first alternative, the BVP solver can be considered as a black box, as
shown in Figure 14.10, that efficiently connects xI to xG in the absence of obstacles.
In the case of the Piano Mover’s Problem, this was obtained by moving along the
shortest path in C. For many of the wheeled vehicle systems from Section 13.1.2,
steering methods exist that could serve as an efficient BVP solver; see Section 15.5.
Efficient techniques also exist for linear systems and are covered in Section 15.2.2.

If the BVP is efficiently solved, then virtually any sampling-based planning
algorithm from Chapter 5 can be adapted to the case of differential constraints.
This is achieved by using the module in Figure 14.10 as the LPM. For example, a
sampling-based roadmap can use the computed solution in the place of the shortest
path through C. If the BVP solver is not efficient enough, then this approach
becomes impractical because it must typically be used thousands of times to build
a roadmap. The existence of an efficient module as shown in Figure 14.10 magically
eliminates most of the complications associated with planning under differential
constraints. The only remaining concern is that the solutions provided by the BVP
solver could be quite long in comparison to the shortest path in the absence of
differential constraints (for example, how far must the Dubins car travel to move
slightly backward?).

Under the second alternative, it is assumed that solving the BVP is very costly.
The planning method in this case should avoid solving BVPs whenever possible.
Some planning algorithms may only require an LPM that approximately reaches
intermediate goal states, which is simpler for some systems. Other planning algo-
rithms may not require the LPM to make any kind of connection. The LPM may
return a motion primitive that appears to make some progress in the search but
is not designed to connect to a prescribed state. This usually involves incremental
planning methods, which are covered in Section 14.4 and extends the methods of
Sections 5.4 and 5.5 to handle differential constraints.

Figure 5.4: The BVP is treated as a black box that gives a control sequence as an output for any
couple of start and end points.

5.6.3 General Framework Under Differential Constraints

Initialization: Let G(V,E) represent an undirected search graph, for which the vertex set
V contains a vertex for xI and possibly other states in Xfree, and the edge set E is
empty. The graph can be interpreted as a topological graph with a swath S(G).

Swath-point Selection Method (SSM): Choose a vertex xcur ∈ S(G) for expansion.

Local Planning Method (LPM): Generate a motion primitive ũp : [0, tF ]→ Xfree such
that u(0) = xcur and u(tF ) = xr for some xr ∈ Xfree, which may or may not be
a vertex in G. Using the system simulator, a collision detection algorithm, and by
testing the phase constraints, ũp must be verified to be violation-free. If this step
fails, then go to Step 2.

Insert an Edge in the Graph: Insert ũp into E. Upon integration, ũp yields a state
trajectory from xcur to xr. If xr is not already in V , it is added. If xcur lies in the
interior of an edge trajectory for some e ∈ E, then e is split by the introduction of a
new vertex at xcur.

Check for a Solution: Determine whether G encodes a solution path. In some applica-
tions, a small gap in the state trajectory may be tolerated.

Return to Step 2: Iterate unless a solution has been found or some termination condition
is satisfied. In the latter case, the algorithm reports failure.

The main new complication is due to BVPs. See Figure 5.3. Recall that for most systems
it is important to reduce the number of BVPs that must be solved during planning as much
as possible. Assume that connecting precisely to a prescribed state is difficult. Figure 5.3a
shows the best situation, in which forward, unidirectional search is used to enter a large
goal region. In this case, no BVPs need to be solved. As the goal region is reduced, the
problem becomes more challenging. Figure 5.3b shows the limiting case in which XG is a
point {xG}. This requires the planning algorithm to solve at least one BVP.

58



5.7. RDT-BASED METHODS
14.3. SAMPLING-BASED MOTION PLANNING REVISITED 819

XGxI xI

xG

BVP

(a) (b)

xI

xG
BVP xG

xI

BVP

(c) (d)

Figure 14.11: (a) Forward, unidirectional search for which the BVP is avoided.
(b) Reaching the goal precisely causes a BVP. (c) Backward, unidirectional search
also causes a BVP. (d) For bidirectional search, the BVP arises when connecting
the trees.

becomes more challenging. Figure 14.11b shows the limiting case in which XG is
a point {xG}. This requires the planning algorithm to solve at least one BVP.

Figure 14.11c shows the case of backward, unidirectional search. This has the
effect of moving the BVP to xI . Since xI is precisely given (there is no “initial
region”), the BVP cannot be avoided as in the forward case. If an algorithm
produces a solution ũ for which x(0) is very close to xI , and if XG is large, then it
may be possible to salvage the solution. The system simulator can be applied to ũ
from xI instead of x(0). It is known that x̃(x(0), ũ) is violation-free, and x̃(xI , ũ)
may travel close to x̃(x(0), ũ) at all times. This requires f to vary only a small
amount with respect to changes in x (this would be implied by a small Lipschitz
constant) and also for ∥xI − x(0)∥ to be small. One problem is that the difference
between points on the two trajectories usually increases as time increases. If it is
verified by the system simulator that x̃(xI , ũ) is violation-free and the final state
still lies in XG, then a solution can be declared.

For bidirectional search, a BVP must be solved somewhere in the middle of a
trajectory, as shown in Figure 14.11d. This complicates the problem of determining

Figure 5.5: (a) Forward, unidirectional search for which the BVP is avoided. (b) Reaching the
goal precisely causes a BVP.

5.7 RDT-Based Methods

RDTs were originally developed for handling differential constraints, even though most of
their practical application has been to the Piano Mover’s Problem. This section extends
the ideas of Section 4.3 from C to X and incorporates differential constraints. Let α denote
an infinite, dense sequence of samples in X. Let ρ : X × X → [0,∞] denote a distance
function on X, which may or may not be a proper metric. The distance function may not
be symmetric, in which case ρ(x1, x2) represents the directed distance from x1 to x2.

The RDT is a search graph as considered so far in this section and can hence be
interpreted as a subgraph of the reachability graph under some discretization model. For
simplicity, first assume that the discrete-time model of Section 5.5 is used, which leads to
a finite action set Ud and a fixed time interval ∆t. The set Up of motion primitives is all
action trajectories for which some u ∈ Ud is held constant from time 0 to ∆t. The more
general case will be handled at the end of this section. Paralleling Section 4.3, the RDT
will first be defined in the absence of obstacles. Hence, let Xfree = X. The construction
algorithm is defined in Algorithm 5.

Algorithm 5 SIMPLE RDT WITH DIFFERENTIAL CONSTRAINTS

G.init(x0)
for 1 ≤ i ≤ k do

xn ← NEAREST (S(G), α(i))
(ũp, xr)← LOCALPLANNER(xn, α(i))
G.addvertex(xr)
G.addedge(ũp)

The RDT, denoted by G, is initialized with a single vertex at some x0 ∈ X. In each
iteration, a new edge and vertex are added to G. Line 3 uses ρ to choose xn, which is the
nearest point to α(i) in the swath of G. In the RDT algorithm of Section 4.4, each sample of
α becomes a vertex. Due to the BVP and the particular motion primitives in Up, it may be
difficult or impossible to precisely reach α(i). Therefore, line 4 calls an LPM to determine
a primitive ũp ∈ Up that produces a new state xr upon integration from xn. The result is
depicted in Figure 5.6. For the default case in which Up represents the discrete-time model,
the action is chosen by applying all u ∈ U over time ∆t and selecting the one that minimizes

59



CHAPTER 5. SAMPLING-BASED PLANNING UNDER DIFFERENTIAL
CONSTRAINTS

14.4. INCREMENTAL SAMPLING AND SEARCHING METHODS 833

SIMPLE RDT WITH DIFFERENTIAL CONSTRAINTS(x0)
1 G.init(x0);
2 for i = 1 to k do
3 xn ← nearest(S(G),α(i));
4 (ũp, xr)← local planner(xn,α(i));
5 G.add vertex(xr);
6 G.add edge(ũp);

Figure 14.19: Extending the basic RDT algorithm to handle differential con-
straints. In comparison to Figure 5.16, an LPM computes xr, which becomes
the new vertex, instead of α(i). In some applications, line 4 may fail, in which
case lines 5 and 6 are skipped.

Apply some ũp

xn

α(i)

Figure 14.20: If the nearest point S lies in the state trajectory segment associated
to an edge, then the edge is split into two, and a new vertex is inserted into G.

optimality.

Let α denote an infinite, dense sequence of samples in X. Let ρ : X × X →
[0,∞] denote a distance function on X, which may or may not be a proper metric.
The distance function may not be symmetric, in which case ρ(x1, x2) represents
the directed distance from x1 to x2.

The RDT is a search graph as considered so far in this section and can hence
be interpreted as a subgraph of the reachability graph under some discretization
model. For simplicity, first assume that the discrete-time model of Section 14.2.2
is used, which leads to a finite action set Ud and a fixed time interval ∆t. The
set Up of motion primitives is all action trajectories for which some u ∈ Ud is held
constant from time 0 to ∆t. The more general case will be handled at the end of
this section.

Paralleling Section 5.5.1, the RDT will first be defined in the absence of ob-
stacles. Hence, let Xfree = X. The construction algorithm is defined in Figure
14.19; it may be helpful to compare it to Figure 5.16, which was introduced on
C for the Piano Mover’s Problem. The RDT, denoted by G, is initialized with a
single vertex at some x0 ∈ X. In each iteration, a new edge and vertex are added

Figure 5.6: If the nearest point S lies in the state trajectory segment associated to an edge, then
the edge is split into two, and a new vertex is inserted into G.

ρ(xr, α(i)). One additional constraint is that if xn has been chosen in a previous iteration,
then ũp must be a motion primitive that has not been previously tried from xn; otherwise,
duplicate edges would result in G or time would be wasted performing collision checking
for reachability graph edges that are already known to be in collision. The remaining steps
add the new vertex and edge from xn. If xn is contained in the trajectory produced by an
edge e, then e is split as described in Section 4.3.

60



Part II

Deterministic Sampling-based
Motion Planning

61





In part 1 we gradually introduced the main steps involved in any sampling based motion
planning problem. By way of contrast, the focus of part 2 is on a particular components
i.e the sampling. As anticipated, many algorithms used in practice are based on i.i.d
uniform random sampling schemes. Although such algorithms have proven to yield good
outcomes in many practical scenarios and in certain cases to converge to optimal solutions,
in a probabilistic sense ([4],[5]), it is natural to wonder better performance or stronger
theoretical guarantees can be granted by using deterministic sampling schemes specifically
designed to realize a ”good” coverage of the robot’s state space.

