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Abstract

The 8 GeV proton beam hitting a �xed target in the Mu2e experiment has an energy

slightly above the antiproton production threshold; therefore we cannot exclude that some

antiprotons, arising from the interactions between the proton beam and the production

target, propagate through the apparatus, eventually reaching the stopping target and an-

nihilating. The annihilation process may turn out to produce a 105 MeV electron, which

can be mistaken for a signal electron coming from a muon-to-electron conversion. Al-

though possible, the total energy released in an antiproton annihilation is about 2 GeV,
whereas in a conversion event it is only 105 MeV; many di�erences can be so found in

the two processes, and the goal of this work is to take advantage of them by developing a

neural network to perform pattern recognition of signal and background events in order to

discriminate between them.

In this work, performed during the stage o�ered by Fermilab to Italian students re-

cruited by the Cultural Association of Italians at Fermilab, I personally analyzed the data

from the simulations of signal and background events in order to eliminate all the back-

ground ones which cannot be mistaken for signals and to choose the best variables to

train the neural network with. The network was then trained through a machine learning

algorithm that I coded in the ROOT environment.
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Premise

The reported work was performed during the two-month training stage o�ered in summer 2017
by Fermilab to Italian students recruited by the Cultural Association of Italians at Fermilab.

As will be described in this report, my supervisor simulated events of conversion electrons
(signal) and antiproton annihilations (background), which I then analyzed for two reasons:

• First, I want to get rid of the trivial background events which cannot be mistaken for
signal events, by applying some cuts to the simulated variables;

• Then, I want to choose the best variables to train the neural network with, in order to
discriminate between signal and background events.

These two issues will be discussed respectively in section 2 and section 3, where I will
describe the problems I faced and the solutions I found. I will also show the plots that I made
starting from the simulated data at disposal.

I then trained a neural network through a machine learning algorithm that I developed in
the ROOT environment of multivariate analysis: all the features of this training and the results
from it will be widely discussed in section 4 and some plots that I realized will make some
assertions clearer.

Finally, in section 5 I will describe my observations about the work performed and give some
suggestions to improve it.
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1 Introduction

1.1 Overview of the experiment

After the discovery of the neutrino oscillations it was clear that the lepton �avor is not strictly
conserved in the elementary processes: the possibility for a muon neutrino to oscillate into an
electron one results in the direct lepton �avor violation (LFV). Although the violation has been
observed only in the neutral leptons so far (i.e. neutrinos), according to Standard Model (SM)
Charged Lepton Flavor Violation (CLFV) must also occur at some level, as shown for example
in the process in �gure 1 [5].

Figure 1: Simple diagram for CLFV in the pro-
cess µ→ eγ according to SM. The neutrino os-
cillation is necessary for it to occur.

CLFV may also arise in other processes,
mostly involving the muon decay, such as
µ → eγ, µ → eee or µN → eN (the last
one being the conversion of a muon into an
electron in the �eld of a nucleus N). In any
case, the Standard Model (SM) predicts the
charged lepton �avor violating processes to
be extremely rare: the branching ratio for
the process µ → eγ (�gure 1), as an exam-
ple, is about 10−52 [1]. This is why, although
several experiments on CLFV, only a limit
on the branching ratio of these processes has
been set so far.

The Mu2e experiment will look for the neutrinoless conversions of muons into electrons in
the �eld of an Aluminium nucleus: µN → eN . Since it is a two bodies process, the electrons
resulting from the conversions are expected to be monochromatic with an energy [2]

Ee = mµc
2 − Ebind − Erecoil = 104.96 MeV

being mµ the muon mass, Ebind its binding energy and Erecoil the nucleus recoil energy. The
purpose of the experiment is to improve the sensitivity for the CLFV by four orders of magnitude
respect to the previous experiments (�gure 2), by measuring the ratio between the rate of
neutrinoless conversions and the rate of the muonic captures [10]:

Rµe =
R(µ−N → e−N)

R(µ−N → all muonic nuclear captures)

Mu2e aims to reach a sensitivity of Rµe = 2.5× 10−17: since many Beyond Standard Model
(BSM) theories predict a rate Rµe = 10−15 [8], this experiment would provide the su�cient
sensitivity to test many of them, and if some conversion electrons are observed, we will be
provided for sure with proof of New Physics [6].

