
Migration of Gratia Active Archive Project Accounting to
GRACC.

Mariano Basile, Supervisor:Kevin Retzke

1

Contents
1 Fermilab Active Archive Facility 4

1.1 AAF Overview . 4
1.1.1 The tape storage system: Enstore . 4
1.1.2 The disk cache system: dCache . 4

1.2 Usage Information and Cost . 5

2 The need of a migration 6

3 GRATIA 7
3.1 Gratia Probes . 7
3.2 Gratia Collectors & Reporters . 7

4 GRACC: New Generation of the OSG Accounting 8
4.1 Record Collection . 8
4.2 Communication . 8
4.3 Record Processing & Summarization . 8
4.4 Record Storage . 8
4.5 Interactive Visualization . 9

5 Migration of Active Archive Project to GRACC 9
5.1 AAF in a nutshell . 9
5.2 Dev Environment Setup . 10
5.3 Data Migration . 10

5.3.1 How to: Obtain AAF Usage Metric regarding the no.of tape mounts and tape drive hours
used . 11

5.3.2 How to: Obtain AAF Usage Metric regarding the total amount of data on tapes 12
5.3.3 How to: Obtain AAF Usage Metric regarding the amount of data read/written from/to

disks/tapes . 13
5.3.4 Migration Plan . 13
5.3.5 JobUsageRecord, StorageElement and StorageElementRecord migration 13
5.3.6 MasterTransferSummary record migration . 14

5.4 AAF Porting to GRACC . 15
5.4.1 Active Archive Customers’ Html Pages Comparison . 15

6 GRACC SUMMARIZATION 16
6.1 Dev Environment Setup . 16
6.2 Raw (transfer) record comparison . 16
6.3 Python summary scripts: Modification Required . 17

6.3.1 GRATIA vs GRACC Summarization: Comparison . 18

7 Generating GRACC Active Archive Customers’ Web Pages 18
7.1 GRACC Reports: Final assessment . 19

2

Abstract

Fermilab provides a custodial active archive for customers, either on-site and not, for long-term storage of tens
of petabytes of scientific data.
The archive facility at Fermilab is capable of providing access to these data over a 100 Gb/s network.
Tape storage is assumed to be the permanent means of custodial for data. Customers can also opt for a dedicated
disk cache integrated with the tape storage.
The Active Archive Facility (aka AAF) is indeed an hierarchical storage system consisting of tape storage, called
Enstore, with a front-end disk cache called dCache.
Customers are charged yearly according to a cost model that is based on their projected and actual usage.
Daily and monthly usage metrics that these charges are based on are available on the Customers’ Active Archive
web pages.
These usage metrics have been provided so far by means of the Gratia accounting system.
Because of the Gratia shutdown the new batch system accounting/monitoring service GRACC is being deployed.
My internship was aimed at helping the retire of Gratia sooner in order to reduce the operations and maintenance
overhead required for its upkeep. Key responsibilities, after a two weeks training phase, have included the AAF
data migration from the old accounting service and the AAF porting to GRACC.

3

1 Fermilab Active Archive Facility

1.1 AAF Overview

The Active Archive Facility is an hierarchical storage system consisting of tape storage, called Enstore, with a
front-end disk cache called dCache.
Services are provided for both on-site direct access to files on tape, or on and off site access of files through a
disk cached front end to the tape storage.

Figure 1: Fermilab Active Archive Facility

1.1.1 The tape storage system: Enstore

The tape based storage system has a capacity of tens of Petabytes and an aggregate I/O bandwidth of multi
GB/s.
This tape storage system is the Fermilab primary data store for scientific data sets.
When a request to read or write is made to the AAF, a tape must be mounted and threaded to its load point,
then a seek to the location of the file on tape is made.
The mount time depends on the load of the system – the quickest time to load is about 45 seconds. A seek
from the beginning of tape takes about 50 seconds on average and a seek from one location on tape to another
random location is about 33 seconds. It is best to read or write as many files as possible while the tape is
mounted.
For writes, this means supply files at a high enough frequency that a number of them will be written per mount.
For read accesses, files written about the same time will generally reside on the same tape, so accessing multiple
files from around the same time will yield the best performance.