This venue was originally explored by [2], whose results are reported in Chapter 6, in
order to introduce the topic. However, Janson’s analysis is limited to planning problem
without differential constraints.

The original contribution of this work is the attempt to extend the methodologies and
the theoretical results of [2] to two particular classes of dynamic systems. This is done in
Chapter 7 and 8 by developing two novel (the best of our knowledge) sampling schemes
explicitly designed to minimize a dispersion-like parameter related to the particular systems
dynamics.

63



64



Chapter 6

Low-Dispersion Deterministic
Sampling

This chapter presents some of the results obtained by [2] in the context of motion planning
without differential constraint.

We show that the PRM algorithm is asymptotically optimal when run on deterministic
sampling sequences in d dimensions whose L2-dispersion is upper-bounded by γN−1/n, for
some γ ∈ R > 0 (we refer to such sequences as deterministic low-dispersion sequences),
and with a connection radius rN ∈ ω(N−1/n). In other words, the cost of the solution
computed over N samples converges deterministically to the optimum as N → ∞. As
a comparison, the analogue result for the case of i.i.d. random sampling holds almost
surely or in probability [Karaman and Frazzoli, 2011, Janson et al., 2015] (as opposed to
deterministically) and requires a connection radius Ω(log(N)/N)1/n , i.e., bigger.

The approach adopted in this chapter will be adapted later to obtain similar results for
the more challenging case of kino-dynamic motion planning, which is the main focus of this
thesis.

6.1 Background material

A key characteristic of any set of points on a finite domain is its L2-dispersion. This concept
will be particularly useful in elucidating the advantages of deterministic sampling over i.i.d.
sampling. As such, in this section we review some relevant properties and results on the
L2-dispersion.

Definition 2. For a finite, nonempty set S of points contained in a n-dimensional compact
Euclidean subspace X with positive Lebesgue measure, its L2-dispersion D(S) is defined as

D(S) := sup
x∈X

max
s∈S
{r > 0 : ∃x ∈ X with B(x, r) ∩ S = ∅} (6.1)

where B(x, r) is the open ball of radius r centered at x.

Intuitively, the L2-dispersion quantifies how well a space is covered by a set of points S
in terms of the largest open Euclidean ball that touches none of the points. The quantity
D(S) is important in the analysis of path optimality as an optimal path may pass through

65



CHAPTER 6. LOW-DISPERSION DETERMINISTIC SAMPLING

an empty ball of radius D(S). Hence, D(S) bounds how closely any path tracing through
points in S can possibly approximate that optimal path.

The L2-dispersion of a set of deterministic or random points is often hard to compute,
but fortunately it can be bounded by the more-analytically tractable L∞-dispersion. The
L∞-dispersion is defined by simply replacing the L2-norm in equation (1) by the L∞-norm,
or max-norm. The L∞-dispersion of a set S, which we will denote by D∞(S), is related to
the L2-dispersion in n dimensions by

D∞(S) ≤ D2(S) ≤ √nD∞(S), (6.2)

which allows us to bound D(S) when D∞(S) is easier to compute. In particular, an
important result due to is that the L∞-dispersion of N independent uniformly sampled
points on [0, 1]n is O((log(N)/N)1/n) with probability 1. Corollary to this is that the
L2-dispersion is also O((log(N)/N)1/n) with probability 1.

Remarkably, there are deterministic sequences with L2-dispersions of order O(N−1/n),
an improvement by a factor log(N)1/n. For instance, the Sukharev sequence, whereby [0, 1]n

is gridded into N = kn hypercubes and their centers are taken as the sampled points, can
easily be shown to have L2-dispersion of (

√
n/2)N−1/n for N = kn points. As we will

see, the use of sample sequences with lower L2-dispersions confers on PRM a number of
beneficial properties, thus justifying the use of certain deterministic sequences instead of
i.i.d. ones. In the remainder of the Chapter we will refer to sequences with L2-dispersion of
order O(N−1/n) as low-dispersion sequences. A natural question to ask is whether we can
use a sequence that minimizes the L2-dispersion. Unfortunately, such an optimal sequence
is only known for n = 2, in which case it is represented by the centers of the equilateral
triangle tiling.

6.2 Problem Definition

Let X = [0, 1]n be the configuration space, where n ∈ N. Let Xobs be a closed set repre-
senting the obstacles, and let Xfree = cl(X
Xobs) be the obstacle-free space, where cl(·) denotes the closure of a set. The initial condi-
tion is xinit ∈ Xfree, and the goal region is Xgoal ⊂ Xfree. A specific path planning problem
is characterized by a triplet (Xfree,xinit,Xgoal). A function σ : [0, 1] → Rn is a path if it
is continuous and has bounded variation. If σ(τ) ∈ Xfree for all τ ∈ [0, 1], is said to be
collision-free. Finally, if σ is collision-free, τ(0) = xinit, and τ(1) ∈ cl(Xgoal), then is said to
be a feasible path for the planning problem (Xfree,xinit,Xgoal).

The goal regionXgoal is said to be regular if there exists ξ > 0 such that ∀y ∈ ∂Xgoal,
there exists z ∈ Xgoal with B(z; ξ) ⊂ Xgoal and y ∈ ∂B(z; ξ). Intuitively, a regular goal
region is a smooth set with a boundary that has bounded curvature. Regularity is a
technical condition we will use in our results, but is in fact quite weak, as nearly any goal
region can be well-approximated by a regular goal region. Furthermore, we will say Xgoal

is ξ-regular if Xgoal is regular for the parameter ξ. Denote the set of all paths by Σ. A cost
function for the planning problem (Xfree,xinit,Xgoal) is a function c : Σ→ R0; in this paper
we will focus on the arc length function. The problem is then defined as follows:

Problem 1. Given a path planning problem (Xfree,xinit,Xgoal) with an arc length cost
function c : Σ → R0, find a feasible path σ∗ such that c(σ∗) = min{c(σ) : σ is feasible}. If
no such path exists, report failure.

66



6.2. PROBLEM DEFINITIONDeterministic Sampling-Based Planning 9

xinit

Xobs

�0

�0

Xobs

Xobs

xgoal

Fig. 2. An example of a planning problem with a feasible �0-clear path. For a given clearance parameter �0 and suboptimality factor  ,
one can readily determine the number of samples (and, hence, computation time) that is deterministically guaranteed to return a path
whose cost is within 1/( � 1) of the cost of the best �0-clear path, for all planning problems where a feasible �0-clear path exists.

to be checked for collision, and if collision-free, its edge-length needs to be computed. (3) The shortest path through the
graph produced in steps (1) and (2) from the initial point to the goal region needs to be computed.

The lattice structure makes it trivially easy to bound a point’s rn-neighborhood by a bounding hypercube with side-
length 2rn, ensuring only O(nrd

n) nearby points need to be checked for each of the n samples, so this step takes O(n2rd
n)

time.
In step (2), one collision-check and at most one cost computation needs to be performed for each pair of points found in

step (1) to be within rn of one another. The number of such pairs can be bounded above by the number of sampled points
times the size of each one’s neighborhood, leading to a bound of the form O(n · nrd

n). Thus step (2) takes O(n2rd
n) time.

After steps (1) and (2), a weighted (weights correspond to edge lengths) graph has been constructed on n vertices with
a number of edges asymptotically upper-bounded by n2rd

n. One more property of this graph, because it is on the cubic
lattice, is that the number of distinct edge lengths is asymptotically upper-bounded by nrd

n. An implementation of Dijkstra’s
algorithm for the single source shortest path problem is presented in [Orlin et al., 2010] with running time linear in both
the number of edges and the number of vertices times the number of distinct edge lengths. Since both are O(n2rd

n), that is
the time complexity of step (3).

The space complexity is proportional to the number of edges plus the number of vertices, which are O(n2rd
n) and O(n),

respectively. By assumption that nrn 9 0, O(n2rd
n) will be the (possibly co-) dominant term.

Since Theorem 1 allows rn 2 !(n�1/d) while maintaining AO, Theorem 3 implies that cubic-lattice sampling allows
for an AO algorithm with computational and space complexity !(n). All other AO algorithms in the literature have
computational and space complexity at least O(n log(n)). While the use of an rn 2 !(n�1/d) makes the graph construction
phase (steps (1) and (2)) !(n), step (3) would in general take longer, as shortest-path algorithms on a general graph with
n vertices requires ⌦(n log(n)). Thus the lattice structure must be leveraged to improve the complexity of step (3)—we
discuss the limitations implied by this in the next section.

5. Extensions

In this section we discuss several extensions to the results presented in Section 4. In particular, we discuss extensions to
alternative implementations and other types of batch-processing algorithms (Sections 5.1 and 5.2), to non-uniform sampling
sequences (Section 5.3), and to kinodynamic motion planning (Section 5.4).

Figure 6.1: An example of a planning problem with a feasible δ0-clear path.

A path planning problem can be arbitrarily difficult if the solution traces through a
narrow corridor, which motivates the standard notion of path clearance.

For a given δ > 0, define the δ-interior of Xfree as the set of all configurations that are
at least a distance δ from Xobs. Then a path is said to have strong δ-clearance if it lies
entirely inside the δ-interior of Xfree. Further, a path planning problem with optimal path
cost c∗ is called δ-robustly feasible if there exists a strictly positive sequence δn → 0, and a
sequence {σn}ni=1 of feasible paths such that limn→∞ c(σn) = c∗ and for all n ∈ N, σn has
strong δn-clearance, σn(1) ∈ ∂Xgoal, and σn(τ) /∈ Xgoal for all τ ∈ (0, 1).

Lastly, in this paper we will be considering a generic form of the PRM algorithm.
That is, denote by gPRM (for generic PRM) the algorithm given by Algorithm 6. The
function SampleFree(N) is a function that returns a set of N ∈ N points in Xfree. Given
a set of samples V , a sample v ∈ V , and a positive number r, Near(V,v, r) is a function
that returns the set of samples {u ∈ V : ||u − v||2 < r}. Given two samples u,v ∈ V,
CollisionFree(u,v) denotes the boolean function which is true if and only if the line
joining u and v does not intersect an obstacle. Given a graph G(V,E), where the node set
V contains xinit and E is the edge set, ShortestPath(xinit, V, E) is a function returning a
shortest path from xinit to Xgoal in the graph G(V,E) (if one exists, otherwise it reports
failure). Deliberately, we do not specify the definition of SampleFree and have left rN in
line 3 of Algorithm 6 unspecified, thus allowing for any sequence of points?deterministic
or random?to be used, with any connection radius. We want to clarify that we are in no
way proposing a new algorithm, but just defining an umbrella term for the PRM class of
algorithms which includes, for instance, sPRM and PRM∗ as defined in [Karaman and
Frazzoli, 2011].