Figure 2: Experiments about CLFV and their sensitivity. Mu2e is expected to improve the
sensitivity by four orders of magnitude compared to the previous experiments [5].
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1.2 Apparatus

Figure 3: Apparatus of the Mu2e experiment.

Figure 3 shows the apparatus of the experiment. A 8 GeV proton beam impinges on a
�xed target (production target) and produces many secondary particles (mostly pions) as a
consequence of the interactions arising in the target. Because of the relative orientation between
the beam direction and the apparatus, designed to reduce the background in the detectors,
the particle momenta are mainly produced in the backward direction: for this reason, a high
magnetic �eld is used in the production solenoid to collect and re�ect the pions towards the
transport solenoid in helical trajectories.

In the transport solenoid, the gradient of the magnetic �eld is responsible for the curvature
of the particle beam and during the �ight almost every pion is expected to decay into a muon.
Three collimators permit to select those particles with the desired charge and momentum. A
layer of low Z material is placed in these collimators to stop some of the background source
particles (such as antiprotons) [3], thin enough to produce no e�ects on the muons' motion.

Out of the transport solenoid the muons impinge on an Aluminium target (stopping target)
where they slow down and eventually interact with the Aluminium nuclei producing muonic
atoms, i.e. atoms where an electron is replaced by a muon. These muons are expected to be in
the ground state, or to reach it very quickly from an excited state.

In the nuclei �elds, muons can undergo at least three processes : they can decay in orbit
(µ− → e−νµνe), which is a background source, they can be captured (µ−N → νµN

′) or they
can be neutrinoless converted into electrons (µ−N → e−N), which is the signal. Particles
emerging form the stopping target are then detected by a tracker and a calorimeter, which
provide energy, momentum and time measurements.

Figure 4: The Mu2e tracker (left) and its frontal section (right). In the right picture are also
shown the projections of the helical trajectories for the signal electrons (green circle) and the
background ones from the decay-in-orbit (DIO) process (black circles).

The tracker is shown in �gure 4 [3] and is designed to get rid of most of the background
electrons by detecting only those with energies greater than about 53 MeV [2]: infact a signal
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electron is expected to have ∼ 105 MeV of energy, whereas most of the electrons, coming
from a muon decay-in-orbit (DIO) process, have a spectrum peaked at about 50 MeV (Michel
spectrum) with a long and low tail up to 105 MeV caused by the nucleus recoil [7]. Because of
the overlap of these energy distributions, the tracker is required to have a high resolution: in
the Mu2e experiment, it is about 180 keV [4].

The calorimeter consists of two disks and is designed, like the tracker, to optimize the
detection of only signal electrons.

1.3 Antiproton background

The threshold of the antiproton production energy Ep for the process pp → pppp̄ in the labo-
ratory frame of reference, where one of the initial protons is at rest, is (c = 1 for simplicity)

s = 2mp(mp + Ep) = 16m2
p ⇒ Ep = 7mp = 6.56 GeV

where s is the square of the center-of-mass energy and mp is the proton (and antiproton) rest
mass. This value is eventually shifted downward to 5.4 GeV by the Fermi motion, but it is
clear that with a 8 GeV proton beam the antiproton production cannot be avoided.

The antiprotons produced in such a way don't decay and propagate, with very low momenta,
through the transport solenoid. If they are not stopped in the collimators, the combination of
their charge and momentum may allow them to reach the stopping target and annihilate,
producing eventually 105 MeV electrons as secondary particles that can fake signal events.
Although the electron energy may be the same for the signal and the antiproton annihilation,
many di�erences can be found in these two events: an antiproton annihilation releases about
2 GeV of energy, whereas a muon-to-electron conversion only 105 MeV. We may expect to �nd
di�erences in the calorimeter clusters and hits in the tracker, in their energy and time, and so
on.

