

Search for Z'-pair production decaying into Dark Matter and boosted Jets at CMS

Claudio Andrea Manzari, Matteo Cremonesi, Siew Yan Hoh, Bo Jayatilaka

Final Presentation 09-27-2017

Introduction

- From cosmological observations, 85% of the matter comprised of dark matter (DM)
- What we know:
 - DM does not interact electro-magnetically
 - DM interacts gravitationally

We know nothing about its nature and properties

Search for Dark Matter

direct detection

production at colliders

 Collider approach: DM production by colliding SM particles at high energies

Why at Colliders

- If DM interacts, it does through a mediator
- At colliders, unique possibility to search for the mediator and measure its properties
 - <u>mass</u>, <u>spin</u>

From EFT to Simplified Models

Model described by a small number of **free parameters**:

- M_{med}, Mdm, gsm, gdm
- shapes of kinematic distributions not altered by coupling variations
 - gsm=0.25, gdm=1(spin-1)
 - gsm=1, gdm=1(spin-0)

LHC DM Forum, arxiv:1507.00966v1

From EFT to Simplified Models

Assumptions:

- DM:
 - single particle, Dirac fermion
 - stable and non-interacting
- Mediator
 - Axial/Vector,
 Scalar/Pseudoscalar
 - minimal decay width
 (e.g. to DM and to quarks)

LHC DM Forum, arxiv:1507.00966v1

27/09/17 Claudio Andrea Manzari I FINAL PRESENTATION

🛟 Fermilab

through CMS

‡ Fermilab

Claudio Andrea Manzari | FINAL PRESENTATION 27/09/17

Mono-X searches

- Collider experiments are **NOT** designed for detecting DM
 - Invisible DM particles escape detection

Experimental approach:

- trigger events using recoiling object(s)
 - Initial state radiation (ISR) of a particle X:
 - X = jet/gamma/W/Z
- measure missing transverse momentum (**MET**)

 $MET = -\Sigma_{All \ particles} \ p_{T}$

Monojet Signature

Looking for events with:

- Large MET
- At least one high Pt jet

Monojet Signature - Background

Looking for events with:

- Large MET
- At least one high Pt jet

Monojet Signature - Background

Looking for events with:

- Large MET
- At least one high Pt jet

Detection of signal

‡ Fermilab

Mono-Z' Model

Model Generation

Mass Benchmarks

	Mediator Mass	Dark Matter Mass
Resonant case	300 GeV	100 GeV
Heavy Mediator	1000 GeV	1 GeV
Heavy DM	300 GeV	400 GeV

Madgraph Plots – Vector Coupling

(m_x,m_y)=(300,100) GeV

(m_a,m_v)=(300,400) GeV

100'000 events

 $Inv_M(\Phi_2)$ [GeV]

1600 1800 2000 P_t(Φ₂) [GeV]

🛟 Fermilab

 $(m_{\pi}, m_{v}) = (1000, 1) \text{ GeV}$

g_{SM}=0.25, g_{DM}=1.00

10

 10^{-2}

10⁻³

0

200

400

600

800

1000 1200 1400

 $(m_{tot}, m_{tot}) = (1000, 1) \text{ GeV}$ g_{SM}=0.25, g_{DM}=1.00 10 10^{-2} 200 400 600 800 1000 1200 1400 1600 1800 2000 0 $Inv_M(\chi \overline{\chi})$ [GeV] DMsystem_Pt . ∩ (m, m)=(300,100) GeV (m_x,m_y)=(300,400) GeV $(m_{tot}, m_{x}) = (1000, 1) \text{ GeV}$ g_{sm}=0.25, g_{sm}=1.00 10 10⁻² 10^{-3} 200 400 600 800 1800 2000 0 1000 1200 1400 1600 $P_t(\chi \overline{\chi})$ [GeV]

DMsystem_mass

A.U.