67



CHAPTER 6. LOW-DISPERSION DETERMINISTIC SAMPLING

Algorithm 6 gPRM

V ← {xinit} ∪ SampleFree(N); E ← ∅
for all v ∈ V do

Xnear ← Near(V/{v},v, rN )
for x ∈ Xnear do

if CollisionFree(v,x) then
E ← E ∪ {(v,x)} ∪ {(x,v)}

return ShortestPath(xinit, V, E)

6.3 Theoretical Results

In this section the main theoretical results are presented. We begin by proving that
gPRM on low-dispersion sequences is asymptotically optimal, in the deterministic sense,
for connection radius rN ∈ ω(N−1/n). Previous works has required rN to be at least
Ω((log(N)/N)1/n) for asymptotic optimality.

Theorem 1. Let (Xfree,xinit,Xgoal) be a δ-robustly feasible path planning problem in n
dimensions, with Xgoal ξ-regular. Let c∗ denote the arc length of an optimal path σ∗, and
let cN denote the arc length of the path returned by gPRM (or ∞ if gPRM returns failure)
with n vertices whose L2-dispersion is D(V ) using a radius rN . Then if D(V ) ≤ γN−1/n

for some γ ∈ R and

N1/nrN →∞, (6.3)

then limn→∞ cN = c∗.

Proof. Fix ε > 0. By the δ-robust feasibility of the problem, there exists a σε such that
c(σε) ≤ (1 + ε/3)c∗ and σε has strong δε-clearance for some δε > 0. Let RN be a sequence
such that RN ≤ rN , N1/nRN →∞, and RN → 0, guaranteeing that there exists a N0 ∈ N
such that for all N ≥ N0,

(4 + 6/ε)γN−1/n ≤ RN ≤ min{δε, ξ, c∗ε/6}. (6.4)

For any N ≥ N0, construct the closed balls BN,m such that BN,i has radius γN−1/n and
has center given by tracing a distance (RN − 2γN−1/n)i from x0 along σε (this distance is
positive until RnN−2γN−1/n)i > c(σε)). This will generate MN = bc(σε)/(Rn−2γN−1/n)c
balls. Define BN,MN+1 to also have radius γN−1/n but center given by the point where
σε meets Xgoal. Finally, define BN,MN+2 to have radius γN−1/n and center defined by
extending the center of BN,MN+1 into Xgoal by a distance RN − 2γN−1/n in the direction
perpendicular to ∂Xgoal. Note that BN,MN+2 ⊂ Xgoal.

Since the dispersion matches the radii of all the BN,m, each BN ,m has at least one
sampled point within it. Label these points x1, ...,xMN+2, with the subscripts matching
their respective balls of containment. For notational convenience, define x0 := xinit . Note
that by construction of the balls, for i ∈ {0, ...,MN + 1}, each pair of consecutively indexed
points (xi,xi+1) is separated by no more than RN ≤ rN . Furthermore, since RN ≤ δε
there cannot be an obstacle between any such pair, and thus each pair constitutes an edge
in the gPRM graph. Thus, we can upper-bound the cost cN of the gPRM solution by the
sum of the lengths of the edges (x0,x1), ..., (xMN+1,xMN+2):

68



6.4. EXTENSION TO KINODYNAMIC PLANNING

6

Algorithm 1 gPRM Algorithm
1 V  {xinit} [ SampleFree(n); E  ;
2 for all v 2 V do
3 Xnear  Near(V \{v}, v, rn)
4 for x 2 Xnear do
5 if CollisionFree(v, x) then
6 E  E [ {(v, x)} [ {(x, v)}
7 end if
8 end for
9 end for

10 return ShortestPath(xinit, V, E)

4. Theoretical Results

In this section we present our main theoretical results. We begin by proving that gPRM on low-dispersion sequences is
asymptotically optimal, in the deterministic sense, for connection radius rn 2 !(n�1/d). Previous work has required rn

to be at least ⌦((log(n)/n)1/d) for asymptotic optimality.

Theorem 1 (Asymptotic optimality with deterministic sampling). Let (Xfree, xinit, Xgoal) be a �-robustly feasible path

planning problem in d dimensions, with � > 0 and Xgoal ⇠-regular. Let c⇤ denote the arc length of an optimal path �⇤,

and let cn denote the arc length of the path returned by gPRM (or 1 if gPRM returns failure) with n vertices whose

`2-dispersion is D(V ) using a radius rn. Then if D(V )  �n�1/d for some � 2 R and

n1/drn !1, (2)

then limn!1 cn = c⇤.

Proof. Fix " > 0. By the �-robust feasibility of the problem, there exists a �" such that c(�")  (1 + "/3)c⇤ and �" has
strong �"-clearance for some �" > 0, see Figure 1(a). Let Rn be a sequence such that Rn  rn, n1/dRn ! 1, and

xinit

Xobs

Xgoal

�⇤

�n

�n

Xobs

Xobs

Xobs �"

�"

(a)

� n�1/d

Rn � 2 � n�1/d

⇠

Bn,Mn+2

Bn,Mn+1

Rn � 2 � n�1/d

�n

Xgoal

�"

(b)

Fig. 1. Figure 1(a): Illustration in 2D of �" as the shortest strongly �"-robust feasible path, as compared to the optimal path �⇤, as used
in the proof of Theorem 1. Figure 1(b): Illustration in 2D of the construction of B1, . . . , BMn+2 in the proof of Theorem 1.

Rn ! 0, guaranteeing that there exists a n0 2 N such that for all n � n0,

(4 + 6/")�n�1/d  Rn  min{�", ⇠, c⇤"/6}. (3)

Figure 6.2: (a): Illustration in 2D of σε as the shortest strongly δε-robust feasible path, as
compared to the optimal path σ∗, as used in the proof of the theorem. (b): Illustration in 2D of
the construction of B1, ..., BMN+2 in the proof of the theorem.

cN ≤
MN+1∑

i=0

||xi+1 − xi|| ≤ (MN + 2)RN ≤
c(σε)

RN − 2γN−1/n
RN + 2RN

≤ c(σε +
2γN−1/n

RN − 2γN−1/n
c(σε) + 2RN = c(σε) +

1
RN

2γN−1/n − 1
c(σε) + 2RN

≤
(
1 + ε/3

)
c∗ +

1

3/ε+ 1

(
1 + ε/3

)
c∗ +

ε

3
c∗ = (1 + ε)c∗

(6.5)

The second inequality follows from the fact that the distance between xi and xi+1 is
upper-bounded by the distance between the centers of BN,i and BN,i+1 (which is at most
RN − 2γN−1/n) plus the sum of their radii (which is 2γN−1/n). The last inequality follows
from the facts that c(σε) ≤ (1 + ε/3)c∗ and equation (6.4).

Note that if gPRM using rN > 2D(V ) reports failure, then there are two possibilities:
(i) a solution does not exist, or (ii) all solution paths go through corridors whose widths
are smaller than 2D(V ). Such a result can be quite useful in practice, as solutions going
through narrow corridors could be undesirable anyways

6.4 Extension to Kinodynamic Planning

It is interesting to understand if the sampling strategy described in this chapter can be
extended to motion planning with differential constraint In particular, we consider here
the extension to systems with linear affine dynamics of the form: ẋ[t] = Ax[t] +Bu[t] + c,
where A, B, and c are constants. The extension of the L2-dispersion-based analysis of
this paper to that case poses some challenges. The key roadblock is that the L2-dispersion
is no longer a particularly accurate measure of how suitable a set of points is to track
an optimal differentially- constrained path. Essentially, Euclidean balls must be replaced

69



CHAPTER 6. LOW-DISPERSION DETERMINISTIC SAMPLING

by perturbation balls [4], which are high-dimensional ellipses. To be clear, by a high-
dimensional ellipse we mean a volume defined by

{x : xTQx < r} (6.6)

for some positive-definite matrix Q and scalar r. Although such ellipses may be inner-
bounded by a Euclidean ball, this (poor) approximation adds an exponential factor of
the controllability index of the pair (A,B) to the analysis. (Assuming the pair (A,B) is
controllable, the controllability indices νi give a fundamental notion of how difficult a linear
system is to control in the various directions. The number of controllability indices is equal
to the number of control inputs, that is to the number of columns of B. The maximum,
that is ν = max νi, is referred to as the controllability index of the pair (A,B).)

The following theorem (whose proof is largely based on the analysis framework devised
in [4]) summarizes the optimality result. Here gDPRM is just Algorithm 1 except that
Near uses the cost in [4], equation (2)], instead of arc-length.

Theorem 2. Under the assumptions of [4], Theorem VI.1, gDPRM with deterministic
low-dispersion sampling is asymptotically-optimal for

rN = C1N
−1/(νn), (6.7)

for some constant C1, while gDPRM with iid uniform sampling is asymptotically optimal
for

rN = C2

( logN

N

)1/D̃
, (6.8)

for some constant C2, where D̃ = (n+
∑
ν2
i )/2.

If ν = 1 (i.e., all directions are equally difficult to control), deterministic sampling
and our analysis show all the same benefits as in the case of the path planning (non-
kinodynamic) problem by getting rid of the logN term required by i.i.d. sampling without
changing the exponent (as in this case, νn = d and D̃ = n). Note that a special case where
ν = 1 is represented by the single-integrator model ẋ[t] = u[t], which effectively reduces
the kinodynamic planning problem to the path planning problem stated in chapter 4.

However, in general, the exponent for the case of deterministic low-dispersion sampling
(i.e., the exponent in equation (6.7)) may be worse. For instance, for the double-integrator
model in three dimensions, namely ẍ[t] = u[t] and n = 6, the three controllability indices
are ν1 = ν2 = ν3 = 2. As a consequence, one obtains νn = 12 and D̃ = 9, and the radius in
equation (6.7) (i.e., for the deterministic case) is larger that the radius for equation (6.8)
(i.e., for the case with i.i.d. uniform sampling).

