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Abstract

The aim of this project is to study Galaxy Clusters using cosmic microwaves of background as
probe and make data analysis with software CosmoSIS. I want to test the dependability of our
analysis software with new adding of scatter relation on Log-Normal distribution of richness,
using theoretical data generated from the physical model. The main quantity is the y-Compton
parameter of Sunyaev-Zel’Dovich effect, which is given by two contribution: one halo term and
two halo term. I took care, most of all, on one halo term in order to see it possible to use only
this contribution for the next works since that the two halo term increase a lot the analysis
time. Moreover, with the galaxy cluster catalog of from the Dark Energy Survey (DES) and
Sunyaev-Zel’Dovich maps of Planck Large Telescope, I tried to put some constraint on the
amplitude of galaxy pressure profile, namely Ap, and on the parameter that governs the behavior
of scatter relation, namely σ0. From this parameter estimation, I recovered interested results.
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1 Introduction

The Dark Energy Survey (DES) is a interna-
tional collaboration with the goals of mapping
hundreds of millions of galaxies, detect thou-
sands of supernovae, and find patterns of cos-
mic structure that will reveal the nature of the
mysterious dark energy that is accelerating the
expansion of our Universe. The survey is imag-
ing 5000 square degrees of the southern sky in
five optical filters to obtain detailed information
about each galaxy. The survey was designed to
cover areas of the sky that have been observed
by complementary experiments.

Figure 1: Footprint of the wide-area survey on
the sky (colored region) in celestial coordinates; the
dashed curve shows the approximate location of the
Milky Way disk in these coordinates. Image Credit:
Lahav et al., 2016

Here, I present my work on galaxy clusters
done by stacking of Sunyaev-Zel’Dovich effect
maps around known galaxy clusters and groups.
Stacking analysis allows to detect the average SZ
signal around a given mass halos, where the am-
plitude of its depends critically on the average
thermal pressure profile of halos. From these
kind of analysis we get a powerful probe of the
distribution of hot gas in these system.
The outline of this report is as follow. In the
second chapter, I describe the tools for extract
useful information from the available data. In
the third chapter I talk about the physics for
understanding the analyses and results. As the
last chapter, I present my work and I discuss
how to interpret the results.

2 CosmoSIS

After completing all the acquisition, verifica-
tion and reduction of the data from an survey,
we have to transform compressed data sets into
constraints on cosmological model parameters
by comparing them to theoretical predictions.
This is the last step of cosmological analysis
and it’s called Cosmological parameter estima-
tion (CPE).
Usually the cosmology analysis applies a
Bayesian approach to CPE. A likelihood func-
tion is used to assess the probability of the data,
that were actually observed, given a proposed
theory and values of that theory’s parameters
[1]. The way which the parameters changes is
regulated by a sampling process: Markov Chain
Monte-Carlo. The result is a distribution that
describes the posterior probability of the the-
ory’s parameters.
The software that I used for analysis is called
CosmoSIS: a relative new tool designed in or-
der to incentivize the connection, the sharing
and the development of cosmological analysis
in the community. Modularity is the heart of
the CPE software. In a modular approach to
the cosmological likelihood, the separate physi-
cal calculations are divided into discrete pieces
of code that do not have direct read and write
access to the data each other. All data is then
passed around via a single mechanism - the load-
ing and saving of information in a single place.
A likelihood function then becomes a sequence
of modular processes, run one-by-one to form a
pipeline. The last module(s) generates the fi-
nal likelihood numbers. Any module in the se-
quence can be replaced at runtime by another
calculation of the same step without affecting
the others [1].

3 Cosmology

The cosmology is the science that study the ori-
gin an evolution of our Universe. The most cur-
rent theory accept by the scientific community
is the Standard Model Cosmology or ΛCDM ,
which is a parametrization of Universe’s history.
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3.1 Galaxy Clusters

A Galaxy Cluster is a cosmological structure
that is made of hundreds to thousands of galax-
ies that are bound together by gravity with typ-
ical masses ranging from 1014/1015 solar mass.
They are one of the largest known gravitation-
ally bound structures in the universe.
From dynamical study and x-ray observation,
we know the relative proportion between the
component of clusters: the baryonic matter is
dominated by the Hot Gas component but the
most dominant is the Dark Matter, approxi-
mately it is 80% of total mass. One way to
obtain informations about the distribution of
mass in a galaxy cluster is combing Sunyaev-
Zel’Dovich effect data with the Galaxy Clusters
maps.