1.1.2 The disk cache system: dCache

dCache is a disk caching software developed by Fermilab. It can be either used independently for high perfor-
mance volatile storage, or in conjunction with Enstore as the high speed front end of a tape backed hierarchical
storage system.
In the latter use, dCache decouples the low latency, high speed disk access over the network from the high
latency sequential access of tapes.
The cache provides high performance access to frequently accessed files.
Whether the file already exists in the disk cache, or needs to be first retrieved from tape is transparent to the
user.
Fermilab dCache systems use raided disk in redundant configurations to reliably store users’ files.
Files in dCache can be accessed with several different protocols.
Local users can access data through kerberized FTP, GridFTP, Webdav, and NFSV4.1.
Users needing to access files on tape from off-site computers must do so through dCache.

4

1.2 Usage Information and Cost

The Active Archive Facility (aka AAF) service is provided through a Strategic Partnership Project (SPP)
agreement between the customer and Fermilab.
This agreement consists of a set of Terms and Conditions, and a Statement of Work which specifies the expected
usage by the customer, estimated charges for each year, and agreed responsibilities of each party.
Customers are charged each year in advance.Yearly storage charges are based on several quantities:

• The total accumulated amount of tape storage used at the end of the year (in the order of Petabytes).

• Amount of data read/written from/to disk;

• Amount of data read/written from/to tape;

• No. of tape mounts and tape drive hours used;

Tape drive-hours are measured from when a tape gets mounted in a drive, transfers to/from the tape are
completed, to when the tape dismounted.
At the beginning of the each billing year, the customer supplies information on the estimated storage and drive
utilization they expect to use, and are billed in advance for the year.
If funds run out during the year, more must be supplied to be able to store additional data.
If there are leftover funds at the end of the year, they are carried over into the next year.
Each customer can monitor its own usage by means of active archive web pages.
These .html pages are updated daily, and history of monthly summaries are available.
Different time scales are used when presenting data to customers: week to date, past seven days, month to date,
last thirty days, from start of contract (2015-01-01).
AAF usage metrics regarding the amount of data read/written from/to disks and no. of tape mounts and tape
drive hours used are also presented in a time series fashion.
The following is an example of daily usage report on 22th Septmember:

5

Figure 2: Example of daily usage metrics on the 22th September for Minerva experiment

Monthly usage metrics are provided both in the form of html pages, for last month statistics, and in PDF format
for other months dating back in time.

Figure 3: Example of monthly usage metrics for August 2017 (and back) for Minerva experiment

2 The need of a migration

What we have not said so far is how the usage metrics are obtained. This task has been accomplished so far by
means of the GRATIA accounting system. The GRATIA system has been developed over a decade ago as an
accounting system for batch systems and Linux process at FNAL. Starting from 2007 Gratia has been adopted

6

by the Open Science Grid (OSG) as a distributed, grid-wide accounting system. At that point GRATIA has
started showing its limitation:

• Due to the evolution in the scientific computing the requirements regarding what types of usage should be
tracked, and what information should be stored have changed over time. Because of an inflexible record
models and storage GRATIA has struggled to keep up with the changes.

• Additionally, the GRATIA service architecture has struggled to scale as the OSG usage and hence record
rate has increased.

• Also the user interface and visualization tools have fallen behind the state- of-the-art, due to large effort
being required to build interfaces with the Gratia system.

For these reasons and more in the early 2016 OSG and Fermilab decided to investigate re-designing GRATIA to
provide a more flexible architecture, data storage format and easier integration with open-source data exploration
and visualization tools.
The investigation settled on a microservice-based architecture called GRACC (Grid ACCounting).
Since the GRATIA shutdown, (also) AAF was required to be migrated to GRACC. In order to understand how
the AAF migration to GRACC has been realized it is worth describing very briefly both the old accounting
system (GRATIA) and the new accounting/monitoring system GRACC on which I have focused during the
first two weeks of my internship.