To take advantage of these di�erences we want to develop a machine learning algorithm
to train a neural network to recognize, through some selected variables, if a given event is a
signal or a background one. In order to do it we have simulated events for the signal (∼ 10
million) and the antiproton background (∼ 40 million), analyzed the information to �nd the
best variables to discriminate between them and provided these variables to a neural network.
All the work has been performed with the Multivariate Analysis TMVA package of ROOT.

1.4 Neural network and machine learning

Human brains are very e�cient at recognizing patterns, but they are restricted to three di-
mensions and are too slow to analyze the amount of information required in particle physics.
This is the reason why the arti�cial neural networks (ANN) have been created: they are an
arti�cial tool developed in a machine learning framework to perform pattern recognition of a
huge amount of data in a short time and in high dimensionality.

Figure 5: A scheme of an ANN. An ANN gen-
erally has more than one hidden layer and may
have more than one output.

The ANNs are inspired by the structure
of the human brains, so they can be thought
as a group of elementary units, called nodes
(analogous to the �axons�), and connections
among them (the �synapses�). Each node has
a status, typically a real number between 0
and 1, and can send this information to the
connected nodes. The receiving nodes elabo-
rate the signals and send their outputs to the
following nodes: the whole computing pro-
cess of an ANN is so a linear combination of
non-linear functions of a weighted sum of in-
puts, whose �nal outputs will be used, for our
purpose, to discriminate between signal and
background.

The nodes are generally organized in lay-
ers: the �rst layer provides the network with
the input variables, then the nodes in the so
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called hidden layers elaborate the information and �nally the last layer produces the outputs.
Figure 5 shows a scheme of a simple ANN with one hidden layer and one output response. Each
node and connection may also have a weight depending on how important the information it
provides to the network is.

Building an ANN involves two steps: �rst, it has to be trained on a training sample to
let it recognize the main features of the input data and their correlations, both for signal and
background; then, it can be tested on a test sample to verify how successful the training has
been. The TMVA package of ROOT provides di�erent training methods: the ones that we
have used are the Boosted Decision Tree (BDT), the Support Vector Machine (SVM) and the
MultiLayer Perceptron (MLP). Figure 6 shows the training methods provided by ROOT and
their main characteristics [9].

Figure 6: The ANN training methods provided by ROOT and their mainly characteristics as
described in the TMVA Users Guide. The symbols stand for �good� (??), �fair� (?) and �bad�
(◦). We are interested in the BDT, SVM and MLP.

1.4.1 Overtraining

One of the main problems that can arise in training an ANN is overtraining. It may occur for
two reasons:

• Amachine learning problem has too many parameters compared to the data in the training
sample and the resulting degrees of freedom are not enough. In this the case, some
statistical �uctuations in the training distributions may be seen by the ANN as features
of those distributions, leading to worse performances during the testing phase.

• The training data contain so many information that the network is able to �nd correlations
among the input variables which are not characteristic of the machine learning problem.

Overtraining must always be checked and, if possible, avoided: when it occurs, the ANN's
response is not trustworthy. The sensitivity to overtraining depends on the training methods,
as shown in �gure 6.
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2 Selection of the events

To build a neural network we �rst need to simulate the signal and background events to obtain
the necessary information to use in the training and testing phases. In this work ∼ 10 mil-
lion signal events and ∼ 40 million background events are simulated, and all the information
(calorimeter clusters, hits in the tracker, energy and momentum, position and time of clusters
and hits, etc.) is stored in a ROOT Tree.

Since not all the background events contain a fake signal electron, we �rst need to get rid of
the trivial background events by applying speci�c cuts on the variables from the simulations.
The same cuts will be applied to the signal and background samples.

2.1 Number of tracks

One of the information we have from the simulations is the number of tracks which hits the
tracker and may be related to an electron. Typically this number is one for a signal event and
zero for a background event, but it may also happen that more than one track is reconstructed
by the detector because of the noise, the coincidence with random processes, etc. In our analysis,
we want to be sure that the events we provide the ANN with consist of only one track.

