
FERMI NATIONAL LABORATORY

Final Report

Development and testing of the light detection
readout system for the ICARUS experiment

Supervisor: Wesley Ketchum Intern: Federico Roccati

"La vita si svolge felicemente,
in molteplici attività"

Abstract

This document reports the work done during my internship at Fermilab
in the summer of 2017 under the supervision of Wesley Ketchum.

The task was divided into two parts. First the development and design
of the DAQ code for the light readout system of the ICARUS detector were
addressed. Second, the performance of the DAQ system was investigated.

i

Contents

1 The DAQ system for light in the ICARUS experiment 1
1.1 Light production in the detector volume 2
1.2 The test stand - operation mode 3
1.3 DAQ code . 4

1.3.1 Object structure . 4
1.3.2 test_driver code . 5
1.3.3 Readout generator . 6

2 Performance and timing of the DAQ system 8
2.1 Plots and results . 10

2.1.1 NO data . 10
2.1.2 YES data . 11
2.1.3 Future investigations 11

ii

Chapter 1

The DAQ system for light in
the ICARUS experiment

The ICARUS detector is the far detector of the Short Baseline Neutrino
(SBN) program. The main scientific goals of the program are the following:

• search for νe appearance and νµ disappearance in the Booster Neutrino
Beam (BNB),

• followup on the MiniBooNE low energy excess,

• explore the phase space of short-baseline neutrino oscillations,

• precisely measure neutrino-argon cross section,

• further develop the Liquid Argon Time Projection Chamber (LArTPC)
technology for the long-baseline DUNE experiment.

These goals are achieved placing three detectors on the line of the BNB
(see Fig. 1.1): SBND, the Short Baseline Neutrino Detector (under con-
struction), MicroBooNE (operating) and ICARUS (recently arrived at Fer-
milab from CERN).

These detectors share the same technology, but differ in size.
SBND, is located 110 meters from the BNB target, and has 112 tons of

Liquid Argon (LAr) within the active volume of its time projection chamber
(TPC) and light detection systems (LDS).

MicroBooNE is located 470 meters from the BNB target, and consists of
a 8250-wire TPC and 32 photomultiplier tubes (PMTs) which instrument 80
tons of LAr in the active volume. The cryostat was filled in 2015 and the
detector is currently operating.

The ICARUS T600 detector, divided into two cryostats holding LAr-
TPC modules and photodetectors, will serve as the Short-Baseline Program
Far Detector. It is the farthest from the BNB target, at a distance of 600

1

CHAPTER 1. THE DAQ SYSTEM FOR LIGHT IN THE ICARUS EXPERIMENT2

Figure 1.1: Pictorial view of the SBN setup.

meters, and it is the largest of the detectors with 500 tons of liquid argon in
the active volumes.

All three detectors are LArTPC. A TPC is a kind of detector that al-
lows to reconstruct a 3D image of the interactions happening in the active
volume. It can be thought as a square box where a certain electric field is
applied. The electric field goes from the anode plane to the cathode plane.
At the anode plane three wireplanes with different orientation are placed.
The measurement principle is the following: a high energy particle hits an
atom/molecule in the chamber. If the incoming particle is energetic enough
it will ionize it’s target producing an electron and a positive ion. The elec-
trons get collected at the wireplanes near the anode plane where they induce
current and induce a signal. Two wireplanes allow for a 2D reconstruction of
the event, while the time stamp of the event, combined with the drift velocity
of the electrons, gives the the information to complete the 3D image.

1.1 Light production in the detector volume

Besides being ionized, some argon atoms can be just excited to an excited
state and deexcite producing scintillation light. The main deexcitation mode
are two: a fast one (∼ ns), and a slow one (∼ µs). One of the main reason
to use LAr is its transparency to scintillation light which can be measured
by photodetectors and used as a trigger (the fast component) to provide the
precise event time stamp.

The detection of light from the PMTs becomes then an important issue

CHAPTER 1. THE DAQ SYSTEM FOR LIGHT IN THE ICARUS EXPERIMENT3

Figure 1.2: Pictorial view of the light production and readout

in event reconstruction.
In the following we will focus on the data acquisition system of light for

the ICARUS detector.
The interaction rate expected from the BNB is of the order of 15 Hz. The

scintillation light produced lies in the UV regime (∼128 nm), see Fig. 1.2.
This light is detected and amplified by the PMTs which will be connected to
the channels of the readout card. The analog signal going into the card get
digitized into the digitizer and saved into the card memory. The goal of the
DAQ system is to read the data fast enough from the card and store them
in an external server to avoid memory overflow.

