Fermilab **BENERGY** Office of Science

Synthesis and characterization of γ/δ –NbN for SRF cavity application and vortices study in superconductors

Stefano Trivini Final review 27/09/2017

Supervisor:Mattia ChecchinCo-supervisor:Martina MartinelloPPMS-MFM Mentor:Zuhawn Sung

Overview

1. Synthesis and characterization of γ/δ -NbN

2. Study of vortices in superconductors.

1) Synthesis and characterization of γ/δ -NbN

Task and purpose overview

Task and purpose overview

Nb EP (Electro polished) T_c =9.25 K $\gamma - NbN$ $T_c = 15-17 K$ $\gamma - NbN$ $T_c = 12-15 K$

Overview of the method

Synthesis in furnace: $p_{N_2}, T, time$

Overview of the method

Overview of the method

Synthesis in furnace:

 $p_{N_2}, T, time$

"not good"

Characterization: SEM/EDS, AFM, MFM, PPMS, SIMS

If results are "good" the process will be applied to a 1.3 GHz SRF cavity.

Reference sample Electro Polished (EP) Nb

Morphology EP Niobium (SEM-AFM)

SEM (Scanning Electron Microscopy):

EDS (Energy Dispersive X-ray Spectrometry)

EDS Layered Image 1

AFM (Atomic Force Microscopy):

Reference Nb EP, AC Susceptibility (PPMS)

🛟 Fermilab

Nb EP, Bulk Magnetization loops (PPMS)

Nb EP, H(T) phase diagram

‡ Fermilab

Reference Nb EP, superconductor parameters

 Within the Ginzburg-Landau (GL) theory is possible to determine: the GL parameter (k), the coherence length (ξ) and the London penetration depth (λ_L) (all at 0K).

$k(0) = \frac{B_{c2}(0)}{B_{c2}(0)}$		
$\kappa(0) = \frac{1}{\sqrt{2}B_c(0)}$	$B_{c2}(0)$ (Tesla)	0.394 <u>+</u> 0.005
	$B_c(0)$ (Tesla)	0.148 <u>+</u> 0.005
$\xi(0) = \sqrt{\frac{\hbar}{2eB_{c2}(0)}}$	<i>Т_с</i> (К)	9.41 <u>+</u> 0.42
	k(0)	1.89 <u>+</u> 0.07
	$\lambda_L(0)(nm)$	54 <u>+</u> 2
	<i>ξ</i> (0)(nm)	28.9 <u>+</u> 0.2
$\lambda_L(0) = k(0)\xi(0)$		

N₂ Treated samples

N₂ pressure dependence of Nb-N phase diagram

M. Joguet, W. Lengauer, M. Bohn, J. Bauer, J. of Alloys and Compounds 269 (1998) 233-237

🛟 Fermilab

Samples

-Nb Electro Polished \rightarrow Starting material Pre-treatment: 800°C 3h no nitrogen 1) T=800°C $p_{N2}=25 \text{ mTorr}$ time=25min 2) T=1000°C $p_{N2}=10 \text{ mTorr}$ time=2h 3) T=1000°C $p_{N2}=50 \text{ mTorr}$ time=2h

Surface morphology in top view

Surface morphology (1)

 $-T=800^{\circ}C$ $p_{N2}=25$ mTorr time=25min

SEM trigonal nitrides

AFM nitrides height ~30-70 nm

Surface morphology (2)

 $-T=1000^{\circ}C$ $p_{N2}=10$ mTorr time=2h

SEM -Trigonal nitrides observed -Morphology dependent on the grain

Surface morphology (3)

 $-T=1000^{\circ}C$ $p_{N2}=50$ mTorr time=2h

Surface morphology in cross section

SEM Cross section (1)

800°C 25 mTorr 30min

Contrast in the electronic image suggests the presence of an over-layer different from the bulk.

No EDS Nitrogen signal

SEM Cross section (2)

1000°C 10 mTorr 2h

White layer of $\sim 1 \mu m$ only on one face of the sample.