Figure 7: The number of tracks of some simulated events for the signal (left) and background
(right). Note the logarithmic scale on the vertical axis.

Figure 7 shows the number of tracks for some of the simulated signal and background events:
as expected, in the background case most of the events does not have a track. Our requirement
is to exclude all the events which do not have exactly one track.

2.2 Track momentum

Another cut we want to apply concerns the track momentum: once we are sure to deal with only
one-track events, we also require that its momentum is restricted to a certain range, otherwise
it couldn't be a conversion electron.

As we can see in �gure 8, the track momentum is peaked at about 104 MeV for the signal,
as it should, but this is not the case for the background. Our choice is to reject all the events
whose track momentum is less than 90 MeV/c and greater than 115 MeV/c.

2.3 Gate time

The muon beam which reaches the stopping target may have a signi�cant contamination of
other particles. The main sources for this contamination are [4]:

• muons which decay in �ight;

• pions which decay into electrons in �ight;

• radiative pion captures (RPC).

In a RPC, i.e. the process π−N(A,Z)→ γN ′(A,Z−1), a pion is captured by a nucleus and
produces a high energy photon: if the photon converts, a 105 MeV electron may be detected
by the tracker and the calorimeter.
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Figure 8: The track momentum for the signal (blue) and background (red) events having only
one track. The signal histogram is normalized to the area of the background histogram.

All the events listed above may fake a signal electron, but all of them give rise to a prompt
background which can be suppressed by avoiding taking data during the �rst nanoseconds after
the peak of the proton pulse. Since the next proton pulse arrives about 1700 ns after the �rst
one, the Mu2e experiment decided to extend the data acquisition from about 700 ns to 1700 ns
after the proton pulse [3]. Figure 9 shows a schematic depiction of the timing of the main
events.

In our simulations we want to apply the same cut: we select only those events which occur
from 700 ns to 1695 ns after the proton pulse.

Figure 9: Timing of the main events between two proton pulses. The prompt background (in
red) is suppressed by taking data only 700 ns after the proton pulse. The distributions are not
in scale.

2.4 Calorimeter's �rst disk

As we have already mentioned, the calorimeter consists of two disks but in our analysis we want
to select only those particles impinging on the �rst one, to be sure they are not produced in
other processes after the stopping target. Because of a bug in the software, anyway, the disk
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has not been recorded after the simulations and to �x this problem we have to use a di�erent
way.

Our idea is to look at the time distribution of the clusters: in our simulations one variable
is used to know which cluster is the best cluster for the electron. Since, after being detected by
the tracker, it takes more time for a particle to reach the second disk rather than the �rst one,
we may expect that the distribution of the di�erence of the best cluster times and the track
times shows two peaks, each one related to a di�erent disk. The two peaks are well recognizable
in the distribution shown in �gure 10 and we decide to put a cut at 10 ns in order to exclude
most of the clusters arising in the second disk.

Figure 10: Di�erence of the best cluster times and the track times. The two peaks in the time
distribution are related to the two calorimeter's disks. To select the �rst disk we will keep only
those events whose best cluster time related to the track time is less than 10 ns.

2.5 Clusters and hits related to the event

Because of the noise and the random activity of the detectors, not all the clusters in the
calorimeter and hits in the tracker are related to the events and we should get rid of those
which are not. During a signal or a background event we may expect that detectors' activity
is increased: �gure 11 shows the distributions of the time di�erence between the clusters and
track and between the hits and track.

Figure 11: Hits (left) and clusters (right) time related to the track time.

11



As we can see, both distributions have a spike and we want to exclude those clusters and
hits not related to it. For this reason we will keep

• Hits whose time related to the track time is no less than −10 ns and no greater than
50 ns;

• Clusters whose time related to the track time is no less than −5 ns and no greater than
25 ns.