1.2 The test stand - operation mode

The test stand of the light readout is placed at the D0 building at Fermi-
lab. It consists of two crates: one hosting the server and the other hosting
the cards, see Fig. 1.3

All the tests were made using a CAEN V1730 16-channel waveform dig-
itizer. The main mode of operation consisted in using a pulse generator to
generate:

• an acquisition window (to mimic the BNB rate) at 15 Hz with a width

CHAPTER 1. THE DAQ SYSTEM FOR LIGHT IN THE ICARUS EXPERIMENT4

Figure 1.3: Picture of the test stand.

of 2 ms (drift time of the electrons from the interaction point + some
buffer to round up)

• a readout window to mimic the PMT signal at 5 kHz

The first signal was plugged into the S-IN channel of the card, while the
second in the TRG IN one.

1.3 DAQ code

artdaq is the product/framework used at Fermilab in the context of data
acquisition.

1.3.1 Object structure

Among the many features of artdaq, the most important for the tests is
that it allows the user to create artdaq-fragments which are C++ objects
made of three parts:

• an artdaq header,

CHAPTER 1. THE DAQ SYSTEM FOR LIGHT IN THE ICARUS EXPERIMENT5

Figure 1.4: Structure of an event in artdaq.

• a Metadata object, which incorporate in the fragment any other useful
information regarding the event (such as the number of channels in
use, the number of samples, the time stamp of the event, etc..)

• the data part. Here is were the data of an event are stored. Each event
is further divided into an event header, where information such as
the event size, event counter, etc.. are stored, and a data block, which
is a pointer to unsigned int that points to the address in memory where
data reside.

1.3.2 test_driver code

Once the the pulse generator is setup as described in the previous sec-
tion, the data acquisition can start. The tool used to acquire data is called
test_driver. Artdaq allows also the user to configure the acquisition through
configuration files (.fcl files). So when we launch the acquisition we can con-
figure the readout typing

test_driver -c "config file"

The main part of the test_driver code is the getNext function. Here
is where new data are read to create a fragment. Inside this function the

CHAPTER 1. THE DAQ SYSTEM FOR LIGHT IN THE ICARUS EXPERIMENT6

getNext_ function defined in CAENV1730Readout_generator.cc is called.
This is where the real acquisition starts. One of the main goals of the
internship was to write this code in such a way that all the PMT events
(i.e. the readout windows, i.e. the pulse into the TRG IN channel) could be
packed into one single artdaq fragment as shown in Fig. 1.6.

In the next section the documentation of the readout generator (pseudo)code,
which packs PMT events into TPC events, is provided.

1.3.3 Readout generator

The pseudocode of the getNext_ looks like the following:

Figure 1.5: getNext_ function pseudocode

At each call of the getNext_ function a certain amount of data is read
from the card. At this stage we don’t know how many acquisition windows
have been opened (it could be none, one, one and a half, etc..). We just
know that n readout windows have been read. Each readout window has it’s
own event counter in its header which is set to zero at the beginning of every
acquisition window. The idea of this code is then fairly simple: we have a
global variable (prev_eventcounter) defined in the overlay class that keeps
track of the already read readout windows in an acquisition window, and
a local variable (eventcounter) that keeps track of the already read readout
windows in a getNext_ call. If the event number is not 0 then we are still

CHAPTER 1. THE DAQ SYSTEM FOR LIGHT IN THE ICARUS EXPERIMENT7

in the same acquisition window, so we want to keep expending the data size
of the fragment we will create, and we call again getNext_ . When the event
number is again 0, that means a new acquisition window opened, therefore
we create the fragment (i.e. we pack all the data of the PMTs in one TPC
event) and we set the prev_eventcounter again to zero.

Figure 1.6: Picture of the scope in our operation mode. Blue: acquisition
window (i.e. TPC event) at 15 Hz. Yellow: (i.e. readout windows) PMT
trigger at 5 kHz

Chapter 2

Performance and timing of the
DAQ system

The second major task of the internship was the study of the timing of
the DAQ. The good news from the previous chapter is that the DAQ does
what we want it to do. However, the acquisition and processing of data is
not allowed to last long. In fact it has to keep up with the interaction rate
from the BNB (15 Hz).

The speed of the DAQ system is essentially the speed of the getNext_
function, where the acquisition takes place.

The strategy used here was to place several timers in the getNext_ func-
tion to know the speed of each block.