This is not to say that deterministic sampling is necessarily inappropriate or not ad-
vantageous for differentially- constrained problems, but just that the analysis used here
is inadequate (most critically, we crudely inner-bound ellipses via Euclidean balls). Our
analysis does, however, suggest possible ways forward. One could consider a measure of
dispersion which applies more specifically to ellipses, and possibly tailor a deterministic
sequence to be low-dispersion in this sense. To our knowledge, no assessment of sam-
ple sequences in terms of this type of dispersion has been performed previously, and this
represents a theoretically and practically important direction for future research (together
with studying tailored notions of sampling sequences and dispersion for other classes of
dynamical systems, e.g., driftless systems).

These problems will be the topics of Chapters 7 and 8.

70



Chapter 7

Systems with Linear Affine
Dynamics

The content of this chapter is focused on a particular class of dynamic systems, i.e. systems
with linear affine dynamics. Although their relative mathematical simplicity could seem
excessively restrictive, the study of these systems is still of interest since more realistic
non-linear models can be locally approximated via linearization around a reference point.

The chapter is organized as follow:

After a formal definition of the problem and an introduction to some well known math-
ematical concepts required for the subsequent analysis, in section 7.3 we describe how to
build our novel sampling set for a given linear affine control system, together with a charac-
terization of its properties (Lemma 3, Theorem 3). The two successive section characterize
the asymptotic behavior of algorithms based on our sampling scheme. In section 7.4 we
give the proof of the main result of our analysis (Theorem 5). This new theorem can be
considered as a deterministic version of Theorem IV.6 of [4]. In section 7.5 Theorem 6 is
introduced as corollary of Theorem 5, guaranteeing the deterministic convergence of our
algorithm toward an optimal solution i a deterministic sense. Finally section 7.6 makes a
comparison between the performance of the deterministic algorithm with its probabilistic
counterpart.

7.1 Problem Definition

Let X = Rn and U = Rm be the state space and control input space, respectively, of the
robot, and let the dynamics of the robot be defined by the following linear system, which
we require to be formally controllable:

ẋ[t] = Ax[t] +Bu[t] + c, (7.1)

where x[t] ∈ X is the state of the robot, u[t] ∈ U is the control input of the robot, and
A ∈ Rn×n, B ∈ Rn×m, and c ∈ Rn are constant and given.

A trajectory of the robot is defined by a tuple π = (x[],u[], τ), where τ is the arrival time
or duration of the trajectory,u : [0, τ ] → U defines the control input along the trajectory,
and x : [0, τ ] → X are the corresponding states along the trajectory given x[0] with
ẋ[t] = Ax[t] +Bu[t] + c.

71



CHAPTER 7. SYSTEMS WITH LINEAR AFFINE DYNAMICS

The cost c[π] of a trajectory π is defined by the function:

c[τ ] =

∫ τ

0
(1 + u[t]TRu[t])dt. (7.2)

The matrix R determines the relative costs of the control inputs, as well as their costs
relative to the duration of the trajectory. We denote this linear affine dynamical system
with cost by Σ = (A,B, c, R).

Let Xfree ⊂ X define the free state space of the robot, which consists of those states
that are within user-defined bounds and are collision-free with respect to obstacles in the
environment. Let Xgoal ⊂ X be the goal region of the motion planning problem. A
dynamically feasible trajectory π = (x[],u[], T ) is collision-free if x[t] ∈ Xfree for all t ∈
[0, T ]. A trajectory π is said to be feasible for the trajectory planning problem if it is
dynamically feasible, collision-free, x[0] = xinit, and x[T ] ∈ Xgoal. The objective is to find
the feasible path with minimum associated cost.

7.2 Background Material

A critical component of our approach is to be able to compute the optimal trajectory
π∗[x0,x1] (and its cost c∗[x0,x1]) between any two states x0,x1 ∈ X , in absence of obstacles
and without restrictions on the control input.

Given a fixed arrival time τ and two states x0 and x1, we want to find a trajectory
(x[],u[], τ) such that x[0] = x0, x[τ ] = x1, and ẋ[t] = Ax[t] + Bu[t] + c for all 0 ≤ t ≤ τ ,
minimizing the cost function:

c[τ ] =

∫ τ

0
(1 + uTRu)dt.

This is the so called fixed state, fixed time optimal control problem, the reader may
refer to [?, Lewis]or more details.

Let G[t] be the weighted controllability Gramian given by:

G[t] =

∫ t

0
exp[At′]BR−1BT exp[AT t′]dt′. (7.3)

We note that G[t] is a positive-definite matrix for t > 0 if the dynamics of the system is
controllable.

Further, let x̄[t] describe what the state would be at time t, starting at x0 at time 0 ,
if no control input were applied:

x̄[t] = exp[At]x0 +

∫ t

0
exp[A(t− s)]cds, (7.4)

Then, the optimal control policy for the fixed final state, fixed final time problem is
given by:

u[t] = R−1BT exp[AT (τ − t)]G[τ ]−1(x1 − x̄[τ ]), (7.5)

which is an open-loop control policy.

72



7.2. BACKGROUND MATERIAL

By filling in the this control policy in the cost function , we find a closed-form expression
for the cost optimal trajectory between x0 and x1 for a given arrival time τ :

c[τ ] = τ + ||x1 − x̄[τ ]||2G[τ ]−1 , (7.6)

where we defined the norm:

||x||G[t]−1 =
√

xTG[t]−1x. (7.7)

The optimal connection time τ∗ may be computed by minimizing c[τ ] over τ . Let
π∗[x0,x1, ...,xK ] denote the concatenation of the trajectories π∗[xk,xk+1] between succes-
sive states x0,x1, ...,xK ∈ X .

We can now introduce a result characterizing the effect of perturbations of the endpoints
of path on its cost. The reader can refer to [4] for the more details.

Lemma 1. Let x0,x1 ∈ X , x0 6= x1, π = π∗[x0,x1] = (x[],u[], τ∗), and denote c = c[π].
Consider bounded start and end state perturbations δx0, δx1 ∈ Rn such that

max{||δx0||G[τ∗]−1 , ||δx1||G[τ∗]−1 ≤ η
√
c}.

Let σ = π∗[x0 + δx0,x1 + δx1] = (y[],v[], τ̃∗) be the optimal trajectory between the the
perturbed endpoints. Then for x0,x1 such that c is sufficiently small, we have the cost
bound

c[σ] ≤ c[π](1 + 4η +O[η2 + ηc]).

Additionally we may bound the geometric extent of σ:

||y[t]− x0|| = O[c(||x0||+ η + 1)]

for t ∈ [0, τ̃∗].

The previous lemma motives the following:

Definition 3. Given a state x ∈ X , a fixed time τ and r > 0, the fixed-time perturbation
ball centered in x of radius r is defined as

∆[x, τ, r] := {z : ‖x− z‖G−1[τ ] ≤ r}. (7.8)

This set represents perturbations of x with limited effects on both incoming and out-
going trajectories (depending on whether a point is viewed or a start state perturbation
respectively).

We also briefly reviewing the concept of controllability indices for a controllable sys-
tem (A,B). Let bk denote the kth column of B. Consider searching the columns of the
controllability matrix C[A,B] = [B AB · · · An−1B] from left to right for a set of n
linearly independent vectors. This process is well-defined for a controllable pair (A,B) since
rank[C[A,B]] = n. The resulting set S = {b1, Ab1, ..., A

ν1−1b1,b2, ..., A
ν2−1b2, ..., A

νm−1bm}
defines the controllability indices {ν1, ..., νm} where

∑m
k=1 νk = n and ν = maxk νk is called

the controllability index of (A,B). The νk give a fundamental notion of how difficult a
system is to control in various directions; indeed these indices are a property of the system
invariant with respect to similarity transformation, e.g. permuting the columns of B. We
can now state a technical lemma giving a lower bound for the determinant of G[t] that will
be used in the next section. The reader can refer to [4] for the proof.

Lemma 2. Suppose that the pair (A,B) has controllability indices {ν1, ..., νm}, then

det[G[t]] = Θ[tD]

as t→ 0, where D =
∑m

k=1 ν
2
k .

73



CHAPTER 7. SYSTEMS WITH LINEAR AFFINE DYNAMICS

7.3 Low G[τ ]−1-Dispersion Sampling Set

In order to extend the sampling strategy adopted in [2] for purely kinematic motion planning
to differentially constrained systems we need to develop a novel concept of dispersion,
reflecting the the notion of distance between two different points of the state space X as
the cost required to steer the system from the starting point to the arrival, respecting the
constraints imposed by the dynamics of the system.

Keeping in mind that the L2-dispersion of a set of points S ⊂ X can be interpreted as the
radius of the biggest Euclidean ball in X that does not contain any point of S, a reasonable
way to adapt the traditional definition of dispersion to the case under consideration appears
to be:

the radius of the smallest fixed-time perturbation ball that does not contain any point of
S.

Note that, according to this definition, for the same set S, at different fixed times τ
correspond different values of dispersion. We will refer to this dispersion measure briefly
as G[τ ]−1-dispersion.

Now some nomenclatures are introduced. Given a set S ⊂ X of N samples, and a
generic distance function d : X × X → [0,+∞), for any pair of points x,y ∈ X we denote

by E(d)
x [y] the set

E(d)
x [y] := {z ∈ X : d(x, z) ≤ d(x,y)}, (7.9)

that represents the ellipsoid centered in x with radius d(x,y). Then for any x ∈ X , the set

Y(d)
S [x] is defined as:

Y(d)
S [x] := {y ∈ X : S ∩ E(d)

x [y] = ∅}. (7.10)

Finally we define the functional Φ(d) : XN → R+ as

Φ(d)[S] = max
x∈X

max
y∈Y(d)

S [x]

{d(x,y)}. (7.11)

As can be easily understood, Φ(d) represents the dispersion induced by the distance
d. From now on, d1 and d2 represent the Euclidean and the G[τ ]−1-induced distance,
respectively. For the sake of brevity, we write Φ(1) in place of Φ(d1) and Φ(2) in place of
Φ(d2), the same applies to the other symbols previously introduced.

Further, given a bijective map f : Rn → Rn we define the set f [S] as:

f [S] := {s′ ∈ X : ∃s ∈ S|s′ = f [s]}. (7.12)

Note that, being f bijective, f(S) has the same cardinality of S.

In the scientific literature ([1],[2],[12]) are presented many ways to build sets character-
ized by a low L2-dispersion, i.e. sets such that

Φ(1)[S] ≤ γN−1/n, (7.13)

for some positive constant γ, being n the dimension of X .

