Cosmic Ray Studies for SBND

Michele Piero Blago

Supervised by

Roxanne Guenette and Corey Adams

ᅷ

The Short Baseline Neutrino Program

Short Baseline Near Detector (SBND)

112 t active volume Liquid Argon Time Projection Chamber (LArTPC).

Provides unoscillated neutrino interaction data close to the BNB target (110 m).

Currently in construction phase, planned start of operation in 2019.

Michele Piero Blago - MovingKnowledge17 - Final Presentation

Short Baseline Near Detector (SBND)

Two Time Projection Chambers (TPCs):
2 m drift distance (1.28 ms drift time at 500 V/cm).
3 wire planes (0°, ± 60°).
3 mm pitch between wires.

120 8" PMTs: ~ immediate signal (time stamp).

25.09.17

Cosmic Ray Tagger: almost full coverage

Michele Piero Blago - MovingKnowledge17 - Final Presentation

Overburden comparison

Overburden comparison

25.09.17

Michele Piero Blago -

5

MovingKnowledge17 - Final Presentation

25.09.17

Michele Piero Blago - MovingKnowledge17 - Final Presentation

No Overburden

25.09.17

Overburden installed

Michele Piero Blago - MovingKnowledge17 - Final Presentation

No Overburden

Overburden installed

Overburden comparison (1.5 ms)

17 %

17 %

35 %

52 %

18 %

0%

20 %

No Overburden

Particle Type	CORSIKA CMC FLUKA Total
μ^-	10.41 ± 0.01
μ^+	12.98 ± 0.01
neutron	0.736 ± 0.002
proton	0.374 ± 0.001
γ (>100 MeV)	0.0040 ± 0.0001
<i>e</i> ⁻ (>100 MeV)	0.0020 ± 0.0001
<i>e</i> ⁺ (>100 MeV)	0.0024 ± 0.0001

25.09.17

Overburden installed

Particle Type	CORSIKA CMC FLUKA Total
μ^-	8.93 <u>+</u> 0.02
μ^+	11.09 ± 0.02
neutron	0.544 ± 0.006
proton	0.246 ± 0.004
γ (>100 MeV)	0.0034 ± 0.0005
<i>e</i> ⁻ (>100 MeV)	0.0020 ± 0.0003
e ⁺ (>100 MeV)	0.0020 ± 0.0003

Overburden comparison (relative)

17 %

17 %

35 %

52 %

18 %

0%

20 %

No Overburden

Particle Type	CORSIKA CMC FLUKA Total
μ^-	100 %
μ^+	100 %
neutron	100 %
proton	100 %
γ (>100 MeV)	100 %
<i>e</i> ⁻ (>100 MeV)	100 %
<i>e</i> ⁺ (>100 MeV)	100 %

27.09.17

Overburden installed

Particle Type	CORSIKA CMC FLUKA Total			
μ^-	83 %			
μ^+	83 %			
neutron	65 %			
proton	48 %			
γ (>100 MeV)	18 %			
<i>e</i> ⁻ (>100 MeV)	100 %			
e ⁺ (>100 MeV)	80 %			

Michele Piero Blago - MovingKnowledge17 - Final Presentation

Particle energy (Photons)

Secondaries Primaries Kinetic Energy of primary photons in TPC Kinetic Energy of secondary photons in TPC Events/0.1 GeV 0 0 Events/0.1 GeV Secondary γ Primary γ Detector Primary γ Detector Secondary γ 10² 10² 10 10 1E 10^{-1} 10^{-1} Kinetic energy (GeV) Kinetic energy (GeV) UNIVERSITY OF Michele Piero Blago **Final Presentation** 25.09.17 MovingKnowledge17 --

Photon bckg: muon cylinder cut

Photon background

Kinetic energy of photons in TPC h_photon Entries 8823 Mean 0.1863 0.2144 Std Dev h pho_untaggable Entries 2604 0.1239 Mean 0.1697 Std Dev 1200 pho untaggable bdtwCu 1640 Entries 0.1137 1000 Mean 0.1633 Std Dev 800 h_pho_untaggable_fvCut Entries 850 600 Mean 0.116 Std Dev 0.154 400 200 0^L 0.2 0.4 0.6 0.8 1.2 1.4 Kinetic energy (GeV)