3 GRATIA

Figure 4: Gratia Architecture

3.1 Gratia Probes

The Gratia infrastructure is designed to be hierarchical. On the lowest level “probes” running on remote sites
look at a service or resource.Probes usually consist of:

• A python script (the probe itself)

• A probeConfigfile

• A cron job which schedules the probe’s execution

Probes send collected data to an accumulator, called a “collector ” specified inside the probeConf file by using
the Gratia API. Collected data include information about: batch jobs and glide-in jobs, grid transfers, storage
usage and allocation, cloud accounting, grid services availability, etc.

3.2 Gratia Collectors & Reporters

A collector receives usage record information either directly from probes or via another collector. A collector
stores the received raw records and creates daily summaries of them to keep long term and to be used for
interactive displays.
After some data validation it stores the information in permanent storage which is a MySQL database.
Gratia supports hierarchical collectors’ structure and permits forwarding and filtering between collectors.
Typical use of this hierarchy is for a site to have the probes looking at its resource reporting the information to
a local collector and to have the local collector push the data up to the central Grid collector.
The information is passed from one component to the other using a record exchange format defined to facilitate
information sharing among grid sites.
Often collocated with a collector there’s a reporter, which gives access to the data through a web user interface.

7

4 GRACC: New Generation of the OSG Accounting

GRATIA limitations described in section 2 steered the GRACC investigation towards a loosely-coupled archi-
tecture composed of small set of existing technologies connected through a message exchange with a flexible
data schema and interchange format.
Furthermore, based on existing technical experience within the OSG and at Fermilab and elsewhere, the choice
was clear to utilize several key components: Elasticsearch as a data storage and query platform, RabbitMQ for
data exchange, and Grafana for the primary user interface, supplemented by Kibana for ad-hoc analytics.

Figure 5: Diagram of the GRACC microservice architecture. Included are the existing Gratia probes and
collectors, GRACC services, inter-process message passing, record storage, and visualization.

4.1 Record Collection

Origin usage record generation for GRACC is handled by the existing Gratia probes.
It is envisioned that in the future the probes will be updated to send records directly to the GRACC message
exchange.
For the near-term, the gracc-collector service was developed as a transitory endpoint that is compatible with
existing Gratia collectors and probes.

4.2 Communication

All inter-process communication is handled through a RabbitMQ broker, which was chosen over the several
major competing message systems that would meet the needs of GRACC primarily because the OSG had an
existing deployment at its Grid Operations Center.

4.3 Record Processing & Summarization

Raw usage records that are sent to the raw RabbitMQ exchange have to be stored in the Elasticsearch database,
after undergoing some processing. Summary records undergo similar processing. Logstash is used for both, as
its pipeline architecture and large plugin library allows simple configuration of record processing as well as
robust communication with both RabbitMQ and Elasticsearch in addition to any other components that may
be included in GRACC in the future.

4.4 Record Storage

Elasticsearch is used for record storage, as it provides a fault-tolerant distributed architecture, flexible schema,
partitionable indices, and powerful search and aggregations.
Each stream of raw records is stored in a time based index pattern, where each index stores the records for one
month. Likewise summary records are stored in yearly indices.
The use of time-based indices allows for faster queries since queries only have to be run against the indices that
span the time range of interest.

8

4.5 Interactive Visualization

The primary visualization interface is Grafana, an open-source monitoring dashboard application, which sup-
ports a rich ecosystem of data sources and graph plugins, and provides a powerful interface to create and share
dashboards.
Kibana is also made available for in-depth analytics and data exploration.

5 Migration of Active Archive Project to GRACC

5.1 AAF in a nutshell

Once both GRATIA and GRACC have been analyzed I’ve started analyzing the active archive facility. An
overview diagram of the components of this system is provided in the following figure:

Figure 6: Active Archive Facility Architecture

There are four main sets of GRATIA probes:

• dCache-transfer : collect transfer information from/to the dCache system(either reads or writes).

• enstore-transfer : collect transfer information from/to the Enstore system (either reads or writes).

• enstore-storage: collect information about the amount of data stored in the Enstore system (data stored
on tapes).

• enstore-tapedrive: collect information about the no. of tape mounts and tape drive hours used.

Once data have been collected by probes, data are pushed into the Gratia Collector “gratia-fermi-archival.fnal.gov”.