The basic idea is to apply a bijective map f to the element of a set S with low Φ(1) to
obtain a set f [S] with low Φ(2). The quest for such a function gives rise to the following:

74



7.3. LOW G[τ ]−1-DISPERSION SAMPLING SET

Problem 2. Given two distances on X , namely d1 and d2, determine if a bijective map
f : X̃ → X exists, such that:

∀x,y ∈ X̃ d1(x,y) = d2(f [x], f [y]). (7.14)

If this is indeed the case, determine f .

For the particular choice of d1, d2 considered in this work, the following result holds

Lemma 3. Let G[τ ]−1 = LT [τ ]L[τ ] be the Cholesky decomposition of G[τ ]−1, and f : Rn →
Rn the linear map fτ [x] := L[τ ]−1x, then

∀x,y ∈ Rn d1(x,y) = d2(fτ [x], f [y]). (7.15)

Proof. To start with, notice that L is well defined, being G−1 a positive definite matrix.
We have that:

d2(fτ [x], fτ [y]) =
√

(fτ [x]− fτ [y])TG[τ ]−1(fτ [x]− fτ [y])

=
√

(L−1x− L−1y)T (LTL)(L−1x− L−1y)

=
√

((L−1x− L−1y)TLT )(L(L−1x− L−1y))

=
√

(L(L−1x− L−1y))T (L(L−1x− L−1y))

=
√

(x− y)T (x− y)

= d1(x,y)

(7.16)

We can now prove the following:

Theorem 3. Let S ⊂ X̃ be a set of N samples, then for any τ > 0,

Φ(2)[fτ (S)] = Φ(1)[S], (7.17)

where X̃τ = f−1
τ [X ].

Proof. We first need to prove the intermediate result:

y ∈ Y(1)
S [x]⇐⇒ fτ (y) ∈ Y(2)

fτ (S)[fτ (x)]. (7.18)

Given any y′ ∈ X there is a unique y ∈ X̃τ s.t. y′ = fτ (y). By definition, the proposition:

y′ /∈ Y(2)
fτ (S)[fτ (x)] holds if and only if ∃s′ ∈ fτ (S) s.t. s′ ∈ E(2)

fτ (x)[y
′]. Imposing s′ = fτ (s),

with s ∈ S, we have the following chain of equivalences:

s′ ∈ E(2)
fτ (x)[y

′]⇐⇒ d2(fτ [x], s′) ≤ d2(fτ [x],y′)

⇐⇒ d2(fτ (x), fτ (s)) ≤ d2(fτ (x), fτ (y))

⇐⇒ d1(x, s) ≤ d1(x,y)

⇐⇒ s ∈ E(1)
x [y]

(7.19)

75



CHAPTER 7. SYSTEMS WITH LINEAR AFFINE DYNAMICS

that is equivalent to say that y /∈ Y(1)
S [x]. Now the initial proposition can be easily proved

as follow

Φ(2)[fτ (S)] = max
x′∈X

max
y′∈Y(2)

f(S)[x
′]
{d2(x′,y′)}

= max
x∈X̃τ

max
y′∈Y(2)

fτ [S][fτ (x)]

{d2(fτ [x],y′)}

= max
x∈X̃τ

max
y∈Y(1)

S [x]

{d2(fτ [x], fτ [y])}

= max
x∈X̃τ

max
y∈Y(1)

S [x]

{d1(x,y)}

= Φ(1)[S]

(7.20)

It is important to note that the space X̃τ on which we are supposed to find a low
L2-dispersion sampling set, is different from the initial space X where we the final low
G[τ ]−1-dispersion sampling set has to be placed. For example, assuming for X a unit
n-dimensional hyper-cube, X̃τ is a n-dimensional hyper-parallelogram with measure

µ[X̃τ ] = |det[L[τ ]]|µ[X] =
1√

|det[G[τ ]]|
. (7.21)

At this point we describe a possible way to build a low L2-dispersion set S̃τ on the space
X̃τ , by embedding this region in a parallelepiped and building a regular grid on it. However,
it is important to note that the use of this particular sampling method is inessential to our
aim, in that other methods, if characterized by similar bound on the L2-dispersion of the
corresponding samples, can be used.

It is useful to remember that the L2-dispersion of a set S is related to its L∞-dispersion
by the following inequality ([2], [1]):

D∞[S] ≤ D2[S] ≤ √nD∞[S]. (7.22)

Now, suppose we want to place a to-be-determined number of points on X̃τ , in such a
way that their L∞-dispersion is at worst d. In order to do this we construct a grid on X̃τ
following way:

1. Consider a vertex of X̃τ and pick one of the edges departing from that vertex. Let a1

denote the length of the selected edge.

2. For all the other edges, take their orthogonal projections on the edges already con-
sidered, whose lengths are noted by a2, ..., an respectively. In this way, we have that
a1 · ... · an = µ[X̃τ ].

3. Split up each one of the mutually orthogonal edges obtained so far in segments of
length d and build a grid.

4. Take a point s̃ in X̃τ for each of the cells of side d that compose the grid.

76



7.4. DETERMINISTIC EXHAUSTIVITY

It is evident that the set of points S̃τ ⊂ X̃τ built in this way satisfies the requirement
imposed on the L∞-dispersion, and it is now possible to proceed with the computation of
the number of points N required to build S̃τ .

N =
n∏

i=1

⌈ai
d

⌉
<

n∏

i=1

(1 +
ai
d

) ≤ γn∞
µ[X̃τ ]

dn
, (7.23)

for some constant γ∞. Inverting the previous inequality we have that, given N ∈ N it’s
always possible to arrange a set S[N ] of N points on X̃τ , in such a way that

D∞[S[N ]] ≤ γ∞
(µ[X̃τ ]

N

)1/n
, (7.24)

and consequently

D2[S[N ]] ≤ γ
(µ[X̃τ ]

N

)1/n
, (7.25)

for some constant γ.

We have now all the element to describe explicitly the family of sampling sets that
we propose to use in place of the iid samples, for the linear quadratic motion planning
problems, and whose theoretical properties will are discussed in the next section of this
paper.

Definition 4. For each number of samples N ∈ N and for any fixed arrival time τ > 0 the
set Sτ [N ] ⊂ X is defined as

Sτ [N ] := fτ [S̃τ ], (7.26)

where S̃τ ∈ X̃τ has L2-dispersion less than γ
(
µ[X̃τ ]
N

)1/n
for some constant γ. As a conse-

quence of Theorem 1, the same upper bound holds for the G[τ ]−1-dispersion of Sτ [N ].

7.4 Deterministic Exhaustivity

In [4] was proved a property characterizing random sampling schemes for the LQDMP,
namely their probabilistic exhaustivity : any feasible trajectory through the configuration
space X is ”traced” arbitrarily well by connecting randomly distributed points from a suffi-
ciently large sample set covering the configuration space. We now define what it means for
series of states to closely approximate a given trajectory.

Definition 5. Let π = (x,u, Tπ) be a dynamically feasible trajectory. Given a set of
waypoints {yk}Kk=0 ⊂ X, we associate the trajectory σ = π∗[y0, ...,yK ] = (y,v, Tσ). We
say {yk} (ε, r, p)-trace the trajectory π if: (a) c[σ] ≤ (1 + ε)c[π], (b) c∗[yk,yk+1] ≤ r for
all k, and (c) the maximum distance from ant point of y to x is no more then p.

The main results of that analysis is summarized in the following theorem ([4, Theorem
IV.6]):

Theorem 4. Let Σ be a controllable system and suppose π = (x,u, T ) is a dynam-
ically feasible trajectory with strong δ-clearance. Let N ∈ N, ε > 0 and consider a
set of sample nodes V = {x[0]} ∪ SampleFree[N ]. Define D̃ = (d + n)/2, CΣ,Xfree

=

77



CHAPTER 7. SYSTEMS WITH LINEAR AFFINE DYNAMICS

(
C−1
µ D̃−16n+D/22n/2[Xfree]

)1/D̃
and consider the event EN that there exist waypoints {yk}Kk=0 ⊂

V which (τN , ε, pN )-trace π, where

rN = (1 + η)1/D̃CΣ,Xfree

( logN

N

)1/D̃
, (7.27)

for a free parameter η ≥ 0, and pN = CprN , for some constant Cp. Then, as N →∞, the
probability that no such waypoint set exists is asymptotically bounded as

1− P[EN ] = O
(
N−η/D̃ log−1/D̃N

)
. (7.28)

However, random sampling schemes only give probabilistic guarantees of existence of
a trajectory approximation, in the sense that for any finite number of samples, given a
dynamically feasible trajectory, exists among them a sequence of points that trace that
path, only with a certain probability. By way of contrast, with a deterministic sampling
scheme like the one introduced in the previous section, it is always possible to pick waypoints
{yk}Kk=0 among the samples that trace arbitrarily well any feasible path, provided that the
number of used samples N is sufficiently large. By analogy, we will refer to this property
of our deterministic sampling scheme as deterministic exhaustivity. Moreover, the new
sampling strategy allows the use of a cost threshold rN asymptotically smaller than the
one required by its random counterpart.

Similarly to what is done in [4], our approach for proving deterministic exhaustivity
proceeds by tiling with a sequence of perturbation balls any given feasible trajectory in the
state space, but this time the considerations about the measure of the balls [4, Lemmas
IV.4, IV.5], used to prove that these sets contain samples (with a certain probability), are
no longer needed. Instead, we only have to prove that the sampling set SτN [N ] is ”good
enough”, so that each small perturbation ball contains at least a sample, for N sufficiently
large. We take these points as a sequence of waypoints which tightly follows the reference
path with few exceptions, and never has a gap over any section of the reference path when
it does deviate further.

Theorem 5. Let Σ be a system satisfying the assumptions AΣ and suppose π = (x,u, T )
being a dynamically feasible trajectory with strong δ-clearance, δ > 0. Let N ∈ N, ε > 0,
and consider a set of nodes V := {x[0]} ∪ SτN [N ], where τN = rN/6. Then for sufficiently

large N , exist waypoints {yk}Kk=0 ⊂ V which (ε, rN , pN )-trace π, where rN = ω(N−1/D̃), (
with D̃ = n+D

2 as in [2]), and pN = CprN for some constant Cp.