No EDS Nitrogen signal

SEM Cross section (3)

1000°C 50 mTorr 2h

White layer of $\sim 1 \mu m$ only on one face of the sample. 30kU ×10,000 14 50 SEI

No EDS Nitrogen signal

Stoichiometry

Stoichometry (2)

Low sensitivity in all EDX measurements for nitrogen (both for top and cross-section measurements).

Nitrogen signal covered from carbon and oxygen's signals.

Superconducting properties

Superconductive properties (1)

1000°C 10 mTorr 2h

🛟 Fermilab

Superconductive properties (2)

Superconductive properties (3)

1000°C 50 mTorr 2h

New transition: Tc=8.33 K Not observed before

No Nb_xN_y SC phases are known with this T_c .

New SC phase or non stoichiometric NbN?

8.0-10 K

娄Fermilab

Summary NbN synthesis

1) Evidence of nitride layer formation, composition cannot confirmed with EDS (N signal too low)

2) Evident superconducting transition with Tc different from all the common nitride phases.

3) Deposition dependent on grain orientation.

Future:

- SIMS analysis to investigate stoichiometry.
- Study of the low T zone of the NbN phase diagram.

2) Direct observation of vortices in superconductors

Magnetic Force Microscopy (MFM) imaging

Purpose: measure the magnetic field near the surface.

It's fundamental to separate topological and magnetic effects.

Figure of property of attocube systems

娄Fermilab

Clem's model in point dipole approximation

What we measure is the phase shift between the driving force and the oscillation of the tip in point dipole approximation:

$$\Delta \phi = -\frac{Q}{k} \frac{\partial F_z}{\partial z}$$

2 C

Than:

$$F_z = \frac{\partial E_{tip-sample}}{\partial z}$$

In MFM $E_{tip-sample}$ can be expressed as:
 $E_{tip-sample} = m_{tip}B_z$

And so:

$$\Delta \phi = -\frac{Qm_{tip}}{k} \frac{\partial^2 B_z}{\partial z^2}$$

Europhys. Lett. 58, 582 (2002)

Clem's model in point dipole approximation

An expression for the B field is obtained from Clem Model:

$$\frac{\partial^2 B_z(z,r)}{\partial z^2} = \frac{\Phi_0 k^2}{2\pi\lambda^2} \int_0^\infty dk \frac{k J_0(kr)}{k^2 + \lambda^{-2}} \frac{\sqrt{k^2 + \lambda^{-2}}}{k + \sqrt{k^2 + \lambda^{-2}}} e^{-kz}$$

We look at relative values of $\frac{\partial^2 B_z(z,r)}{\partial z^2}$ (in the data,

In figure different profiles calculated for different values of z.

🛟 Fermilab

Carneiro, G., & Brandt, E. H. (2000). Vortex lines in films: Fields and interactions. *Physical Review B*, 61, 6370-6376.

Vortices size at different MFM's scan height

vortex profile width \propto Scan height

Figure taken by T. G. Rappoport, L. Ghivelder, J. C. Fernandes, R. B. Guimaraes, M. A. Continentino, Phys. Rev. B 75, 054422 (2007)

Experimental data

Sample: Nb Electro polished

Surface Nb EP AFM

Vortices size at different MFM's scan height

T=4 K zero field cool mode B=30 mT (fixed)

50 nm MFM Scan Height

70 nm MFM Scan Height

Vortices size at different MFM's scan height

90 nm MFM Scan Height

120 nm MFM Scan Height

Vortex profile fitting

FWHM values extracted with multi-gaussian fit.

Experimental data and simulated data

Dependence of vortex profile on surface

Average FWHM = 1,2 μm

Double than EP Nb! Surface effects matters.

70 nm MFM Scan Height

Summary of vortices study

1) MFM is a good method to map the vortices.

2) FWHM depends strongly on **surface** London penetration depth. It's possible to measure surface properties separately from bulk properties.

Future: the point dipole tip-sample interaction model is too rough. A more sophisticated model has to be used:

MFM image → Convolution of Tip+sample

Thanks for the attention