3.2 Sunyaev-Zel’Dovich effect

Our present understanding of the primordial
Universe is based, among other things, on the
study of cosmic wave of Background. The CMB
radiation comes out from the recombination
epoch, when the first nuclei was formed, then
it’s one of the most important probe of early
universe.
Theory of formation of large-scale structure pre-
dicts the existence of slight inhomogeneities in
the first instances of the universe. The infor-
mation of these inhomogeneities arrive to us
by the study of CMB features. For example,
the density inhomogeneities lead to temperature
anisotropies in the CMB spectrum.
The cosmic microwave background’s anisotropy
is divided into two types: primary anisotropy,
due to effects that occur at the last scattering
surface and before; and secondary anisotropy,
due to effects such as interactions of the back-
ground radiation with hot gas or gravitational
potentials. Here, we are interested in the in-
teraction between γ of CMB radiation and elec-
trons belong to hot gas looked in the galaxy clus-
ters: Sunyaev-Zel’Dovich effect.
When γ goes through intra-clusters medium, it
interacts with high energy e− by inverse Comp-
ton scattering: the electrons give energy to the
CMB radiation and then we observe small spec-
tral distortion. The SZ spectral distortion of

the CMB could be expressed in terms of rela-
tive variation of temperature:

∆TSZE
TCMB

= f(x)
∫
ne
kBTe
mec2

σT dl (1)

where the integral along the line of sight usu-
ally is indicated as y, called y-Compton param-
eter, which for an isothermal cluster equals the
optical depth, τe, times the fractional energy
gain per scattering, σT is the Thomson cross-
section, ne is the electron number density, Te is
the electron temperature, kB is the Boltzmann
constant, mec

2 is the electron rest mass energy.
As we can see, the magnitudes of SZ effect is pro-
portional to the y-Compton parameter, which
roughly speaking is a measure of the gas pres-
sure integrated along the line-of-sight.
Since Compton-y is proportional to the depth
of galaxy cluster’s gravitational field, if we inte-
grate the SZ signal around all the halos we ob-
tain a quantity strong correlated with the mass
of halo it-self.

3.3 Halo model of the Halo-SZ
Cross Correletion

Stacking cosmic microwaves background maps
around known galaxy clusters and groups pro-
vides a powerful probe of the mass distribution
trough Sunyaev-Zel’Dovich effect. From now to
on, I use halo model framework developed by
Cooray and Sheth [2].
The key quantity of interest is the average y-
Compton parameter at the projected co-moving
distance r from a halo of mass M. More pre-
cisely, the significant quantity is the excess y-
Compton parameter, with respect to the global-
average y, around a certain halo. This can be
written as an integral over the halo-pressure
cross-correlation function:

ξy,g(r|M) =
σT
mec2

∫ +∞

−∞

dχ

1 + z
ξh,P (

√
χ2 + r2|M)

(2)
Here σT is the Thomson scattering cross
section, mec

2 is the rest mass energy of an
electron, z is the redshifth of galaxy cluster,
ξh,P is the halo-pressure cross-correlation func-
tion and the integral is done over co-moving
coordinates along the line-of sight χ to the
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halo. For simplicity, I omitted redshift labels
although the quantity depends on the redshift
of group/halo [3].
The halo-pressure cross correlation func-
tion could be calculated started from the
gas/electron thermal pressure as a function of
distance from the halo center - the pressure
profile - for halos of various mass [4].

Pfit(x) = P0

(
x

xc

)γ [
1 +

(
x

xc

)α]−β
, x ≡ r

r200
(3)

Here P0, xc, γ, α, and β are fitting parameters,
with r200 denoting the radius at which the aver-
age matter density within the halo reaches 200
times the critical density. It is possible to treat
each parameter as a separable function of mass
and redshift. For a generic parameter A, it is
described by the following formula:

A = A0

(
M200

1014M�

)αm
(1 + z)αz (4)

Battaglia profile (Eq.4) is a generalization of
Navarro, Frenk and White (NFW) profile. In
the formula is implied the overall normalization
P200: self-similar amplitude of pressure profile.
This is useful in order to compare different pro-
file and to facilitated cluster stacking.
The halo-pressure correlation function describes
the average excess pressure around halos as a
function of the distance from their center. It
is done by two contribution: one-halo term de-
scribes the pressure from the hot gas in the halo
itself; two-halo term corresponds to the contri-
bution from correlated neighboring halos.
The one-halo term is precisely the electron
thermal pressure profile Pe(r|M) which is pro-
portional to the total thermal pressure profile
P (r|M). For one-halo term playing an impor-
tant role the primordial helium fraction since
the Pe(r|M) depends on it.