As can be seen from the pseudocode in the previous chapter, the main
blocks in the getNext_ function are

• the call of the ReadData function,

• the call of the function that gets the number of rw’s in the amount of
data read,

• initialization of metadata

• the for loop where we create the fragment (or keep asking for data)

For completeness we show here again the pseudocode we showed before,
but instead highlighting the timers placed in it to measure its speed (see Fig.
2.1).

The main times of interests are:

1. the time spent in the ReadData function when there is NO data to
read (end_ReadData - start_ReadData). We can refer to this time as
the NO_data time or latency time.

8

CHAPTER 2. PERFORMANCE AND TIMING OF THE DAQ SYSTEM9

Figure 2.1: Pseudocode of the getNext_ function highlighting the timers
used to measure its speed.

2. the time spent in the ReadData function when there is data to read
(end_ReadData - start_ReadData). We can refer to this time as the
ReadData time.

3. the getNext_ time, which is the time from the start of the getNext_
function and the next return statement (we can therefore have a get-
Next_NOdata and a getNext_YESdata). In the case there is data to
read, we compute the getNext_ time as sum of the intermediate timers
of the various blocks of the code. This is done so that, if required, we
could monitor also the time spent in each single block of the code.

The study of these times is of great importance for the DAQ system.
The acquisition time should be dominated by the ReadData function, which
at the moment is a CAEN library function. All the are other parts can be
controlled by us and then should be made as fast as possible.

Before showing the results, we should point out that all the measure-
ments presented in this report were conducted using a recordLength of 2000
(i.e. 2000 samples), which means a readout time of 4 µs, considering that
the sampling of the signal is at 2 ns/sample. This is done because 4 µs
are enough to readout the slower component of the light produced after an

CHAPTER 2. PERFORMANCE AND TIMING OF THE DAQ SYSTEM10

interaction in the detector.

2.1 Plots and results

In this section we will show and comments the results regarding the
timing of the DAQ code as presented in Fig. 2.1.

First we show what happens when we don’t find any data to read (NO
data) and second when there is data to read (YES data).

2.1.1 NO data

When we issue the test_driver command, most of the times the Read-
Data function doesn’t find any data to read. This allowed us to have im-
mediately a high statistics for the NO_data time (if we set the number of
events to generate at 2000 in the configuration file we have a statistics of
∼ 106). Furthermore, the NO_data time and the getNext_NOdata time
are basically the same, so we can focus on the latter.

Figure 2.2: Distribution of getNext_NO data time in ns. 200 bins.

Conclusion

As one might hope, when there is no data to read the DAQ doesn’t waste
much time into the ReadData function. From the plot in Fig. 2.2 we can
see that this time is always less than ∼ 100µs which is way below the 66 ms
threshold.

CHAPTER 2. PERFORMANCE AND TIMING OF THE DAQ SYSTEM11

2.1.2 YES data

The statistics for the ReadData and getNext_ times depends on the
number of events we want to generate (that we set in the configuration file).
Therefore, either one runs the test_driver code many times or runs it once
generating many events. We went for the former option in this analysis. In
particular, a statistics of ∼ 21̇05 was enough to have meaningful results.

Figure 2.3: Distribution of ReadData_YES_data time in ns. 200 bins.

Conclusion

When the ReadData function finds data to read, the time spent in the
getNext_ function increases by 3 orders of magnitude, more precisely they
are most ∼ 19 ms. This time is mainly dominated by the ReadData time
as can be seen from Fig. 2.3. They are shifted by roughly 0.5 ms, which
is the time take by the remaining operations (getting the number of events,
creating metadata, creating the fragment).

2.1.3 Future investigations

The results we presented in this chapter are surely promising, being this
the first version of the DAQ, but not still optimal. The main thing that
should be looked at is how the 19 ms spent in the getNext_ function vary
when we increase the light readout time for longer, i.e. when we change
the recordLength to 4000 or more. If the getNext_ increases linearly with
the readout time, than this is a serious issue because we would saturate the
threshold imposed by the beam rate.

CHAPTER 2. PERFORMANCE AND TIMING OF THE DAQ SYSTEM12

Figure 2.4: Distribution of getNext_YES_data time in ns. 300 bins.

To this goal all the code outside the ReadData function should be made
as fast as possible (e.g. reducing at a minimum the useless copy of data
when creating the fragment).

An additional feature that should be looked at is the total bandwidth,
which is the speed at which the data are saved into the local server from the
card.

	The DAQ system for light in the ICARUS experiment
	Light production in the detector volume
	The test stand - operation mode
	DAQ code
	Object structure
	test_driver code
	Readout generator

	Performance and timing of the DAQ system
	Plots and results
	NO data
	YES data
	Future investigations