Proof. Note that in the case c[π] = 0 we may pick y0 = x[0] to be the only waypoint and
the result is trivial. Therefore assume c[π] > 0. Take x[tk]to be points spaced along π at
cost intervals rN/2; more precisely let t0 = 0, and for k = 1, 2, ... consider

tk = min{t ∈ (tk−1, T )|c∗[x[tk−1],x[t]] ≥ rn/2}. (7.29)

Let K be the first k for which the set is empty; take tK = T . Fixed β = min{ε, 2
√

6}, for
each k we define

Sk = ∆[x[tk], τN , (β/6)
√
rN/2], (7.30)

We know that, considering how SτN [N ] was defined, any ellipsoid with radius greater than
the dτN -induced dispersion of SτN [N ], contains at least a sample. Now we prove the for N

78



7.5. DETERMINISTIC CONVERGENCE TO AN OPTIMAL SOLUTION

large enough the radius of the sets Sk is greater than the dτN -induced dispersion of SτN [N ],
or equivalently

γ
(µ[X̃τ ]

N

)1/n
≤ (β/6)

√
rN/2. (7.31)

We know that µ[X̃τN ] = 1/
√
|det[G[τ ]]|, but for Lemma 2:

det[G[t]] = Θ[tD] (7.32)

as t→ 0.

Since τN = rN/6→ 0 as N →∞, we can pick N̄ ∈ N and a positive constant α in such

a way that µ[X̃τN ] ≤ αr−D/2N , for all N ≥ N̄ . For this reason, provided that:

γ

(
α

N · rD/2N

)1/n

≤ (β/6)
√
rN/2, (7.33)

the inequality (7.37) will automatically be satisfied. Straightforward calculations show that

the last inequality holds iff rN ≥ K(ε)N−1/D̃, where K(ε) =
(

6
√

2γα1/n

β(ε)

) 2
(D/n+1)

.

Now since by hypothesis rN = ω(N−1/D̃), no matter how big K(ε) is, exists N0 ∈ N
such that rN ≥ K(ε)N−1/D̃, for all N > max{N0, N̄}.

We note that the Sk are disjoint (as long as ε < 2
√

6) since c∗[x[tk−1],x[tk] = rN/2
implies ||x[tk−1]− x[tk]||G[rN/6]−1 ≥

√
rN/3.

Now we will show the existence of suitable waypoints {yk}Kk=0 ⊂ V . Suppose that every
Sk contains a point of V , we may apply Lemma 1 to verify that these points (ε, rN , pN )-trace
π. For yk ∈ Sk, yk−1 ∈ Sk−1 we have:

c∗[yk−1,yk ≤ (1 + β)c∗[x[tk−1],x[tk]]

≤ (1 + ε/2)(rN/2).
(7.34)

Hence the total cost of π∗[y0, ...,yK ] = (y[],v[], Tσ) is bounded above by (1 + ε)c[π]. We
also have c∗[yk−1,yk] ≤ rN for all k. The maximum Euclidean distance from any point of
y (say, on the segment π∗[yk,yk+1]) to x is bounded above by its distance to x[tk] which
by Lemma IV.1 is O[rN (||x0|| + 1)] = O[rN ] as N → ∞ since ||x[t]| achieves some fixed
maximum over [0, T ].

It is interesting at this point to note that the requirement on rN imposed by SτN [N ] is
weaker than the one imposed by the use of i.i.d sampling sequences, as shown in [4], being
in that case

rN = C
( logN

N

)1/D̃
. (7.35)

7.5 Deterministic Convergence to an Optimal Solution

As a corollary of the Deterministic Exhaustivity property of the low-G[τ ]−1 dispersion
samples, is it possible to prove the following result, that will be referred to as deterministic
optimality :

79



CHAPTER 7. SYSTEMS WITH LINEAR AFFINE DYNAMICS

Theorem 6. Let (Σ,Xfree,xinit,Xgoal) be a trajectory planning problem satisfying the as-
sumptions of [4]. Then the gDPRM algorithms (Chapter 6; [2]) are asymptotically optimal
for

rN = ω(r−1/D̃
n ). (7.36)

The proof is perfectly similar to that of Theorem VI.1 in [4], and will be therefore
omitted. The reader would appreciate the analogy between Theorem 6 and Theorem 1 of
section 6. Even in this case,the leverage of the properties of the deterministic sampling
scheme adopted allows to spare a logarithmic term in the expression of the connection radius
rN . A smaller connection radius implies a smaller number of connection attempted by the
planning algorithm in the process of expansion of the exploration tree, with consequent
economy in time and computational effort.

7.6 Experimental Results

The theoretical results presented in the previous sections characterize the asymptotical
behavior of planning algorithm based on a low-G[τ ]−1 sampling set. These result are signi-
ficative in that they give guarantees of convergence to a optimal solutions in a deterministic
sense, however for practical purpose a merely asymptotic analysis is of little relevance. In
order to highlight the benefits offered by deterministic sampling with respect to iid uni-
form random sampling a comparison is made between the two version of the algorithm for
a number of samples of practical interest. To compare the performances of of the sam-
pling strategy previously described with random iid samples, we have done simulations on
a 2-dimensional and a 3-dimensional double integrator system, applying the same algo-
rithm1 with the same cost threshold (parameter r) in both the cases, and just changing the
sampling scheme adopted.

The DPRM∗ algorithms were implemented in Julia and run using a Unix operating
system with a 2.0 GHz processor and 8 GB of RAM.

The double integrator robot is a circular robot capable of moving in any direction by
controlling its acceleration. Its state space is four-dimensional, and its linear dynamics are
described by:

ẋ[t] =

[
0 I
0 0

]
x[t] +

[
0
I

]
u[t]. (7.37)

Being for this system A a nilpotent matrix (A2 = 0), the Controllability Gramian G can
be computed explicitly as

G[t] =

∫ t

0
(I +Aτ)BR−1BT (I +AT τ)dτ.

In particular, taking R = I, G assumes the simple closed form expression:

G[t] =

[
I t

3

3 I t
2

2

I t
2

2 It

]
. (7.38)

The two tables compare the cost of the path returned by the deterministic and prob-
abilistic sampling based algorithm (cdet and cprob) varying the the number of samples N

1The DPRM∗ algorithm, see [4] fore a detailed description of the algorithm and its implementation.

80



7.6. EXPERIMENTAL RESULTS

(a) Deterministic samples: N = 625, r = 2.5,
cdet = 4.41.

(b) iid random samples: N = 625, r = 2.5,
cprob = 5.08.

Figure 1: Experimental results for the 2-dimensional double integrator.

Being for this system A a nilpotent matrix (A2 = 0), the Controllability Gramian G can
be computed explicitly as

G[t] =

Z t

0
(I + A⌧)BR�1BT (I + AT ⌧)d⌧.

In particular, taking R = I, G assumes the simple closed form expression:

G[t] =

"
I t3

3 I t2

2

I t2

2 It

#
. (21)

The two tables compare the cost of the path returned by the deterministic and prob-
abilistic sampling based algorithm (cdet and cprob) varying the the number of samples N
and the cost threshold r. Since the output of the probabilistic algorithm may di↵er at
di↵erent trials, we report the average and the median value of cprob (assuming that at a
failure corresponds a cost of 1).

12

Figure 7.1: Experimental results for the 2-dimensional double integrator.

(a) Deterministic samples: N = 704, r = 2.0,
cdet = 8.53.

(b) iid random samples: N = 704, r = 2.0,
cprob = 9.61.

Figure 2: Experimental results for the 3-dimensional double integrator: Plan view of the
3-dimensional obstacles set. A narrow window is present on each one of two the red walls.

N r cdet cmin cmax caverage cmedian Failure Rate

361 2.0 6.07 5.01 7.24 6.23 6.68 0%
361 1.5 6.38 5.59 10.89 7.65 7.74 0%
361 1.2 7.79 6.64 · · 9.6 23.5%
361 1.0 9.28 7.87 · · Fail 90.9%
841 1.5 4.87 4.51 7.45 5.57 5.34 0%
841 1.2 4.91 4.38 8.13 6.06 5.40 0%
841 1.0 7.09 5.27 · · 8.19 7.1%
1089 1.5 4.61 4.28 6.89 5.36 5.26 0%
1089 1.2 4.64 4.47 6.99 5.62 5.79 0%
1089 1.0 6.43 4.89 11.08 7.71 7.61 0%

Table 1: Simulation results for the 2-dimensional double integrator.

13

Figure 7.2: Experimental results for the 3-dimensional double integrator: Plan view of the 3-
dimensional obstacles set. A narrow window is present on each one of two the red walls.

81



CHAPTER 7. SYSTEMS WITH LINEAR AFFINE DYNAMICS

N r cdet cmin cmax caverage cmedian Failure Rate

361 2.0 6.07 5.01 7.24 6.23 6.68 0%
361 1.5 6.38 5.59 10.89 7.65 7.74 0%
361 1.2 7.79 6.64 · · 9.6 23.5%
361 1.0 9.28 7.87 · · Fail 90.9%
841 1.5 4.87 4.51 7.45 5.57 5.34 0%
841 1.2 4.91 4.38 8.13 6.06 5.40 0%
841 1.0 7.09 5.27 · · 8.19 7.1%
1089 1.5 4.61 4.28 6.89 5.36 5.26 0%
1089 1.2 4.64 4.47 6.99 5.62 5.79 0%
1089 1.0 6.43 4.89 11.08 7.71 7.61 0%

Table 7.1: Simulation results for the 2-dimensional double integrator.

N r cdet cmin cmax caverage cmedian Failure Rate

1000 2.0 6.56 6.69 9.77 8.03 8.18 0%
1000 1.8 6.56 6.13 11.65 9.14 8.96 0%
1000 1.5 7.19 10.03 · · 14.31 20.0%
1000 1.4 6.9 12.72 · · Fail 66.7%
512 2.0 7.00 7.43 12.48 9.76 9.58 0%
512 1.8 7.15 9.92 14.66 12.21 12.64 0%
512 1.6 9.92 8.76 · · 15.98 44.4%

Table 7.2: Simulation results for the 3-dimensional double integrator.

and the cost threshold r. Since the output of the probabilistic algorithm may differ at
different trials, we report the average and the median value of cprob (assuming that at a
failure corresponds a cost of ∞).

The results presented clearly highlight the statistically superior performances of the
deterministic sampling over its probabilistic counterpart in term of cost and failure rate.

82



Chapter 8

Driftless Control Affine Dynamical
Systems

In this section we try to replicate the approach already used for systems with linear affine
dynamics, i.e. we want to prove that deterministic versions of the results provided in
[5] hold if an appropriate deterministic sampling scheme is considered in place of the iid
random samples. Given the remarkable mathematical complexity of the general case, this
work will focuses on the particular case of the Reeds-Shepp Car, with the hope of gaining
some insights to deal with the general problem.

