Fermilab **Energy** Office of Science

Final Presentation

Vibrating Wire Control System

Author: Federico Nesti Supervisor: Thomas Strauss 9/26/2017

Outline

Overview

Understanding The Problem

Control Design and Results

Overview

Understanding The Problem

Control Design and Results

Vibrating Wire System Working Principle

GOAL: To minimize the oscillation amplitude of the wire, that means finding the Zero Field Line

At the moment the search for Zero Field Line is done by hand. Goal of the project is to automate the process.

Overview

Understanding The Problem

Control Design and Results

Understanding the Problem

Current "by hand" Procedure

- Set the Resonance Frequency
- Find the Minimum Oscillation

Understanding the Problem Resonance Frequency Search

Understanding the Problem Minimum Oscillation Search

Understanding the Problem Minimum Oscillation Search

- First Step
- Minimize **Mean**

Second Step

- Minimize Amplitude at Resonance Frequency
- Minimize Amplitude
 at 2x Resonance Frequency

Overview

Understanding The Problem

Control Design and Results

Control Design Fuzzy Controller

Process is NON LINEAR, not known, difficult to Identify

A Standard Linear/Non Linear Controller is not sufficient

Fuzzy Controller

Control Design Fuzzy Controller

Control Design Fuzzy Controller

Strategy: step in one direction, see if Amplitude grows, decide if it was the right choice and correct

Control Design Fuzzy Controller On Measured Data

Control Design Fuzzy Controller On Real Magnet

Control Design Limits of Fuzzy Controller

- Convergence is not proved
- Convergence may be very slow
- Presence of **chattering** on the limits between the Membership Functions
- Not robust to noise (Air Conditioning flowing or people stepping close to the system) or different magnets
- Not robust to change in current flowing in the Quadrupole: Membership Functions must be defined each time in order to have convergence
- The Accuracy of the result is not in the specified range

Control Design Bisection – Like Algorithm

- 1. Initialization: Start from a random point, step in one direction
- 2. Iteration:
 - a. If signal decreases, step in the same direction
 - b. If signal increases, step in the other direction
 - c. If signal increases in both directions, half the step resolution
 - Termination: When step resolution is under a certain threshold

Control Design Bisection – Like Algorithm on Measured Data

Control Design Bisection – Like Algorithm on Real Magnet

Fermilab

24 9/26/2017 Federico Nesti | Final Presentation

Control Design Bisection – Like Algorithm on Real Magnet

Results Center Error from Survey

Conclusions

After testing on many Magnets:

• Fuzzy has many problems:

- Convergence not proven
 - Slow Convergence
- Not robust to parameter changes or Magnet change
 - Complex Controller
 - Low Accuracy
- Bisection-Like Algorithm is fast, reliable, simple

