

Physical Interpretation of Cluster Pressure Profile in CMB Observation Giovanni Volta – Università degli Studi di Ferrara

I

Reidan Hahn

Reidan Hahn

Galaxy clusters provide valuable information on cosmology, from the nature of dark energy to the physics driving galaxy and structure formation. Clusters are filled with hot ionized gas that can be studied both in X-ray and through the thermal Sunyaev-Zel'dovich (SZ) effect.

Perseus Cluster

Sunyaev-Zel'dovich effect

- spectral distortion of the cosmic microwave background (CMB) generated via inverse Compton scattering of CMB photons by the free electrons;
- Its magnitude is proportional to the y-Compton parameter, a measure of the gas pressure integrated along the line-of-sight :

$$y = \frac{\sigma_T}{m_e c^2} \int P dl$$
 ; $P = n_e T$

Reidan Hahn

Giovanni Volta - Università degli Studi di Ferrara

- DECam →
 - DES clusters catalog
- *Planck* telescope \longrightarrow SZ maps

Dark Energy Camera (DECam) on Blanco Telescope (Reidar Hahn, Fermilab)

Planck's large telescope, Planck collaboration

Understand one and two halo term in the cross correletion function

Analysis of one and two halo term with mock data

Analyze the observational data

Andreas Papadopoulos

The key quanity of interest is the average *y*-Compton parameter at a projected co-moving distance *r* from a halo of mass *M*.

$$\xi_{y,g}(r|M) = \frac{\sigma_T}{m_e c^2} \int_{-\infty}^{+\infty} \frac{d\chi}{1+z} \,\xi_{h,p}(\sqrt{\chi^2 + r^2}|M)$$

The halo-pressure correlation function describes the average excess pressure around halos as a function of the distance from the halo center.

$$\xi_{h,P}(r|M) = \xi_{h,P}^{one-halo}(r|M) + \xi_{h,P}^{two-halo}(r|M)$$

In ordert to compute the halo-presure correlation function, we have to determine the gas/electron thermal presure as a function of distance from halo center, namely the pressure profile, for halos of various mass.

$$\bar{P}_{fit} = P_0 \left(x/x_c \right)^{\gamma} \left[1 + \left(x/x_c \right)^{\alpha} \right]^{-\beta} ; \quad par = par_0 \left(M_{200}/10^{14} M_{\odot} \right)^{\alpha_m} (1+z)^{\alpha_z}$$

METHODOLOGY. The expected y(r) signal in λ bin.

$$\bar{y}_{r_0,z,\lambda_1,\lambda_2} = \int P(M|z,\lambda_1,\lambda_2) y_{r_0}(M,z) dM = \int \frac{1}{2} \left[erfc(\chi_1(M)) - erfc(\chi_2(M)) \right] P(M|z) y_{r_0}(M,z) dM$$
$$\chi_i(M) = \frac{\log M_i - \log M}{\sqrt{2\sigma_{\log(\lambda_i|M)}^2/B_{\lambda}^2}}$$

Where we assume that λ follows a log-Normal distribution with mean value and standard deviation as follow. Moreover, the relation between richness and mass is indicated below.

$$log\lambda = \mathcal{N}\left(A_{\lambda} + B_{\lambda}logM; \ \sigma_{\log(\lambda|M)}^{2}\right); \ M(\lambda, z) \equiv \langle M|\lambda, z \rangle = M_{0}\left(\frac{\lambda}{\lambda_{0}}\right)^{F_{\lambda}}\left(\frac{1+z}{1+z_{0}}\right)^{G_{z}}$$
$$\sigma_{\log(\lambda|M)}^{2} = \frac{1}{e^{\left(A_{\lambda} + B_{\lambda}logM + \frac{1}{2}\sigma_{0}^{2}\right)}} + \sigma_{0}^{2}$$