As every collector after some data validation it stores the information in permanent storage which is a MySQL
database (gratiadb03.fnal.gov).
On another machine dmscollectorgpvm01.fnal.gov different cronjobs periodically trigger the execution of some
python scripts that fetch the data from the MySQL database and generate the customers’ active archive web
pages.
These scripts are named “AAFReportGenerator.py” and “AAFHTMLReport.py”.

9

5.2 Dev Environment Setup

Before proceeding with the data migration, as it is common in such cases, a dev-environment has been set up.
It consists of a remote Fermicloud virtual machine running Scientific Linux (release 7.3 Nitrogen).
The complete GRACC stack was required at that point. To this aim I’ve used docker (v1.12.6) with which I’ve
started facing up also during my second internship week.

5.3 Data Migration

The MySQL database in which data are stored by the collector and from which data are retrieved by the python
scripts is shown in figure 7:

Figure 7: Gratia AAF Schema

It was necessary to find out which records were fetched in order to proceed with the records migration. Python
code defined in “AAFHTMLReport.py” has been inspected for this aim.
The involved tables containing the records to be migrated are shown in the following sections.

10

5.3.1 How to: Obtain AAF Usage Metric regarding the no.of tape mounts and tape drive hours
used

Figure 8: Records required to be migrated for AAF usage metrics: No.of tape mounts and tape drive hours used

AAF usage metrics regarding the no.of tape mounts and tape drive hours used are obtained by querying the
JobUsageRecord, JobUsageRecord_Meta and ProbeName tables. Records inside these tables are then required
to be migrated.

11

5.3.2 How to: Obtain AAF Usage Metric regarding the total amount of data on tapes

Figure 9: Records required to be migrated for AAF usage metrics: Total amount of data on tapes

AAF usage metrics regarding the total amount of data on tapes are obtained by querying the StorageElement
and StorageElementRecord tables. Records inside these tables are required to be migrated too.

12

5.3.3 How to: Obtain AAF Usage Metric regarding the amount of data read/written from/to
disks/tapes

Figure 10: Records required to be migrated for AAF usage metrics: Amount of data read/written from/to
disks/tapes

AAF usage metrics regarding the amount of data read/written from/to disks/tapes are obtained by querying
the MasterTransferSummary table.
MasterTransferSummary records are obtained by means of a MySQL stored procedure.
The stored procedure generates summary records from corresponding JobUsageRecord so that to reduces the
number of records by two to three orders of magnitude.
This enable faster analytics of these records over different time periods.
Also records inside this table are required to be migrated.

5.3.4 Migration Plan

Figure 11: Migration Plan

As already described in section 3.2 Gratia supports hierarchical collectors’ structure and permits forwarding and
filtering between collectors. Moreover as then described in section 4.1 the gracc-collector service was developed
as a transitory endpoint that is compatible with existing Gratia collectors and probes.
Relying on these two concepts the migration plan has been designed.

5.3.5 JobUsageRecord, StorageElement and StorageElementRecord migration

JobUsageRecord, StorageElement and StorageElementRecord were forwarded by:

13

• enabling JobUsageRecord Replication, StorageElement Replication, StorageElementRecord Replication in
the GRATIA Collector “gratia-fermi-archival.fnal.gov”.

• choosing as remote endpoint the GRACC collector running on the Fermicloud VM.

• choosing as ProbeName “All ” to let all records being migrated.

• choosing a record dbid to start the forwarding.

Some few words have to said about records stored inside the JobUsageRecord table.
So far more than 1 billion records have been stored and these are either records gathered by the enstore-tapedrive,
dCache-transfer and enstore-transfer probes.
Due to limitations in the GRATIA forwarding mechanism it was unfeasible migrating all these records in a
reasonable time (years were required).
This was not an issue since:

• AAF usage metrics regarding the amount of data read/written from/to disks/tapes are obtained by means
of the MasterTransferSummary table, i.e. MasterTransferSummary records are the ones that needed to
be migrated to GRACC.

• AAF Usage Metric regarding the no.of tape mounts and tape drive hours used are obtained by performing
aggregations on records gathered by the enstore-tapedrive probe. Since the resulting number of records
is minimal with respect to the total, despite the limitations in the GRATIA forwarding mechanism, it
was possible having the whole set of them in GRACC by simply defined another ProbeName "enstore-
tapedrive:fndca2a.fnal.gov".