2.6 Particle identi�cation

Once we have selected the events with only one track, within the expected momentum range,
in the correct time interval and we have got rid of the prompt background, we may still wonder
what particle has produced the track. There is indeed one kind of particle which can be mistaken
for a signal electron: a muon. Our simulations don't provide us with direct information on
particle identi�cation, but we can take advantage of the following idea: let's suppose we have
a muon and an electron which release all their kinetic energy in the calorimeter. If they both
have 105 MeV/c of momentum, a muon will release:

Tµ = Eµ −mµc
2 =

√
p2c2 +m2

µc
4 −mµc

2 ≈ 43 MeV

whereas an electron:
Te = Ee −mec

2 ≈ 105 MeV

since its mass is negligible. We can then compute the ratio of the energy released to the
momentum for both particles (for simplicity we put c = 1):

muon :
Tµ
p
≈ 0.4 electron :

Te
p
≈ 1

Figure 12 shows the distributions of this ratio: in the background one we observe two peaks
corresponding to the two kinds of particles, in the signal one, as we could expect, we observe
only the electron peak.

Figure 12: Histograms of the ratio of the energy released to the track momentum for the signal
(blue) and background (red).

We can cut o� most of the muons from our data by excluding all the events whose energy-
momentum ratio is less than 0.75.
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3 Training variables

After applying all the cuts listed in the previous section to the background and signal samples
we have

• about 2,000 left background events (40 million before the cuts)

• about 800,000 left signal events (10 million before the cuts)

We observe that the background data have been signi�cantly reduced after the cuts.
We are now in a position to choose the best variables to train the neural network with. Since

an antiproton annihilation releases much more energy (about 2 GeV) and particles in a shorter
time than a muon conversion (about 105 MeV), we want to focus on variables related to this
physical quantities. If we �nd signi�cant di�erences in the distributions of those variables, it
will be easier for the neural network to discriminate between signal and background, but even
if it is not the case the network may recognize useful correlations among the inputs that are
hidden from our eyes.

In the following plots of this section all the signal histograms are normalized to the area of
the respective background histogram.

3.1 Number of clusters and hits

Figure 13: Number of clusters and hits for the background (red) and signal (blue).
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Since more particles may be released in an antiproton annihilation, we want to check if more
clusters in the calorimeter and hits in the tracker arise compared to the signal. Their number
is shown in �gure 13: the excess in the background case cannot be only a statistical �uctuation
and as we expected an antiproton annihilation has on average more clusters and hits than a
signal event.

3.2 Clusters and hits time

In an antiproton annihilation many particles are produced in a short time: we may expect that,
in the background events, clusters and hits related to the electron track arise earlier than in the
signal ones. Therefore we want to have a look at their average time distribution, which is shown
in �gure 14: what we observe is that the background distribution of the cluster time has a peak
just some nanoseconds earlier than the signal distribution, as we could expect, whereas in the
hits time distribution we can't see many di�erences. Despite it, we will keep both variables
in our training because there may be some correlations between them that we are not able to
recognize.

Figure 14: Average time of the clusters and hits related to the track.

3.3 Clusters and hits energy

As we have already said, we expect to �nd more energy in an antiproton annihilation rather
than in a signal event. The total energy distributions for the clusters and hits is shown in �gure
15 and we observe two interesting features of them:

• The energy is generally higher for the background distributions;
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Figure 15: Total energy of the clusters and hits related to the track. Note the long tail at high
energies in the background distributions.

• In the background case, the clusters and hits energy distributions show a long tail for
high energies which is not shown in the signal case.

Both features are very interesting for our purpose and we can expect the energy variables to
have a high discriminating power in the neural network.

3.4 Highest cluster energy

Since the background events release more energy, we may expect to �nd more energetic particles
from them. We then want to �nd the highest cluster energy not related to the electron track for
both the signal and background. This distribution is shown in �gure 16 and we can recognize
a long tail at high energy only in the background case. Since the di�erences for the signal and
background distributions are clear, we may expect this variable to be very important in the
neural network's training.