Claudio Andrea Manzari | FINAL PRESENTATION 27/09/17

Pythia Distributions – Vector Coupling

6'000 events

 Distributions peak at Mediator mass;

- Generator cut in P_T at 150 GeV;
- Axial distributions similar to Vector ones.
 Zeremilab

Mass region of Interest

- Online selection (Trigger) on MET ~ 200 GeV ;
- Single particle recoiling against MET --> $|P_T^{Z'}| = |MET|$;
- dR = 1.5 is the CMS jet collection we are interested in;
- $dR \sim \frac{2m_{Z'}}{P_T^{Z'}}$;

REGION OF INTEREST

0 – 150 GeV

‡ Fermilab

Identification of Z' Large-Cone Jets

Single high Pt dR=1.5 jet with:

 2-prong structure identified by studying jet substructure

🛟 Fermilab

Analysis Strategy

Signal extraction is based on **MET** distribution (**shape analysis**)

Background estimation:

- Data-driven model for the main backgrounds
- Data in **bins** of the hadronic recoil in control regions used to derive both the **shape** and **rate** for Z/W+jets backgrounds in the signal region
- Fit performed simultaneously in different categories

Z+Jets Model

PROXY Di-mu/ele CR

Hadronic Recoil = |Met+ Pt μμ/ee|

W+Jets Model

PROXY Single mu/ele CR

‡ Fermilab

Control Regions

Z+Jet Control Region

- Two opposite charge leptons: muons or electrons;
- Leptons Invariant Mass in Z mass window;

‡ Fermilab

W+Jet Control Region

• One single lepton: muon or electron;

Background Estimation: step 1

Compute data-driven estimation through **transfer** factors R:

- derived in different recoil bins and different categories
- account for:
 - -ratio of the cross sections

-efficiency times acceptance of leptons in the control regions

 $N^{Zvv}_i = N^{ZII}_i \times R^{Z}_i$

 $N^{WI*v_i} = N^{WIv_i} \times R^{W_i}$

‡ Fermilab

Background Estimation: step 2

Incorporate theory/experimental uncertainties into **R** factors via free parameters **θ**

 $N^{Zvv_i} = N^{ZII_i} \times R(\theta)^{Z_i}$

 $N^{WI*v_i} = N^{WIv_i} \times R(\Theta)^{W_i}$

Background Estimation: step 3

Perform fit to find Z/W +jets yields that best accommodate CR observations

Z/W yields in signal region, µ^{Z/W}_i, are included in the fit as free parameters

$$N^{ZII}_{i} = \mu^{Zvv}_{i} / R(\theta)^{Z}_{i}$$
$$N^{WIv}_{i} = \mu^{WI^{*}v}_{i} / R(\theta)^{W}_{i}$$

Conclusion

Model generation is running;

Analysis Strategy already set up;

Future Tasks

Extraction of Results

Backup

Process of my work:

Backup

From EFT to Simplified Models

Backup

LHC DM wg, arxiv:1603.04156

‡ Fermilab

From EFT to Simplified Models

Backup

LHC DM WG, arxiv:1603.04156

‡ Fermilab

Cross Section Expected

Backup

	Cross Section	Width
Heavy Mediator case	$1.33 * 10^{-5} pb$	3.01 * 10 ¹
Heavy Dark Matter case	$1.93 * 10^{-6} pb$	7.74
Resonant case	$2.32 * 10^{-3} pb$	7.78

Cross Section expected for different DM & Mediator masses

Backup

Fermilab

Cross Section expected for different DM & Mediator masses

Backup

Fermilab

Madgraph Plots – Vector Coupling

1400

1800 2000

 $P_t(\chi \overline{\chi})$ [GeV]

1600

 10^{-3}

0

200

400

600

800

1000

1200

🞝 Fermilab

 $P_t(\Phi_2)$ [GeV]

Backup

100'000 events

Pythia Distributions – Axial Coupling

6'000 events

 Distributions peak at Mediator mass; • Cut in P_T at 150 GeV;

🛟 Fermilab