Summer internship Fermilab

Matteo Quagliotto

Faculty of Engineering University of Pisa

September 28, 2017

IARC

HAB

Application

A2D2

First month

Water

Aluminium

Second month

Introduction

Results

Conclusion

Possible improvement

Possible application

Acquired knowledge

Acknowledgement

Illinois Accelerator Research Center

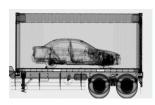
IARC mission:

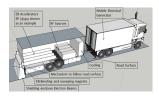
- developing accelerator-based technologies
- partnership with industries for new applications
- decreasing the time to market of new industrial solutions



The HAB, Heavy Assembly Building, is the application development area of IARC.

- ► A2D2
- Conduction cooling
- ► Mu2e


We are integrating multiple new technologies to create a compact, portable, high-power electron beam platform accelerator.



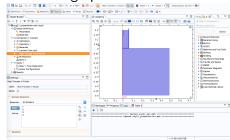
- cryocooler
- conduction cooling
- high temperature superconductors
- minimizing heat generation

Industrial accelerator application:

- cargo scanning
- industrial waste water treatment
- nuclear waste destruction
- food and medical sterilization
- improved highway construction

 $\begin{array}{l} {\sf A2D2} = {\sf Accelerator} \\ {\sf Application \ Development \ and} \\ {\sf Demonstration} \end{array}$

Before developing new applications, we would like to understand the output of the machine. An easy way is measuring the heat power.



First month

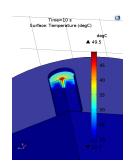
COMSOL:

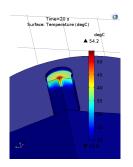
- self-learning
- web trainings
- problems: full licence
- setting up the model

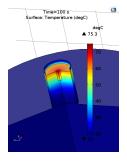
COMSOL graphical interface

Measure of heat power:

water

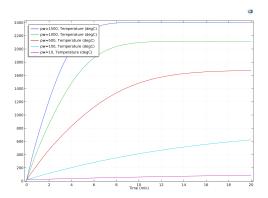



aluminium



Temperature distribution

Full power: 1500 W



Problems:

- modeling electron beam
- low conduction
- modeling convection motions
- modeling boiling water
- licence limitation

Possible solution:

 change material, for example aluminium

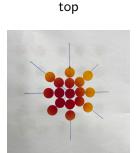
- experiments can last only few minutes
- ▶ in the first minute the curve is quite linear
- in conclusion: fast and precise way to measure the power output

Experiment with full power

An Acceletronics technician came to IARC and removed the interlock.

Before the power was less than $1\ W$ so that we were not able to measure it, after we expected to have about $1\ kW$.

Thomas Kroc, I and Mike Geelhoed inside the A2D2 cave.



Electron beam distribution

bottom

Electron beam source

bottom

Voltage measurement

We did many experiment fixing all the details.

In the last configuration we had: 1 M ohm resistor, 1 μ F capacitor linked to the block.

We measured 124 V, which means 0.1 mA (average current).

9 MeV \rightarrow about 1.1 kW

Temperature measurement of aluminium

Data: 0.4 kg,
$$c_p=900 \frac{J}{kg \cdot K}$$
, 0.2 min, $T_{in}=23.6^{\circ}C$, $T_{out}=66.9^{\circ}C$.

$$P = \frac{m \cdot c_p \cdot \Delta T}{t \cdot 60} = \frac{0.4 \cdot 900 \cdot 43.3}{0.2 \cdot 60} = 1.4 \text{ kW}$$

The next steps of this project are:

- understanding the power distribution along the radius
- penetration depth of various materials
- figure out a way to treat the whole sample with the same dose

A possible application of the electron beam is additive manufacturing, which is used in many field.

Wind power manufacturing now:

- long lead times
- high cost
- difficult transportation

Electron beam 3D printer for wind power:

- faster manufacturing
- decrease in cost
- portable manufacturing machine

Possible collaboration with Oak Ridge National Laboratory

What I have learned:

- COMSOL
- material science and technology
- electron beam interaction with materials
- additive manufacturing
- teamwork
- safety
- timing

Summary IARC First month Second month Conclusion

Possible improvement Possible application Acquired knowledge Acknowledgement