Once records have been received by the GRACC Collector they are transformed from XML into a more flexible
”flattened” JSON representation and then published to a standard RabbitMQ exchange for further processing
and storage.
At that point the gracc-stash-raw is in charge of retrieving data from the RabbitMQ exchange and indexing
data inside inside Elasticsearch.
Some modification were required to the original implementation of the gracc-stash-raw component in order to
treat differently JobUsageRecord and StorageElement,StorageElementRecord.

5.3.6 MasterTransferSummary record migration

Only MasterTransferSummary record were missing at that time.
This was due to the fact that the GRATIA forwarding mechanism doesn’t provides any implementation for
replicating MasterTransferSummary records.
At that time Logstash, which I’ve started learning during the two weeks training phase, has been taken into
account.
Logstash is basically an open source, server-side data processing pipeline that ingests data from a multitude of
sources, transforms it, and then sends it to a favorite “stash”.

Figure 12: Logstash Architecture

Logstash is based on the concept of pipeline. A Logstash pipeline has two required elements, input and output,
and one optional element, filter. The input plugins consume data from a source, the filter plugins modify the
data and the output plugins write the data to a destination.
What I’ve done was creating a Logstash configuration pipeline that uses the jdbc input plugin to fetch and
perform aggregations on MasterTransferSummary records from the MasterTransferSummary table and uses the

14

Elasticsearch output plugin to index MasterTransferSummary records in our favorite stash which for GRACC
is (of course) Elasticsearch.

Figure 13: Skeleton of the Logstash configuration pipeline

5.4 AAF Porting to GRACC

Once all data have been stored inside Elasticsearch it has been necessary to implement the AAF’s porting to
GRACC. AAF is basically implemented as a set of python scripts along with a configuration file.
The porting has mainly involved the modification of the two scripts “AAFReportGenerator.py”,
“AAFHTMLReport.py”, the development of a python utility class “ElasticsearchUtils.py” and of a bash script
“find_differences_gratia_vs_gracc.sh” which aims to check that no differences are present between the active
archive customers’ html pages generated by GRATIA and GRACC.

5.4.1 Active Archive Customers’ Html Pages Comparison

An initial comparison via the bash script has shown that GRACC’s reports may differ wrt to Gratia’s ones, as
far as the AAF metrics regarding the amount of data read/written from/to disk/tape was concerned.
Issue was due to the fact that in Gratia the “TransferSize” field in the MasterTransferSummary table, which is
used to account the total amount of data read/written from/to disk/tape, is of type "double" whereas in GRACC
was of type "float" because no template was defined at time of migration. The solution was to explicitely define
the schema mapping and apply it in the output filter of the logstash.conf file (see Figure 13).

15

6 GRACC SUMMARIZATION

Figure 14: Components involved in GRACC Summarization

When JobUsageRecord Replication has been enabled we have let (also) raw records gathered by the dCache-
transfer and enstore-transfer probes being forwarded to GRACC. The reason why there was the need that raw
transfer records needed to be present was that in GRACC a record summarization service had to be support
too (an equivalent of the GRATIA MasterTransferSummary stored procedure).
Record summarization is performed in GRACC by a process, the gracc-request agent, that listens for requests,
made periodically by the gracc-summary agent, that specify the time period to summarize and the RabbitMQ
exchange to send the summarized records to.
Summarization is done via aggregation query to Elasticsearch, formatting the results into summary records,
performing name corrections/mappings and further enriching the records by looking up corresponding data in
OIM. Another stash, the gracc-stash-summary.transfer at that point starts retrieving data from the RabbitMQ
exchange and indexing summary records inside Elasticsearch.

6.1 Dev Environment Setup

Initially in order to perform name corrections, VONames corrections have been migrated to GRACC by using
logstash. Then all the components involved in the GRACC Summarization, i.e the gracc-request agent, the
gracc-summary agent and the gracc-stash-summary.transfer have been deployed with docker.

