Fermilab

Optimization of Superconducting Nb₃Sn Electrochemical Film Technologies

Summer Intern Stefano Falletta Supervisor Emanuela Barzi

Premise

An electro-chemical deposition technique, under US Patent Application, to produce $\rm Nb_3Sn$ coatings was developed in the last few years by FNAL in collaboration with Politecnico di Milano.

[Synthesis of superconducting Nb₃Sn coatings on Nb substrates, E.Barzi, M.Bestetti, F.Reginato, D.Turrioni, S.Franz, Supercond. Sci. Technol. 29015009]

Premise

Targets:

- Reproduce and optimize the original recipe
- SEM/EDX Analysis
- Check superconducting properties

The experimental apparatus was procured and commissioned before my arrival, in order to synthesize thin films in-house. I was trained by E.Barzi, D.Turrioni, D.Hicks, P.Li.

REALIZATION OF THE SAMPLE

Realization of the sample

Nb substrate of dimensions $1 \text{cm} \times 10 \text{cm} \times 300 \mu \text{m}$ Electro-deposition processes:

- $\bullet \ Cu$ seed layer onto the Nb substrate
- Sn layer onto the Cu seed layer
- Cu barrier layer onto Sn

followed by heat treatment

First electro-deposition step

Bath:

- HCl: 67.8ml
- H_2SO_4 : 217.4ml
- CuSO₄: 120g
- H_2O : as needed to achieve 2L

Second electro-deposition step

Bath:

- Solderon Acid HC: 430ml
- Solderon Tin HS-300 Concentrate: 333ml
- Solderon MHS-W Primary: 200ml
- H_2O : as needed to achieve 2L

Third electro-deposition step

Bath:

- $Cu_2P_2O_7$: 52g
- NaNO₃: 10g
- Na₄P₂O₇: 360g
- H_2O : as needed to achieve 2L

DC electrodeposition

Parameters:

- Current density
- Time
- Temperature
- PH
- Stirring rate

Properties:

- Thickness
- Uniformity
- Adhesion

Too many nucleation sites on the boundaries !

Pulsed electro-deposition

Parameters:

- Temperature, PH, stirring rate, time
- Waveform parameters

Properties:

- Thickness
- Uniformity
- Adhesion

Depositions are much more uniform !

Electro-deposition: experimental setup

Electro-deposition: experimental setup

🛟 Fermilab

Realization of the sample

Phase Diagram of $\operatorname{Nb-Sn}$

Minimize the presence of other phases would require a temperature above $930^{\circ}C$!

Heat treatment for Nb/Cu/Sn/Cu samples

The presence of Cu makes the Nb_3Sn phase stable at lower temperatures!

Heat treatment: experimental setup

🛟 Fermilab

Realization of the sample

SEM/EDX ANALYSIS

Scanning Electron Microscopy (SEM)

- Thickness of the three electro-deposited layers
- Thickness of the $\rm Nb_3Sn$ phase formed
- Energy-dispersive X-ray spectroscopy (EDX)
 - Chemical characterization of the sample

The sample has to be prepared properly!

Cutting of the sample

The dimensions of the sample must fulfil the ones required by SEM!

🛟 Fermilab

SEM/EDX Analysis

The bakelite has to be conductive to avoid charge localization during the SEM analysis

SEM/EDX Analysis

Epoxy process: experimental setup

🛟 Fermilab

SEM/EDX Analysis

Grinding and Polishing

Get a flat a smooth and flat surface:

- Grinding process
 - Low grit: 320, 400, 600
 - High grit: 800, 1200

Polishing process

Grinding process: experimental setup

🛟 Fermilab

SEM/EDX Analysis

Polishing process: experimental setup

🛟 Fermilab

SEM/EDX Analysis

SUPERCONDUCTING PROPERTIES

SC experiment

Fermilab

- *I_c*: critical current
- *B*: magnetic field
- *B_{c2}*: upper critical magnetic field
- *B_{c20}*: upper critical magnetic field at zero temperature

Phase diagram I_c - B at T = 4.2K

Critical current density

$$I_{c}(B, T)B = h_{0} \left(\frac{B_{c2}(T)}{B_{c20}}\right)^{\eta} \left[1 - \frac{B}{B_{c2}(T)}\right]^{2} \left(\frac{B}{B_{c2}(T)}\right)^{0.5}$$
$$\frac{B_{c2}(T)}{B_{c20}} = \left[1 - \left(\frac{T}{17.5K}\right)^{1.5}\right]$$

 h_0 , B_{c20} , η are free parameters for the fit

These equations are valid at fixed strain!

SC properties: experimental setup

Fermilab

Superconducting properties

SAMPLES PRODUCED AND RESULTS

Samples

Two shapes of the substrate

Optimal current densities:

$$J_1^* = 20 m A/cm^2 \quad J_2^* = 35 m A/cm^2 \quad J_3^* = 15 m A/cm^2$$

Fermilab Samples produced and results

Sample 10

🛟 Fermilab

Sample 10 - SEM before heat treatment

🛟 Fermilab

Samples produced and results

Sample 10 - SEM before heat treatment

🛟 Fermilab

Samples produced and results

Sample 10 - SEM after heat treatment

🛟 Fermilab

Samples produced and results

Sample 10: Resistance vs Temperature

Fermilab

Samples produced and results

Phase Diagram I_c - B

Figure: Critical current I_c vs magnetic field B at $4.2K.\ I_c$ is expressed in $A;\ B$ is expressed in T. Data collected by D. Turrioni.

Fermilab Samples produced and results

POTENTIAL FOR RESEARCH AND APPLICATIONS

Fermilab Future research and applications

Further Possible Improvements

- Use a double anode geometry cell
- Estimation of deposition rates
- Optimize further the parameters

Superconducting wires

- Use Nb₃Sn films to research and investigate nanotechnology methods to enhance the transverse component of pinning.
- If a technique proves to be successful, work with billet manufacturing company to transfer and implement it in wires.

Superconducting magnetic shields

- Shielding capabilities depend on the total superconducting thickness of the material. For stability, each superconducting shield layer cannot be thicker than a given value.
- A multi-layer shield can be obtained by replicating the $\rm Cu/Sn$ deposition method on sputtered $\rm Nb$ until the desired total thickness is achieved.

SRF cavities (High Q, High gradient and low cost)

- Produce samples of appropriate geometry (2 inch discs) for surface resistance measurements at JLab. Surface resistance relates to Q. A good Q is necessary condition for implementation to SRF cavities.
- Based on results achieved, scale up the technique to 3D surfaces, using the appropriate design of the anode and of customized galvanic cells as well as the appropriate software.

THANK YOU !!!

Fermilab