Total number of photons: 8823 2604 (100 %) Untaggable*: Untaggable BDtoW-cut : **1640** (63 %) **Untaggable FV-cut:** (33 %) 850 photon that initiates the shower is created outside * • the TPC active volume or **ancestors** traced back to the particle that enters the TPC active volume are all neutral or photon is **outside primary muon cylinder**. ۲

OXFORD 25.09.17 Michele Piero Blago - SBND Collabor

CRT timing study

25.09.17

Random generated hits for CRT study

CRT timing study

Summary

The SBND simulation geometry was adjusted according to the results of this study.

Particle rate comparison indicates the feasibility of an overburden.

25.09.17

Photon background reduced by muon cylinder cut. Further cuts necessary.

Preliminary CRT timing study suggests a good separation between up- and downstream hit timing.

Short Baseline Near Detector (SBND)

Two Time Projection Chambers (TPCs):
2 m drift distance (1.28 ms drift time at 500 V/cm).
3 wire planes (0°, ± 60°).
3 mm pitch between wires.

120 8" PMTs: ~ immediate signal (time stamp).

25.09.17

Cosmic Ray Tagger: almost full coverage

Michele Piero Blago - MovingKnowledge17 - Final Presentation

UNIVERSITY O

25.09.17

Michele Piero Blago - MovingKnowledge17 - Final Presentation

Overburden installed (side view)

YZ End positions

25.09.17

YZ End positions of particles stopping outside TPC

Overburden comparison

25.09.17

No Overburden

UNIVERSITY OF

Overburden installed

Particle Type	C Primaries	CORSIKA CMC FLUKA Secondaries	Total	Particle Type	Primaries	CORSIKA CMC FLUKA Secondaries	Total
μ^-	10.406 <u>+</u> 0.007	0.0003 ± 0.00001	10.4068±0.007	μ^-	8.926 <u>+</u> 0.021	0.0020 ± 0.0001	8.928 <u>+</u> 0.021
μ^+	12.977±0.007	0.0024 ± 0.0001	12.977 <u>+</u> 0.007	μ^+	11.079 <u>+</u> 0.024	0.0014 ± 0.0003	11.093 <u>+</u> 0.024
neutron	0.0988±0.0006	0.647±0.002	0.736 <u>+</u> 0.002	neutron	0.036±0.001	0.508±0.005	0.544 <u>+</u> 0.006
proton	0.0013 ± 0.0001	0.373±0.001	0.374 <u>+</u> 0.001	proton	0.0006±0.0002	0.2458±0.0035	0.246 <u>+</u> 0.004
γ (>100 MeV)	0.0001 ± 0.00001	0.0039 ± 0.0001	0.0040 ± 0.0001	γ (>100 MeV)	0.0002 <u>+</u> 0.00001	0.0032±0.0004	0.0034 <u>+</u> 0.0005
<i>e</i> ⁻ (>100 MeV)	0.0 ± 0.0	0.0020 ± 0.0001	0.0020 ± 0.0001	<i>e</i> ⁻ (>100 MeV)	0.0 ± 0.0	0.0020±0.0003	0.0020 <u>+</u> 0.0003
<i>e</i> ⁺ (>100 MeV)	0.0 <u>±</u> 0.0	0.0024 ± 0.0001	0.0024 <u>+</u> 0.0001	e ⁺ (>100 MeV)	0.0±0.0	0.0020±0.0003	0.0020 <u>+</u> 0.0003

Photon Bckg: Fiducial Volume Cut

25.09.17

In z-direction: 30 cm distance upstream and 100 cm distance downstream to wall.

Distance to all other walls: 25 cm.

Particle energy (Muons)

Particle energy (Electrons)

Particle energy (Neutrons & Protons)

CRT upstream data

First data collected by SBND'S cosmic ray taggers.

Indicates beam position and spread.

(Created using Igor Kreslov's macros).