3.5 Clusters center of energy

The last variable we want to deal with is the square of the weighted average of the clusters
distances to the electron cluster, where the weighting factor is the energy of the clusters itself:

r2CoE =

∑
i r

2
iEi∑
iEi
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Figure 16: Highest cluster energy not related to the electron track. As we could expect, a long
tail is shown by the background distribution.

Figure 17: Distribution of the cluster center of energy.

The sum is over the clusters, ri is the distance of the i-th cluster to the electron cluster
and Ei is its energy. For simplicity, we will refer to this variable as the square of the center of
energy of the clusters, and its distribution is shown in �gure 17. Although some di�erences in
the background and signal distributions, this variable does not seem to have such an important
discriminating power.
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4 Neural network training

After we have decided the variables to deal with, we are able to use them to build the neural
network. The neural network training will be developed in the ROOT environment of Mul-
tivariate Analysis, which provides di�erent training methods. As we have already mentioned
in section 1.4, in our work we will use three of them: the Boosted Decision Tree (BDT), the
Support Vector Machine (SVM) and the MultiLayer Perceptron (MLP). Each of these training
methods has di�erent features as we can read from �gure 6, so we may expect that the neural
network shows di�erent behaviors depending on the chosen method.

The results of the neural network training are analyzed in the following subsections.

4.1 Output distributions

The aim of a neural network is to produce one or more outputs from the inputs provided, which
are then used to perform pattern recognition of the input data. More speci�cally, like in our case,
the outputs can be used to discriminate between two kinds of events: signal and background.
These outputs, being the �nal products of a neural network, are therefore extremely important
and can provide us with information about the network, like its behavior, its discriminating
power, the overtraining and so on.

The output distributions for our three di�erent training methods are shown in �gure 18.
They show at least two relevant aspects which are import to point out:

• Regarding the BDT, we can see that the background outputs for the training sample (red
points) and the test sample (red histogram) do not overlap very well: it is a clear hint
of overtraining (BDT is much sensitive to it, as we can realize from �gure 6). The same
problem is not shown in the signal outputs, whose training and test samples overlap: the
di�erent response of the network to the signal and background events let us suppose that
the problem may arise because of too few data in the background case.

• A look at the SVM output distributions shows that overtraining is not present in this
case, but we have another problem: the signal and background distributions overlap
almost everywhere, meaning that the SVM is unable to discriminate between signal and
background. For this reason we cannot expect a good discriminating power of our neural
network if SVM is chosen to train it.

MLP instead does not show many problems, even if more events would probably have been
useful.

4.2 Cut e�ciencies

Once we have the output distributions, we can choose an output cut value and reject all those
events whose output is less then the chosen value. By doing it we want to get rid of as much
background as possible while keeping an acceptable amount of signal events.

For example, having a look at the MLP output distributions in �gure 18, if we apply a cut
at 0.2 and reject all the lower outputs, we can eliminate a signi�cant part of background and
a small part of signal; but we can also decide to apply the cut at a higher value, let's say 0.4,
which let us get rid of more background events but also of a larger amount of signal ones. We
therefore want to optimize the cut value.

Figure 19 shows the signal and background e�ciency as a function of the cut value applied
on the output distributions for the three training methods. It also shows, in the green curve,
the ratio S/

√
S +B, where S is the number of signal events above the cut value and B the

number of background ones. Every green curve has a maximum for a certain output value, and
that value can be chosen as the optimal cut value.

If we neglect BDT, which is overtrained, we can say that:

• About SVM, the background and signal e�ciency curve are both above 90% for most of
the output values, showing a sharp vertical fall around almost the same value. This is
what we could expect after the considerations in section 4.1, and con�rms that SVM is
not so good at discriminating between signal and background.
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Figure 18: Output distributions for the training methods adopted in this work: BDT (�rst
plot), SVM (second plot) and MLP (third plot). In these plots, the points represent the
training sample whereas the histograms refer to the test sample. In both cases, the red color is
used for the background samples and the blue for the signal ones.
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Figure 19: Signal (blue) and background (red) e�ciency as a function of the cut value for the
three training methods. The maximum of the green curve (the ratio S/

√
S +B) can be used

to choose the optimal cut value.
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• About MLP, we can see that the background e�ciency decreases earlier than the signal
e�ciency: we get rid of a reasonable part of the background yet at low output values,
whereas the signal begins to decrease only after a higher value. This is what we want
from a good neural network: a clear separation between signal and background.

