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Open Science Grid and HTCondor

Users submit their jobs to HTCondor, which 
collects jobs together and places them in a 
queue for matching with resources.

Once resources are available and based on 
"fair-share priority" ordering in the queue, 
jobs execute on a site on the OSG.

Each job belongs to an experiment (Virtual 
Organization), that has a specific allocation 
(Quota). User can exceed quota only when 
other VOs are not utilizing their quota.

Fermilab has two sites: 
FermiGrid and CMS Tier1

HTCondor is a scheduling and 
provisioning software that matches 
resources to computing workflow 
requirements.



Goal :

This time depends from many parameters 
that are uncorrelated between them 
(and there isn’t an analytic model), 
then we have decided to 
develop a Deep Learning model.

We want predict the necessary time for one job (once it is submitted) for exiting the queue 
and starting its execution.

Once a user submits a workflow, it is difficult 
to predict when the jobs will start running 
and when they will complete.

wait time completion time



Project phases:

1. Collect historical job submission data from system logs.

2. Design a multivariate algorithm (MVA) to predict the start time of the workflow.

3. Train and test the MVA.

4. Deploy the application into production for users to have instant feedback about 

when their jobs will start.



Historical Open Science Grid Information

Two main different of monitoring:
● Time series - Which is useful for 

drawing graph.                                     
Example : running job by VO, 
quota, etc. 

● Raw Documents - Which is useful 
for general purpose query. 
Example: job submission times, 
site status, resources requested, 
etc.



Collect the Job data
The information related to a single job(cluster) are:

● Time of submit
● Time of execution
● Time of terminate
● Required resources (Core,Memory,Disk,Time)
● Experiment (Virtual Organization)
● Site where executed

We collect this info through a python script that 
performs an ElasticSearch query on Kibana.

Used to calculate wait 
and delay time



Collect the System data
The data about the system status is 
overwhelming and complex -  difficult to define 
which is important or not, and create analytic 
prediction from “first principles”

In order to collect them, we directly query 
Graphana that tell us all the historic information.

Collected data:
● Running jobs
● Idle jobs
● Run by V.O.
● Idle by V.O.
● V.O. Quota



How collect the data

1. Make only one query of 
aggregation type.

2. For each cluster:
Verify if exist at least one process
that has a Bad Event

  3.    Obtain cluster info (res required)
  4.    Get the last termination event
  5.    Get the related system information

Query on Graphite, resolution of 5 min

We make only 2 query 
plus 1 GET request. 
We should avoid to make 
so many queries, 
otherwise we could 
overload the server.

We collect about 6 million of sample, about 1 GB of 
text data.



Next step : NN topology 

Which topology is better for our purpose ?

CNN , RNN ... 

Maybe we can test them and choose consequently.

Problem of Regression:

We want a continuous output, not a 
classification.



NN topology

Linear Model:

The output is a weighted sum 
of the input, plus a bias.
One layer. 

Convolutional NN:

Made of three layers types:
● Convolution
● Pooling
● Dense

Possibly repeated many times.

Recurrent NN:

There is a directed cycle 
between neurons.
The net learns the dynamic 
temporal behavior.

...Combination Linear + Deep:

A mix of linear and nonlinear 
approach 

Long/Short Term Memory:

Like RNN, but the net can choose 
when “remember” and when “forget”. 



Graphics example
Different type of topology 
precedently  illustrated :



A first Idea: Wide and Deep Models
This approach combines the strengths of memorization and generalization.

Linear models with crossed features can memorize 
an “exception rules” effectively with fewer model 
parameter. (Very specific feature pairs)

Through dense embeddings, deep models can 
generalize better and make predictions on feature 
pairs that were previously unseen in the training 
data. 



DNN Model

Topology: many Dense Layers.

Layers where each neuron is fully 
connected with the others of the 
next layer.

Parameter to define a DNN:
● Number of layer, Neuron for layer
● Input Features
● Optimizer
● Activation Function
● Dropout



Run the model

1. Train the model (with the train data)
2. Evaluate the model (with the test data)
3. Predict the result (with new data)

Error trend over training step



Custom Model : Convolutional NN 
In order to get better results we can define our custom Neural Network.

Conv1 Pool1 Conv2 Pool2 Dense   Out



Result

Unfortunately in both cases, we have an error too bigger.
Indeed we have about on average one hour of error respect to the real value,
and a root mean square error about of a couple of hours.

RMSE: (in minutes)

Orange : train error 
Ciano : test error 

We evaluate with 
test data every 5k 
of training step. 



New approach: Forest of Decision Tree

Decision tree: a tree in which at each level it’s used 
one or more feature to make a decision of which 
branch take to arrive at the “right” leaf.