6.2 Raw (transfer) record comparison
In order to verify that the GRACC summarization procedure outputs, when the same time interval is passed,
the same MasterTransferSummary record migrated out of GRATIA the first step was to verify that the same
set of raw (transfer) records to be summarized are present in GRACC.

16

Raw records forwarding has been enabled on the gratia-fermi-archival.fnal.gov collector on 26th August 2017.
The comparison has been carried out by means of a bunch of on purpose developed python scripts. The results
are shown below:

Figure 15: Raw (transfer) record comparison from 2017-08-26 to 2017-08-27

As it possible to see there’a deficit consisting of 11 eleven raw records. For each missing record the script also
presents the time at which the transfer has begun. Querying GRATIA with these StartTimes it has been found
out that the deficit actually involves:

• 10 records that have a value for the StartTime field which is greater than the one specified at replication
init time but whose record dbid is smaller (and that was the reason why records were not forwarded).This
is possible due to the fact that when the GRATIA collector stores the data into the MySQL database no
records ordering guarantee is provided.

• Plus the record with the dbid specified at replication init time itself.

Figure 16: Raw (transfer) record comparison from 2017-08-27

No difference has been noticed in all the other cases.
We will present later on, which solution has been adopted because of the record missing in GRACC on 26th
August.

6.3 Python summary scripts: Modification Required
The GRACC python summary scripts were already developed. By the way different modification were required
prior to obtaining a fully functional GRACC summarization procedure. In particular:

• We needed to have consistent aggregations both in the MySQL SELECT used in the jdbc logstash input
plugin used to migrate MasterTransferSummary records and in the gracc-request agent (in the trans-
fer_summary.py script) which is in charge of generating GRACC transfers summaries.

• We also needed to have summary records (datetime fields inside these records) coming out of logstash be
indexed in GRACC according to UTC date format.

• Since the time period to summarize is splitted into weeks (in order to avoid overloading the ES cluster)
refinements were required in the gracc-request agent (in the transfer_summary.py script) and in the
gracc-summary agent (in the summarize.py script) to avoid summarizing twice the last day of each week.

17

6.3.1 GRATIA vs GRACC Summarization: Comparison

It has been defined as time period to summarize the time range from 27th August 2017 to 22th Septmember
2017.
What we were expecting is that for each day in this time range the number of transfers either for dCache and
Enstore, either for read(TransferType:0) and write(TransferType:1) transfers were the same.
Furthermore, we were also expecting that for each day we end up having the same total amount of data
transferred. As it possible to see everything has been confirmed:

Figure 17: GRATIA vs GRACC Summarization: Total Transfer Comparison

Figure 18: GRATIA vs GRACC Summarization: Total Amount of Data Transferred

7 Generating GRACC Active Archive Customers’ Web Pages
What the GRACC Active Archive Customers’ html pages were supposed to output is zero-difference with respect
to what the GRATIA reports actually output.
Since forwarding was enabled only on the 26th of August GRACC transfer summaries were only available for a
limited time period.
In order to generate GRACC reports and since we still had raw (transfer) record missing on 26th August one
step was still necessary.

18

Basically what we needed at that time was a different “view” of the index being queried while retrieving transfers
to/from disk/tape.
In order to do so Elasticsearch filtered aliases have been used.
The idea was to use migrated MasterTransferSummary records for retrieving transfers occurred from the 2015-
01-01 (AAF start of contract) to 2017-08-26 (to overcome record missing issue).
Then the idea was to use GRACC summaries starting from 2017-08-27 to 2017-09-22.

Figure 19: Elasticsearch Filtered Aliases

Only at that time GRACC reports have been generated.

7.1 GRACC Reports: Final assessment
By means of the already developed bash script “find_differences_gratia_vs_gracc.sh” GRACC reports have
been compared with the GRATIA ones.
The script in case any difference is present makes a folder inside the root folder “differences” named as the
involved Virtual Organization together with a file containing the differences.
After the script has been carried out the content of the the root folder “differences” was still empty indicating
that GRACC reports are accurate.

Figure 20: Content of the root folder “differences” after bash script execution

We can conclude presenting a sample reports comparison for an off-site customer (Simons) on the 22th Sept-
member:

19

Figure 21: Sample report comparison for Simons on the 22th Septmember

20