	Richness bins				
		0	1	2	
	0	[0.2; 0.35] [20;30]	[0.2; 0.35] [30;45]	[0.2; 0.35] [45;60]	
Redshift bins	1	[0.35; 0.5] [20;30]	[0.35; 0.5] [30;45]	[0.35; 0.5] [45;60]	
	2	[0.5; 0.65] [20;30]	[0.5; 0.65] [30;45]	[0.5; 0.65] [45;60]	
10 ⁻⁵ The shed_make_1					
> 10 ⁻⁷ 10 ⁻⁸ 10 ⁻⁹ 10 ⁻¹ 10 ⁻¹ 10 ⁻⁵	1 1 2 mptin_3	10 ⁻⁷ 10 ⁻⁹ 0 ² 10 ³ 10 ⁻⁹ 10 ⁻¹ 10 ⁸	10 ⁻¹ 10 ⁻¹ 10 ¹ 10 ¹ 10 ² 10 ³ 10 ³	10 ⁹ 10 ¹ 10 ² The size1, mplain, 3	
10 ⁻⁸ > 10 ⁻⁷ 10 ⁻⁸ 10 ⁻⁸ 10 ⁻¹ 10 ⁻¹ 10 ⁻⁰ 10 ⁻¹ 10 ⁻¹	L J	10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁹ 0 ² 10 ³ 10 ⁻⁹ 10 ⁻⁹ 10 ⁻⁹	10 ⁻⁴ 10 ⁻¹ 10 ¹ 10 ² 10 ³ 10 ⁹ 10 ¹ 10 ² 10 ³	10 ⁹ 10 ¹ 10 ² Tos zesz_spos_3	
10" > 10" 10"		10 ⁻⁰	10" 10" 10"	tt t	

102

100

10¹

103

10.1

 10^{8}

101

7

 10^{2}

 10^{3}

10-3

109

101

7

102

103

$$\xi_{h,P}(r|M) = \xi_{h,P}^{one-halo}(r|M) + \xi_{h,P}^{two-halo}(r|M)$$

ONE-HALO TERM. Study of parameters.

ONE-HALO TERM. Study of parameters.

ONE-HALO TERM. Analysis with MOCK data.

• Instead using the experimental data for MCMC analysis, I used the output of the model with certain value of parameters in order to test the fitting code. I produced MOCK data sets with different configurations, which are listed in the table below.

	Data sets		
1 halo	A _p = 18.1	$A_p = 18.1$; $\sigma_0 = 0.225$	
1 and 2 halos	A _p = 18.1	$A_p = 18.1$; $\sigma_0 = 0.225$	

1 halo term

ANALYSIS OF PARAMETERS. Comparison between one halo model and one plus two halo model.

• Constraint on A_P .

ANALYSIS OF PARAMETERS. One halo model fitting results of one plus two halo MOCK data, using different sets of parameters.

• Constraint on A_P and σ_0 .

ANALYSIS OF PARAMETERS. One halo model fitting of result of one plus two halo MOCK data, using different sets of parameters.

 A_P analysis

ANALYSIS OF PARAMETERS. Constraints from observational data, fitted with the one halo model. $A_p = 16.07^{+0.18}_{-0.26}$ 0,60 Se Omufas 0.30 0.13 Ŷ ŝ 20 2 A_p -35 30 4 25 √ 20 15.6 16.2 10⁹ N.A. 15 A_n 2000 4000 6000 8000 10000 0 0.8 18 0.6 4 17 I 0 m r0.4 5 0.2 16 0.0 2000 6000 4000 8000 0 A_P^{4000} and σ_0^{6000} analysis

2000

0

10000

8000

SUMMARY:Can we do parameter estimation?

With MOCK data we recover the input value of parameters;

Using the observational data in MCMC analysis we get a smaller value of A_P with respect to simulation study;

 A_P and σ_0 appear degenerate in both analyses;

Future Prospect

Addittional data sets South Pole Telescope data

Additional parameters Mass and redshift evolution.

Thank you for your attention !

I

Student Fermilab 2017 Summer

"We will miss you" by Derek Plant As autumn sets in, it is time for many visiting students to return to their universities and homes. Lessons have been learned, experiences had, and friendships made. The youthful exuberance of summer students is always a shot in the arm. Good luck! (everyday objects)