4.3 Background rejection and signal e�ciency

In the plots in �gure 19 one value of background and signal e�ciency is related to each out-
put value: we can therefore construct the background rejection versus signal e�ciency curves,
plotted in �gure 20, where each color refers to a di�erent training method. The background
rejection is de�ned as 1 − background e�ciency. From a good neural network we expect these
curves to approach as much as possible the right upper corner, where we will be ideally able to
reject the whole background and keep all the signal.

We can realize from �gure 20 that, whereas SVM has not performed a good job as we
had already expected, MLP has achieved a satisfying compromise, being able to reject (for
example) 80% of background while keeping 60% of signal. The same is true for BDT, but since
this method has been overtrained, its results are not trustworthy.

Even if these values are not excellent (neural networks can perform even a better job), we
can be satis�ed if we consider the low statistics in our data.

Figure 20: Background rejection versus signal e�ciency curves for each training method.

4.4 Importance of variables

ROOT also provides us with the importance of each variable in the training phase; in this
section we want to focus on MLP, which turned out to be the best training method.

The importance of the variables for MLP is shown in �gure 21; the histogram has 8 columns,
one for each variable, and the higher the column, the more important the related variable is.
The importance Ii of the i-th variable is computed as follows [9]:

Ii = x̄2i

nh∑
j=1

w2
ij j = 1, ..., nvar

where x̄i is the sample mean of the i-th variable, wij the weight between the input-layer neuron
i and the hidden-layer neuron j, nh the number of neurons in the hidden layer and nvar the
number of neurons in the input layer (i.e. the number of variables).
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In this plot the variables have been ordered according to their importance, and we realize
from it that the most discriminating variables are the ones related to the calorimeter. In
particular, the number of clusters and the cluster total energy have the best discriminating
power, as we could expect according to what we said in section 3.

This is true for MLP, but di�erent training methods could �nd better discriminating features
in di�erent variables; a �rst analysis suggests that the tracker variables are the most useful in
the BDT case, but we would need more statistics to examine this aspect.

Figure 21: Importance of variables in the MLP training method.
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5 conclusions

To summarize, in order to build a neural network capable of discriminating between a signal
and a background event, we �rst simulated millions of conversion electrons (signal events) and
antiproton annihilations (background events); then we got rid of the trivial background by
applying some speci�c cuts on our data; �nally, analyzing the features of both kinds of events
we chose some variables to train our neural network with.

The results of the training were provided in section 1.4, and we may conclude by asserting
that two of the three training methods adopted in this work did not result to produce a good
job: SVM because of its low discriminating power, BDT because overtraining occurred during
the building process of the network. Nonetheless, MLP performed a good job, achieving a
satisfying background rejection and keeping more than half of the signals.

Although good, the MLP's results cannot be de�ned excellent, and we would like to improve
its performances. One way to do it is to increase the statistics of our samples (especially in the
background case), by simulating more and more events: that would probably avoid overtrainig,
as occurred in the BDT case, and would reduce the statistical �uctuations of the data, letting
the training methods (in particular SVM) recognize the features of background and signal
distributions more easily.

A second attempt to improve the MLP's performances is to look for more discriminating
variables to add to the neural network. Whatever these variables are, we expect them to refer
to the energy and time of the detectors' response.

Unfortunately, the time for the analysis was reduced by the large amount of time needed
to run the simulations. We spent at least three weeks to obtain the samples used in this work
because:

• The number of events simulated were huge (millions);

• Some jobs did not successfully end;

• The codes were a�ected by some bugs which had to be �xed: it happened that these bugs
were found out only after the jobs were run, resulting in a waste of time.

Therefore we had no much time to improve the analysis in the ways we described above, but
we believe that larger samples and more training variables will turn out to produce better
performances of our neural network.
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