ξone−haloh,P (r|M) = Pe(r|M) (5)

With r denoting the co-moving coordinate sep-
aration from halo center.
The two-halo term is more complicate respect
the previous one, it is calculated starting from
halo-pressure power spectrum and then using

Fourier transform:

ξtwo−haloh,P (r|M) =

∫ +∞

0

dk

2π2
k2
sin(kr)

kr
Ph,p(k) (6)

The total correlation function is given by the
sum of these two term. Finally, by the integral
in Eq.2, you get the average Compton-y param-
eter around a halo of mass M.

4 Methodology

In these analysis I used the y-maps of the ther-
mal Sunyaev-Zel’Dovich effect, made by Planck
collaboration, combined with Galaxy Clusters
location comes from DES. The data were di-
vided in redshifts bins and in richness bins, in
order to see if it is possible to deduce some de-
pendence from them:

z = [0.20, 0.35, 0.50, 0.65] (7)

λ = [20, 30, 45, 60, 1000] (8)

Before starting with the results, is important
introduce the methodology which I used for val-
uating the cross-correlation function or the av-
erage y-Compton parameter.

4.1 The expected y(r) signal in
lambda bins

Selecting clusters according to λ ranges means
that the galaxy clusters in different richness
bins will have different mass distributions. For
clusters in the λ range of λ1 to λ2 at red-
shift z, we denote their mass distribution as
P (M |z, λ1, λ2). Assuming that the mass dis-
tribution is know, the average y(r) signal is:

yr0,z,λ1,λ2
=

∫
yr0P (M |z, λ1, λ2)dyr0 (9)

where r0 is a certain point from the center of
galaxy clusters. With probability chain rule,
and assuming that richness and y-Compton pa-
rameter are not correlated, we can write:

yr0,z,λ1,λ2
=

∫
P (M |z, λ1, λ2)dM∫

yr0P (yr0 |M, z)dyr0

(10)
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The second integral is Battaglia profile (Eq.3),
up to now we indicate it by yr0(M, z); the first
integral instead could be written as:

P (M |z, λ1, λ2) =

∫ λ2

λ1

P (M |λ, z)P (λ, z)dλ

=

∫ λ2

λ1

P (λ|M, z)P (M, z)dλ

(11)

where we use again the probability chain rule.
Here P (M, z) is the halo mass function at red-
shift z and it is independent by the integration
variable, and P (λ|M, z) describes the richness
distribution for halos of mass M and redshift z.
Now, the mean point of our analysis is to as-
sume that the richness follows a log-Normal dis-
tribution with mean and standard deviation as
follow:

lnλ ∼ N(µ;σ2
ln(λ|M)) = N(Aλ +Bλ lnM ;σ2

ln(λ|M))
(12)

where we can use the λ−M relation [5] to link
certain value of richness with the corresponding
mass value:

M(λ, z) ≡< M |λ, z >= M0

(
λ

λ0

)Fλ ( 1 + z

1 + z0

)Gz
(13)

where M0 = 2.35M�, Fλ = 1.12 and Gz = 0.18
are parameter of the model with pivot values
λ0 = 30 and z0 = 0.5. In order to generalized
the scatter function, theoretical study suggest
to use:

σ2
ln(λ|M) =

1

eµ+
1
2
σ2
0

+ σ2
0 (14)

Once again, σ0 is a parameter of the theory.
With some mathematical passages, we can re-
write the Eq.11:

P (M |z, λ1, λ2) =

∫ λ2

λ1

P (M |λ, z)P (λ, z)dλ (15)

=
1

2
[erfc(χ1(M)− erfc(χ2(M))]P (M |z) (16)

where we use the following notation:

χ1/2(M) =
logM1/2 − logM√

2σ2
log(λ1/2|M)/B

2
λ

(17)

Finally, The expected y(r) signal in a certain
richness bin, namely the total cross correlation

function between SZ maps and galaxy cluster
groups, is equal:

yr0,z,λ1,λ2
=

∫
1

2
[erfc(χ1(M)− erfc(χ2(M))]

× P (M |z)yr0(M, z)dM

(18)

5 Data analysis and result

The analysis was divided using two sets of data:
the first set contains theoretical data, called
mock data, and the second set contains the real
data, namely observational data. In both of this
analysis I evaluated the contribution of one halo
term against one plus two halo terms, consider-
ing the standard deviation of log-Normal dis-
tribution of λ constant for each richness bins,
and using the new standard deviation function
(Eq. 14). I tried to recover some reasonable
constraint in two parameters: the amplitude of
pressure profile (Eq. 3, 4) labeled with Ap, and
σ0 which governs the behavior of the new stan-
dard deviation function.
The first analysis is necessary for understanding
if the software works well and if the new stan-
dard deviation function (Eq. 14) is correct. In
addition, as we will see from the using of mock
data it is possible to recover a lot interesting in-
formations. Furthermore, using the real data is
always important and allows to test our theo-
retical model and to obtain physical constraints
in the parameters.

