MovingKnowledge17 International Neutrino Summer School

Study of muon neutrino interactions in MicroBooNE

Karolina Rozwadowska

supervised by Roxanne Guenette and Marco Del Tutto

September 27th, 2017

k.m.rozwadowska@gmail.com

MicroBooNE experiment

Liquid Argon Time Projection Chamber

Located on ■Booster Neutrino Beam line → neutrinos ■ground level → cosmics

September 28th, 2017

MicroBooNE experiment

MicroBooNE goals

From now on: focus on v_{μ} CC interactions inside the Fiducial Volume

September 28th, 2017

Two methods

Flashes

summed OpHits from grouped PMTs

current requirement: 50 PE Threshold PE can be tuned

OpHits

pure information from PMTs

In each time tick (15.625 μs) for each PMT:

deposited light (number of PE) is stored as an OpHit

Binning and threshold PE can be tuned

as used by the MicroBooNE Deep Learning group

OpFlashes vs OpHits

BINNING:

6 ticks per bin: gives better efficiency than flashes, but also lower bg rejection

9 ticks per bin: is able to give the same bg rejection as flashes, but better efficiency

CHOICE: 9 ticks per bin

OpFlashes vs OpHits

PE THRESHOLD:

OpHits: higher efficiency than Flashes to keep current rejection OpHits ≥ 50 PE to increase efficiency OpHits ≥ 40 PE

CHOICE: 40 PE

OpFlashes vs OpHits

Cuts comparison

Cuts comparison

September 28th, 2017

September 28th, 2017

Having the PMT precut...

we have used the time information to exclude 98.8% of background events

Flash matching score

To look for neutrino candidates I focus only on objects with neutrino or mixed origin. Only those object are included in the following slides.

September 28th, 2017

signal (v $_{\mu}$ CC FV, starting with 6208 events)

background (cosmics)

September 28th, 2017

	6208
Applied cuts:	
 min track quality 	4644
• delta z <100cm	4260
• delta x <20 cm	4205
•angle between tracks	
(0.05; 2.9) rad	3953

E = 63% *P* = 31%

Possible region of high purity signal events: Cut on flash matching score: 0.6 - 1.2

Efficiency: 23% *Purity*: 78%

To sum up

My intern in numbers updating event rates 9 50 2 6 **Oxford & Fermilab Tuning OpHit cut** as an alternative with 9 tick bins to 50 PE flash from MCC 6 **2** places working on MicrBooNE months and threshold of 40 PE to MCC 8 m 40 3 8

Thank you!

- Roxanne Guenette
- Marco Del Tutto
- Corey Adams, Roberto Soleti & Pandora LEE Group
- Anne Schukraft & Cross Section Group
- Luigi Marchese, Ian Shipsey & Oxford PP Division

and the whole Summer Students Team!

BACKUP SLIDES

MCC6 (docdb 4331-v9)

	numu	numubar	nue	nuebar
CC Total	173302	1407	1469	36
CC - QE	95296	773	729	17
CC - RES	75657	604	702	18
CC - DIS	1607	1.3	29	0.5
CC - COH	740	29	8.5	0.7
NC Total	64661	1002	502	17
NC - QE	35951	633	254	7.0
NC - RES	27665	358	236	9.4
NC - DIS	519	1.3	8.8	0.2
NC - COH	525	10	3.2	0.6

MCC8.1

	numu	numubar	nue	nuebar
CC Total	234941	1958	1997	47
CC - QE	104235	984	762	10
CC - RES	62741	439	614	26
CC - DIS	20484	120	251	5
CC - COH	749	16	10	0
CC - MEC	46732	399	360	5
NC Total	73449	1073	546	24
NC - QE	34622	590	251	16
NC - RES	23727	285	162	3
NC - DIS	6823	89	63	5
NC - COH	590	18	5	0
NC - MEC	7661	91	65	0

Flash requirement

September 28th, 2017

Define signal from OpHits

take region of time interest here: beam spill window 3.2 – 4.8 μs

set new bins: n time ticks per bin

set threshold PE

if nu mu CC interaction in FV && PE in bin ≥ threshold PE: SIGNAL

vary **n** and **threshold PE** for optimization

September 28th, 2017

DL choice

6 Tick Binning 20 PE Threshold

Note! DL signal: 1L1P (E_{lep} >35MeV, E_p>60 MeV) My signal: nu mu CC in FV

PMT Maximum Fraction not included in this study!

Efficiency & cosmic rejection

prodcosmics corsika cmc uboone

60

PE threshold

prodgenie bnb nu cosmic uboone

KAROLINA ROZWADOWSKA

September 28th, 2017

Choice of binning and threshold PE

Choice of binning and threshold PE

PE THRESHOLD:

	Efficiency	Cosmic rejection
Flash ≥ 50 PE	95.8 %	99.0 %
Flash ≥ 40 PE	96.4%	98.9 %
OpHit (9-tick) ≥ 50 PE	97.9 %	98.9%
OpHit (9-tick) ≥ 40 PE	98.6 % 🗸	98.8 %

OpHits: higher efficiency than Flashes to keep current rejection OpHits ≥ **50 PE** to increase efficiency OpHits ≥ **40 PE**

CHOICE: 40 PE

compare with DL choice: OpHits ≥ 20 PE

Cuts comarison

Cuts comarison

TPC Objects

- all the reconstructed objects from the light deposited in TPCs
- TPC Objects can originate from:
 - neutrino \rightarrow object: neutrino-induced muon track
 - cosmic \rightarrow object: cosmic track with it's delta rays
 - mixed (both neutrino and cosmic)

In each event we want to select possible neutrino candidates, so we focus on objects with neutrino or mixed origin

Flash to TPC Object matching

Measured photoelectrons (PE) in each PMT are matched with hypothesis of PE in PMTs from simulation

Best match is chosen with
$$-\ln L = -\sum_{i=0}^{32} \ln \frac{(H_i(x))^{o_i} e^{-H_i(x)}}{O_i!}$$

minimization of $-\ln L$ gives $x_{\text{\tiny best}}$

Flash matching score =
$$\frac{1}{-\ln L(x_{best})}$$

September 28th, 2017

No cuts applied Efficiency 81% Overall **6208** signal events -**1170**(flash matching failed) -**36** (no TPCObjects) ∑ **5002events**

Purity 30%

Signal purity :

how many events that passed the selection are signal events?

Only flash requirement applied Efficiency 76%

4716 signal events kept

Signal purity :

how many events that passed the selection are signal events? Purity 30%

Applied cuts:

- min track quality 4644
- delta x <20 cm 4260
- delta z <100cm 4205

Efficiency 68% *Purity* 31%

Applied cuts:

- min track quality 4644
- delta x <20 cm 4260
- delta z <100cm 4205

 $\begin{array}{c} 0.25 \\ 0.25 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.16 \\ 0.$