The structure of the chapter reflects that of Chapter 7:

After formally defining the motion problem and recalling some results from Sub-Riemannian
Geometry (instrumental our analysis), the original contribution of the work is introduced.
In section 8.2 we present a novel dispersion-like parameter ΦN , specifically thought to
describe how well the w-weighted boxes Boxw centered in each sample give an effective
coverage of the mainfold defining the state space of the system.

In section 8.3 we prove the main theoretical result of the chapter i.e. Theorem 8,
characterizing the asymptotic behavior of algorithms based on low-dispersion sampling
schemes. This new theorem can be considered as a deterministic version of Theorem IV.5
in [5].

In section 8.4 we give an explicit description of how to build the deterministic sampling
set for the Reeds-Shepp car system. There are no analogous-of this sampling method in
the literature, the best of our knowledge.

Finally section 8.5 provides a survey of the experimental results obtained in a simulation
environment.

8.1 Background Material

We provide now some definitions and a brief review of key results in differential geometry,
on which we will rely extensively later in the paper. For further references on the geometry
of non-holonomic systems the reader can refer to [6],[5],[13].

Let X ⊂ Rn be the manifold defining a configuration space. Within this space let us

83



CHAPTER 8. DRIFTLESS CONTROL AFFINE DYNAMICAL SYSTEMS

consider driftless control-affine (DCA) dynamical systems of the form

ẋ[t] =
m∑

i=1

gi[x(t)]ui[t], x ∈ X , u ∈ U (8.1)

where the available motions of trajectories x[t] are linear combinations given by input
control functions ui[t] and their corresponding actions at each point in the space gi[x].
We shall assume in this paper that g1, ...,gm are smooth vector fields on X , and that the
control set U ⊂ Rm is closed and bounded. We also assume U is symmetric about the origin
so that the system is time-reversible and 0 is in the interior of the convex hull of U . This
last condition ensures that the local possibilities for motion at each point appear as a linear
space spanned by the gi, a fact essential to the forthcoming controllability discussion.

The arc length of a path x[t] is given by l(x) =
∫ T

0 ||ẋ[t]||dt. The arc length function
induces a sub-Riemannian distance on X defined by:

d(x1,x2) := inf
x
l(x), (8.2)

where the infimum is taken over all the dynamically feasible trajectories starting in x1

and ending in x2.

The main hurdle in this case, with respect to systems with linear affine dynamics, is
that the shape and size of the sub-Riemmanian balls:

B(x0, ε) := {x| d(x0,x) < ε} (8.3)

may potentially change from point to point on X , while the shape and dimension of the
perturbation balls ∆[x0, τ, r] were fixed for any fixed time τ .

At this point a series of results regarding system controllability are presented following
the discussion in [6] and [13]. As noted above, the vector fields g1, ...,gm characterizing
the system represent a set of possible motions for a trajectory within X . More precisely
at each point p ∈ X the vectors g1[p], ...,gm[p] span a linear subspace of local directions
within the tangent space TpX .

Let L = L(g1, ...,gm) be the distribution, equivalently the set of local vector subspaces,
generated by the vector fields g1, ...,gm. We define recursively L1 = L, Lk+1 = Lk+[L1,Lk]
where [L1,Lk] = Span{[Y, Z] : Y ∈ L1, Z ∈ Lk}. Then Lk is the distribution generated by
the iterated Lie brackets of the gi with k terms or fewer. The Lie hull of L is Lie(L) :=⋃
k≥1 Lk. Let Lk(x) denote the vector space corresponding to x ∈ X in Lk.

The vector fields g1, ...,gm are said to be bracket generating if Lie(L)(x) = TxX for all
x ∈ X . This requirement is also referred to as Chow’s condition and means that arbitrary
local motion may be achieved by composing motions along the control directions gi. In fact,
provided that the gi are bracket generating, any two points x1,x2 ∈ X may be connected
by a trajectory satisfying the dynamics of the system.

Using the bracket-generating assumption we select a local orthonormal frame for Tx0X
of vector fields Y1, ..., Yn as follows: the set {Y1 = g1, ..., Yn−1 = gm} spans L near x0;
{Y1, ..., Yn2} spans L2 near x0; {Y1, ..., Yn3} spans L3 near x0; and so on.

Define the weights wi = k if Yi(x0) ∈ Lk(x0) and Yi(x0) /∈ Lk−1(x0). Applying a
procedure developed in [6], the coordinate system yi corresponding to this local frame

84



8.2. THE QUEST FOR POSSIBLE SAMPLING SCHEMES

may be transformed into a privileged coordinate system zi by a polynomial change of
coordinates. Given privileged coordinates zi, define the pseudonorm at x0 as

||z(x)||x0 := max
i
{|zi|1/wi}. (8.4)

Using this pseudonorm we define the w-weighted box of size ε at x0 as the point set
Boxw(x0, ε) := {z ∈ Rn : ||z||x0 ≤ ε}. We can now state the Ball-Box Theorem ([6]):

Theorem 7. Fix a point x0 ∈ X and a system of privileged coordinates z1, ..., zn at x0.
Then there exist positive constants a(x0), A(x0) > 0, σ(x0) > 0 such that for all x with
d(x0,x) < σ(x0),

a(x0)||z(x)||x0 ≤ d(x0,x) ≤ A(x0)||z(x)||x0 . (8.5)

It can be shown that there exists a continuously varying system of privileged coordinates
on X so that the inequality (3) holds at all x0 for continuous positive functions a(·), A(·),
and σ(·) on X . Let us assume that the system is sufficiently regular such that there exist
bounds 0 < amin ≤ a(x) ≤ A(x) ≤ Amax <∞ and σ(x) ≥ σmin > 0 for all x ∈ X .

8.2 The quest for possible sampling schemes

The goal of this section is to find a deterministic sampling scheme S∗[N ] suited for the
particular class of dynamic systems we are considering.

Ideally speaking, S∗[N ] should be an analogous of the sampling sets SτN [N ] described
in section 2, in the sense that it should arrange the N samples in a way that minimizes the
radius εN of the largest empty Sub-Riemannian ball.

Unfortunately, the determination of such a set is challenging for two main reasons:

1. The exact determination of the Sub-Riemannian ball of a given radius in a given
point can be hard, and probably unfeasible from a computational point of view.

2. Shape, orientation and size of the balls, for a given radius, change from point to point.

However, the first problem (an a part of the second one) can be bypassed thanks to the
Ball-Box Theorem. Since by Theorem 4:

Boxw(x0, ε/Amax) ⊆ B(x0, ε), (8.6)

for all x0 ∈ X and for ε sufficiently small, we can instead define S∗[n] as the set that
minimize the radius εn of the greatest empty w-weighted box Boxw(x0, ε). The advantage
in this approach lies in the fact that, as stated in [7], the shape and orientation of these
boxes can be efficiently computed for a large class of dynamical system. But again, since
the orientation of the boxes change from point to point in a way that depends inherently
on the characteristics of the particular systems studied, it is practically impossible to give
an explicit description of S∗[N ] for the general case.

In order to understand how to build the set S∗[N ] for a particular DCA system, consider
the functional ΦN : XN −→ R+, defined as:

ΦN [S] := max
x∈X

min
s∈S

max
1≤i≤d

|Li(s) · (x− s)|1/wi . (8.7)

85



CHAPTER 8. DRIFTLESS CONTROL AFFINE DYNAMICAL SYSTEMS

Where the vector fields Li[x] represent the unit versors associated to the privileged coor-
dinate axes in x. ΦN represents the the radius of the largest empty box in X and can be
interpreted as a pseudonorm-induced dispersion measure of the set S.

However, the determination of the optimal set (if such a set exists):

S∗[N ] = argminS∈XNΦN [S]. (8.8)

is not strictly necessary for our aim. Indeed, a family of sets satisfying the relation

ΦN [SN ] ≤ γN−1/D, (8.9)

for a fixed real constant γ, where D =
∑d

i=1wi, would be sufficient to extend the theoretical
results already obtained for the system with linear affine dynamics to the new class of
systems under consideration.

8.3 Deterministic Exhausticity

Provided that such a family of sets with the properties indicated in the previous section
exists, it is possible to prove deterministic exhaustivity, analogously to what was done for
the system with linear affine dynamics:

Theorem 8. Let Σ be a system satisfying the assumptions AΣ and suppose π = (x,u, T )
being a dynamically feasible trajectory with strong δ-clearance, δ > 0. Let n ∈ N, ε > 0, and
consider a set of nodes V := {x[0]}∪S[N ], where ΦN [SN ] ≤ γN−1/D. Then for sufficiently
large N , exist waypoints {yk}Kk=0 ⊂ V which (ε, rN )-trace π, where rN = ω(N−1/D), where

D =
∑d

i=1wi.

Proof. Neglecting the trivial case for c[π] = 0, we repeat the same construction made in
[5, Theorem IV.5]. If we are able to prove that at least a sample fall in each one of the

balls Bβ
n,m (β = ε/2), we have done. But, since by hypothesis, exists a constant γ > 0 such

that there is at least a sample s of S in each box Boxw(x0, ρn) with ρN = γN−1/D, it is

sufficient to prove that, for sufficiently hight N , Boxw(xm, ρn) ⊆ Bβ
n,m.

Remember that, for Theorem 4

Boxw(x0, ε/Amax) ⊆ B(x0, ε),

for all x with ||x0 − x|| ≤ σmin. Since ρN → 0 for N → ∞, exists N̄ ∈ N such that
ρN < σmin ∀N > N̄ . Hence, for N > N̄ we have that:

Boxw(xm, ρN ) ⊆ B(xm, AmaxρN ). (8.10)

At this point we only need to prove that

B(xm, AmaxρN ) ⊆ Bβ
n,m (8.11)

or, equivalently

AmaxρN ≤ βrN/4, (8.12)

again, for N large enough.

86



8.3. DETERMINISTIC EXHAUSTICITY

The last inequality holds iff
rN ≥ K(ε)n−1/D, (8.13)

for
K(ε) = 8Amaxγ/ε. (8.14)

But, no matter how big K(ε) is, (8.13) is true for N sufficiently large, by the definition of
rn.

Again, asymptotic optimality can be easily proved starting from deterministic exhaus-
tivity, as in Chapter 7. Notice that results similar to Theorem 8 hold for many deterministic
sampling schemes but with different requirements on the cost treeshold rN . For example,
the classic low L2-dispersion sampling sequences adopted in Chapter 6 requires

rN = ω(N−1/sn), (8.15)

where
s = max

1≤i≤n
wi (8.16)

is the so called non-holonomy degree of the systems. This property however is not com-
pletely satisfactory because sn ≥ D, where the equality holds only in the trivial case s = 1,
i.e. when m = n and

span(g1(x), ...,gm(x)) = TxX . (8.17)

In the following section we shows how to build a low dispersion set S for the particular
case of the Reeds-Shepp Car.

