#### 



# Final development and testing of the DAQ system for the ICARUS experiment

Federico Roccati Supervisor: Wesley Ketchum Final Presentation September 27<sup>th</sup>, 2017

# **Short-Baseline Neutrino Program**

- Searches for  $v_e$  appearance and  $v_{\mu}$  disappearance in the Booster Neutrino Beam (BNB)
- Motivation(s):
  - followup on the MiniBooNE low energy excess,
  - explore the phase space of short-baseline neutrino oscillations,
  - precision measurement of neutrino-argon interactions,
  - further develop the Liquid Argon Time Projection Chamber (LArTPC) technology.
- Setup:
  - BNB (muon neutrino beam)
  - Three detectors: Near Detector, MicroBooNE and ICARUS



## **Short-Baseline Neutrino Program**



# **ICARUS detector**

- 600 tons Lar-TPC
- Working principle:



MAGINO

#### **Outline of the talk**

1. Data acquisition from the light readout system of the ICARUS experiment (summary)

2. Study of the timing of the DAQ system (new)



# 1. Light production in the detector volume



# 1. Light production in the detector volume



#### 1. The test stand



#### sbnd-daq28 server (back)





CAEN V1730 16-channel waveform digitizer



# 1. Operation mode throughout the measurements

- Acquisition window (following the BNB rate) into the S-IN channel: 15 Hz logic pulse with 2ms width (drift time of the electrons from the interaction point + some buffer to round up)
- Readout window into the TRG-IN to mimic the PMTs causing a trigger at 5 kHz







## 1. DAQ structure: goal



10 27.09.17 Federico Roccati I FNAL Presentation, FNAL

## 1. DAQ structure: data structure

artdag fragment



# 1. DAQ structure: pseudocode

```
start acquisition{
  set prev_eventcounter to 0
[...]
[...]
getNext {
  Software/Hardware Trigger
  ReadData from the card
  if(there is no data) { return }
  Get number of PMT events (i.e. readout windows) in the amount of data read
  Create Metadata
  for(each PMT event){
    get its event counter from the header (it starts from 0)
    if(there are still readout windows to read){
      increment eventsize
      set prev_eventcounter to current eventcounter
      else{
      create the fragment with the read data
      set prev eventcounter to 0
return
```

#### **Outline of the talk**

 Data acquisition from the light readout system of the ICARUS experiment (summary)
 -> DONE!

2. Study of the timing of the DAQ system (new)



#### 2. Goals

- Understand the timing of the DAQ
- Latency time, getNext time, time to read data
- The beam from the BNB is expected to be at 15Hz, so every 66 ms -> the DAQ code needs to be faster!

#### 2. Goals

- Understand the timing of the DAQ
- Latency time, getNext time, time to read data
- The beam from the BNB is expected to be at 15Hz, so every 66 ms -> the DAQ code needs to be faster!
- <u>Note</u>: All the measurements were conducted using a recordLength of 2000 (which means a readout time of 4 µs, considering that the sampling is at 2 ns/sample). This is done because it is enough to readout the slower component of the light produced after an interaction in the detector



## 2. Times of interest

- ReadData\_NO\_data = time from the start of getNext to the moment it knows there is no data to read
- ReadData time = time spent in the CAEN\_DGTZ\_ReadData function
- getNext time = time from the start of getNext to the first return statement



## 2. Times of interest

- ReadData\_NO\_data = time from the start of getNext to the moment it knows there is no data to read
- ReadData time = time spent in the CAEN\_DGTZ\_ReadData function
- getNext time = time from the start of getNext to the first return statement

-> why? Because when there is no data we don't want the DAQ to wait for long. Everything should be dominated by the ReadData function (which is given)



## 2. Pseudocode (again, but with a different flavor..)

```
getNext call{
Start_getNext
Trigger
    CAENReadData call
         If (there is no data) {
              time_getNext = ReadData_NO_data
              return}
    end_ReadData
    ReadData = end ReadData - start ReadData
    GetNumEvents
    Create Metadata
    Create fragment
    time_getNext = ReadData (+ time to write ReadData time in a file) + time_GetNumEvents +
                           time CreateMetadata + time CreateFrag
    return}
```

🗲 Fermilab

#### 2. Plots - NO data

#### timer\_getNext\_NO\_data Distribution



#### 2. Conclusion (when there's no data to read)

- At most they are  $\sim 100 \ \mu s \rightarrow OK!$
- The DAQ code is fast enough



#### 2. Conclusion (when there's no data to read)

- At most they are ~100 μs -> OK!
- The DAQ code is fast enough





A DAQ:

#### 2. Plots - YES data

#### CAEN\_DGTZ\_ReadData\_time\_YES\_data Distribution



Fermilab

# 2. Plots – YES data

timer\_getNext\_ Distribution



## 2. Conclusion (when there's data to read)

- Both ReadData time and getNext\_ time increase by 3 orders of magnitude
- At most they are ~19 ms -> OK!



### 2. Conclusion (when there's data to read)

- Both ReadData time and getNext\_ time increase by 3 orders of magnitude
- At most they are ~19 ms -> OK! (can we do better?)



#### 2. Future steps

- 19 ms in the getNext\_ function is not perfect

   > we can surely improve what is done outside of the
   ReadData function
- For instance, avoid useless copy of data
- How does the timing change when we readout more signal, i.e. increase the recordLength?
- Computing the total bandwidth