5.1 Mock Data

Instead of using the experimental data for
MCMC analysis, I used the output of the model
with certain value of parameters in order to test
the fitting code. I produced mock data sets with
different configurations, which are listed in the
table below. This data have been fitted by the
corresponding model in a Monte Carlo Markov
Chain. On the following plots, we present the
constraints on Ap obtain with the first columns
of Tab. 2. We see that we recover, for both
one halo and one plus two halo term, approxi-
mately the same parameter value that I used for
generating the mock data:
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Figure 2: mock data used in the first MCMC anal-
ysis.

one halo term: Ap = 18.023+0.208
−0.091;

one and two halo terms: Ap = 18.085+0.073
−0.328.

This tells us that the software works well. The

Figure 3: Results from MCMC analysis using the-
oretical data coming from the models without the
new scatter function.

same MCMC analysis was done for the second
column, this time in order to see if, with the
adding of the scatter relation, the software still
recovers reasonable results:

one halo term: Ap = 19.49+0.44
−0.32;

one and two halo terms: Ap = 18.085+0.073
−0.328.

We can see the results in the next plots. Since
the constraint value in Ap is similar to 18.1, the
scatter relation is correct and this is another
proof that the software works well. Other in-
formation we can understand from this analysis:
the particular shape of the the random walk in
the parameters space suggest that the MCMC
diverge than, as of now, we can say that Ap and
sigma0 can’t binded at the same time.
The last study that I did with mock data was an
MCMC analysis with only one halo term, using
the theoretical data generated with one plus two
halo model. Since from the observation we never

Figure 4: Results from MCMC analysis using the-
oretical data coming from the models with the new
scatter function.

can separate the two contribution, this kind of
analysis allows us to determine how much the
difference is between the constraint value of cer-
tain parameter and its real value when we try
to fit the one plus two halo data with only one
halo model. The Ap values constrained from
this analysis are:

without scatter relation: Ap = 22.11+0.26
−0.33

with positive bias of 22.25%;

with scatter relation: Ap = 19.49+0.44
−0.32 with

positive bias of 8.76%.

5.2 Observational Data

In the end, the same approach was applied to
the real data. Then, with the last MCMC anal-
ysis I tryed to extrapolate some reasonable con-
straints from the real data using only the one
halo model, one time without the scatter rela-
tion and another time with the scatter relation.

In the analysis without the scatter rela-
tion, we recover a value of Ap smaller with
respect to the simulations study. More pre-
cisely, Ap,observational data = 16.07+0.18

−0.26 against
Ap = 18.1 [Battaglia et al.]. In addition, the real
value of Ap should be approximately 22% less
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Figure 5: Constraint plots for bias analysis.

with respect to the constraint value obtained
here.
Instead, form the analysis with the scatter rela-
tion, namely the second plot, we can’t observe
some limit in the parameters. Moreover, the
shape of random walk in the parameters space
is equal to the shape in mock data analysis.

Figure 6: MCMC analysis of one halo term using
observational data. In the first plot Ap is free pa-
rameter, and in the second case Ap and σ0 are free
parameters.

5.3 Results

The main goal of my work is to demonstrate if
the model and the software were able to per-
form parameter estimation. In view of the fact
that we recovered the parameters input values
in the mock analysis tell us that the software
works well even with the new scatter relation. In
addition, since the analysis with only one halo
term gave reasonable results, in a future work
we could concentrate most of all on this term so
to make the analysis software faster.
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Moreover, from the MCMC analysis with the
observational data we obtained a smaller con-
straint value on Ap, considering the bias, with
respect to the value which comes from simula-
tions study. Then, we can claim that simulation
study is not so accurate.
Eventually, from both sets of data we under-
stand that Ap and σ0 are strongly correlated
and highly degenerated. Then, they can’t be
constrained at the same time.
One way to proceed in the future could be study
more, from theoretical point of view, the behav-
ior of Ap and σ0 in order to find some physical
relation which helps to put some strong limit.
Also, one upgrade could be using new obser-
vational data like South Pole Telescope data,
which are of excellent quality. Improving the
observational data set will allows us to extend
the parameter space.
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