8.3.1 Reeds-Shepp Car

Given any configuration x =
[
x y θ

]T
of the Reeds-Shepp car, the vector fields L1(x) =

[cos θ, sin θ, 0]T and L2(x) = [0, 0, 1]T span the distribution induced by its dynamics. The
Lie bracket of these two vector fields can be calculated as

L3(x) = [L1,L2] = [− sin θ, cos θ, 0]T . (8.18)

Notice that the vector fields {L1,L2,L3} span the whole tangent space, satisfying Chow’s
condition. Then, Chow’s theorem merely tells us that, given two configurations of the
Reeds-Shepp car, there exists a dynamically-feasible trajectory, i.e., a horizontal curve,
that joins the two. The weights vector for this system is w = [1, 1, 2] and D = 4.

A possible way to place N samples along the state space X = [0; 1]2 × [−π;π] (this
assumption is just explicative) so that ΦN [S] ≤ ε, is the following:

Fixed an integer N2 , consider N2 equally spaced planes on the configuration space X ,
θ = kεw2 , k = 0, ..N2 − 1. Then, for each of these planes, e.g. θ = θ̄, we build a grid
oriented as the local orthonormal axes L1(θ̄),L3(θ̄). This is possible, because these axes
do not change orientation along the plane θ = θ̄. The step of the grid in the direction
of L1(θ̄) is fixed as εw1 , while the step in the direction of L3(θ̄) is chosen to be εw3 . Let
N1, N3 be the numbers of rows and columns in the grid. Although N1 and N3 depend on
the particular plane considered, we certainly have Ni ∼ 1/εwi . Evidently, S satisfies the
condition Φn[S] ≤ ε . Moreover, the number of points required to build S is given by:

N = N1N2N3 ∼ 1/εD, (8.19)

or equivalently ε ∼ N−1/D, as we wanted.

87



CHAPTER 8. DRIFTLESS CONTROL AFFINE DYNAMICAL SYSTEMS

1
0.5

-4

-3

0

-2

-1

0

1

0.1

2

3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 01

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: 3-dimensional representation of the Reeds-Shepp Car sampling set S, for N = 630
samples, realized with Matlab.

3.3 Reeds-Shepp Car

Given any configuration x = [x, y, ✓]T of the Reeds-Shepp car, the vector fields L1(x) =
[cos ✓, sin ✓, 0]T and L2(x) = [0, 0, 1]T span the distribution induced by its dynamics. The
Lie bracket of these two vector fields can be calculated as

L3(x) = [L1,L2] = [� sin ✓, cos ✓, 0]T . (33)

Notice that the vector fields {L1,L2,L3} span the whole tangent space, satisfying Chow’s
condition. Then, Chow’s theorem merely tells us that, given two configurations of the
Reeds-Shepp car, there exists a dynamically-feasible trajectory, i.e., a horizontal curve,
that joins the two. The weights vector for this system is w = [1, 1, 2] and D = 4.

A possible way to place N samples along the state space X = [0; 1]2 ⇥ [�⇡;⇡] (this
assumption is just explicative) so that �N [S]  ", is the following:

Fixed an integer N2 , consider N2 equally spaced planes on the configuration space X ,
✓ = k"w2 , k = 0, ..N2 � 1. Then, for each of these planes, e.g. ✓ = ✓̄, we build a grid
oriented as the local orthonormal axes L1(✓̄),L3(✓̄). This is possible, because these axes
do not change orientation along the plane ✓ = ✓̄. The step of the grid in the direction
of L1(✓̄) is fixed as "w1 , while the step in the direction of L3(✓̄) is chosen to be "w3 . Let
N1, N3 be the numbers of rows and columns in the grid. Although N1 and N3 depend on
the particular plane considered, we certainly have Ni ⇠ 1/"wi . Evidently, S satisfies the
condition �n[S]  ✏ . Moreover, the number of points required to build S is given by:

N = N1N2N3 ⇠ 1/"D, (34)

or equivalently " ⇠ N�1/D, as we wanted.

18

Figure 8.1: 3-dimensional representation of the Reeds-Shepp Car sampling set S, for N = 630
samples, realized with Matlab.

N r cdet cmin cmax caverage cmedian Failure Rate

630 0.4 1.29 1.32 1.77 1.56 1.658 0%
630 0.3 1.33 1.38 1.9 1.63 1.64 0%
630 0.2 1.51 1.85 · · 1.85 7.69%
630 0.15 2.60 · · · Fail 100%
1280 0.2 1.29 1.44 1.96 1.80 1.87 0%
1280 0.15 1.94 2.05 3.06 2.46 2.43 0%
1280 0.12 2.81 · · · Fail 100%
1936 0.15 1.43 1.51 2.21 1.93 1.95 0%
1936 0.12 2.07 2.09 · · 3.35 35.7%
1936 0.1 3, 84 · · · fail 100%

Table 8.1: Simulation results for the Reeds-Shepp Car.

8.4 Experimental Results

Following the approach already adopted for the double integrator, simulations for the
Reeds-Shepp Car are done twice, using the same algorithm with the same cost thresh-
old (parameter r) in both the cases, and just changing the sampling scheme adopted.

The DPRM∗ algorithm ([5]) were implemented in Julia and run using a Unix operating
system with a 2.0 GHz processor and 8 GB of RAM. Near neighbor sets were precomputed
and cached at algorithm initialization after the sample set was selected. Note that for
batch-processing (as opposed to anytime) algorithms such as DFMT ∗ and DPRM∗, one
can precompute both near neighbor sets and sub-Riemannian distance ahead of time, as
they do not depend on the obstacle configuration. The price to pay is a moderate increase
in memory requirements.

88



8.4. EXPERIMENTAL RESULTS

(a) Deterministic samples: N = 630, r = 0.2,
cdet = 1.33.

(b) iid random samples: N = 630, r = 0.2,
cprob = 1.88.

Figure 4: Experimental results for the Reed-Shepp Car.

3.4 Experimental Results

Following the approach already adopted for the double integrator, simulations for the
Reeds-Shepp Car are done twice, using the same algorithm with the same cost threshold
(parameter r) in both the cases, and just changing the sampling scheme adopted.

19

Figure 8.2: Experimental results for the Reeds-Shepp Car.

89



CHAPTER 8. DRIFTLESS CONTROL AFFINE DYNAMICAL SYSTEMS

90



Chapter 9

Conclusion

91



CHAPTER 9. CONCLUSION

92



Bibliography

[1] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[2] L. Janson, B. Ichter, M. Pavone, Deterministic Sampling-Based Motion Planning:
optimality, Complexity, and Performance.

[3] D. J. Webb, J. van der Berg, Kinodynamics RRT∗: Asymptotically Optimal Motion
Planning for Robots with Linear Dynamics. 2013 IEEE International Conference on
Robotics and Automation (ICRA).

[4] E. Schmerling, L. Janson, M. Pavone, Optimal Sampling-Based Motion Planning
under Differential Constraints: the Drift Case with Linear Affine Dynamics.

[5] E. Schmerling, L. Janson, M. Pavone, Optimal Sampling-Based Motion Planning
under Differential Constraints: the Driftless Case.

[6] A. Bellaiche, Sub- Riemannian Geometry. Eds. Birkhauser, 1996.

[7] S. Karaman, E. Frazzoli, Sampling-based Optimal Motion Planning for Non-holonomic
Dynamical Systems.

[8] F. L. Lewis and V. L. Syrmos, Optimal control. New York: Wiley, 1995.

[9] G. Goretkin, A. Perez, R. Platt Jr., G. Konindaris, Optimal Sampling-Based Planning
for Linear-Quadratic Kinodynamic Systems.

[10] T. Caldwell, N. Correl, Fast Sample-Based Planning for Dynamic Systems by Zero-
Control Linearization-Based Steering.

[11] A.Perez, R. Platt Jr., G. Konindaris, L. Kaelbling, T. Lozano-Perez, LQR-RRT∗: Op-
timal Sampling-Based Motion Planning with Automatically Derived Extension Heuris-
tics. 2012 IEEE International Conference on Robotics and Automation.

[12] A. Yershova, S. M. LaValle, Deterministic Sampling Methods for Spheres and SO(3).

[13] R. Montgomery, A tour of subriemannian geometries, their geodesics, and applications.
Mathematical Surveys and Monographs. American Mathematical Society, 2002, vol.
91.

[14] E. Glassman, R. Tedrake, A Quadratic Regulator-Based Heuristic for Rapidly Explor-
ing State Space.

93



BIBLIOGRAPHY

[15] A. Shkolnik, M. Walter, R. Tedrake Reachability-Guided Sampling for Planning Un-
der Differential Constraints. 2009 IEEE International Conference on Robotics and
Automation.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms
(2nd Ed.). MIT Press, Cambridge, MA, 2001.

94


	I Motion Planning
	Introduction
	Examples of application
	Organization of the Thesis

	Discrete Planning
	Discrete Feasible Planning
	Searching for Feasible Plans
	Particular Forward Search Method
	Discrete Optimal Planning
	Transition to Continuous Spaces

	The Configuration Space
	Geometric Modeling
	Rigid-Body Transformation
	Defining the Configuration Space
	Definition of the Basic Motion Planning Problem

	Sampling-Based Motion Planning
	Sampling Theory
	Incremental Sampling and Searching
	Rapidly Exploring Dense Trees
	Roadmap Methods for Multiple Queries

	Sampling-Based Planning Under Differential Constraints
	Differential Models
	Phase Space Representation of Dynamical Systems
	Problem Formulation
	Reachability and Completeness
	The Discrete-Time Model
	Sampling-Based Motion Planning Revisited
	RDT-Based Methods


	II Deterministic Sampling-based Motion Planning
	Low-Dispersion Deterministic Sampling
	Background material
	Problem Definition
	Theoretical Results
	Extension to Kinodynamic Planning

	Systems with Linear Affine Dynamics
	Problem Definition
	Background Material
	Low G[]-1-Dispersion Sampling Set
	Deterministic Exhaustivity
	Deterministic Convergence to an Optimal Solution
	Experimental Results

	Driftless Control Affine Dynamical Systems
	Background Material
	The quest for possible sampling schemes
	Deterministic Exhausticity
	Experimental Results

	Conclusion