This is a weak learner, but if we have a large number of tree, we 
can combine their results (value of the chosen leaf) to obtain a good result !



General Idea

Generate many trees and combine in a weighted mode their predicted value.

run > 10k
NY

idle > 5k idle < 5k

...
10 min

time > 5h
NY

mem<8GB mem>8GB

...
30 min



XGBoost

XGBoost is a library that can speed this algorithm, 
running it in parallel and doing multiple 
optimization. 

So we first generate some random tree, 
so we expand them until some level and 
then prune them. So we test the quality 
of the result with the train data, decides 
which trees are better to add at the 
forest, and after we continue by make 
others trees and so on.



Crossed Features

To get better result we can create a new 
feature that represent for example the 
available resources in the exact 
experiment in which the job is submitted.

They can highlights some type of 
knowledge that otherwise our 
model could ignore.

Crossed features are like artificial features where we have the total control when build they.

If we wisely put here some important knowledge, the model can better learn our sample.



Result

Real wait (m)

Predict wait (min) Visualization of test sample over a 
plan (true value / predicted value).

Ideally we want the point most near 
possible at the black line 
(a hit without error).

We accept predictions with an error 
less than 15 minutes.

This is only a qualitative representation, not a quantitative.



Error Distribution Error distribution over a 
logarithmic base 10 scale. 
On y-axes we have a 
logarithm number of 
occurrences of the error 
valuated on x variable. 
On x-axes we have the error 
expressed in minutes. 
Negative one indicates an 
underestimation respect to 
the real time, 
positive one an 
overestimation.

Median : 1.24
Mean : 16.57
(Absolute value)

The distribution is almost symmetric respect to the origin.
Mean(not absolute) : 0.079



Evaluation of error distribution
If we ignore all the error of the 
prediction over the 8 hours, 
we can increase the percentage 
of success (15 min) to 85.65%.

Almost all the errors (about 90%) 
are less than 45 minutes.

We have reached a good result !



Future Work
In order to get better results we can do some easy improvement :

● Increase the number of training data used (now Jan-Sept , 6M of records)

● Adding other features like priority of the user, other VO, others parameters.

● Others crossed features that explain other high level concept that otherwise the model could 

not consider.

● Consider the jobs that have been suspended (but not killed) for some reason.

● Tune better some specific parameter.

● increase the time of computation and explore more deeply some path early pruned in order to 
build a larger model



Summary

1. Now we have collected the useful Jan-Sept data from the system logs.

2. We have design a naive topology of the Neural Network. We tried also with custom one (CNN) .

3. We have applied the Boosted Decision Tree.

4. We will deploy the application into the system.



Thank you for the attention.

Question ?



Backup Slide



How collect the data - 1

1. Make only one query of 
aggregation type.

Group first by schedd, then by cluster.

We retrieve one entry per 
cluster with the 
submission time and 
execution time.

Submission Time : the earliest time between all the 
submission time of the process in the same cluster



How collect the data - 2

1. Make only one query of 
aggregation type.

2. For each cluster:
Verify if exist at least one process
that had a BadEvent

Search by cluster, schedd, BadEvent

We retrieve zero entry, 
we are interested only at 
the total number of hits.
(If is equal zero or not)

BadEvent example: If a job requires more resources 
than the expected, its execution is paused.(JobHeld)
We remove these clusters because concerned about 
bias in initial development. 



How collect the data - 3

1. Make only one query of 
aggregation type.

2. For each cluster:
Verify if exist at least one process
that was helded

  3.    Obtain cluster info (res require)

Directly by a GET request on an index

We take the info about 
process zero, because 
inside the same cluster, 
all the process have the 
same requirement.

Resource requested : The resources 
(cpu,memory,disk,time) that an user expect to use for 
the cluster (job) - this request determines what 
resources can run the workflow.



How collect the data - 4

1. Make only one query of 
aggregation type.

2. For each cluster:
Verify if exist at least one process
that was helded

  3.    Obtain cluster info (res require)
  4.    Get the last termination event

Sort by desc, take the first result

We need from the log the 
last termination event in 
the cluster in order to 
calculate the execution 
time.

Execution time : time between the first start execution 
(of any process) and the last terminate execution (of 
any process) , in the same cluster.



How collect the data - 5

1. Make only one query of 
aggregation type.

2. For each cluster:
Verify if exist at least one process
that was helded

  3.    Obtain cluster info (res require)
  4.    Get the last termination event
  5.    Get the related system information

Query on Graphite, resolution of 5 min

We take the information 
from Graphite because 
here are already grouped 
by time.

System information : cumulative info about the 
system, like total running job, total idle job, also 
grouped by experiment. maybe comment on quotas?



Convolutional Layer

We define the convolutional (1 dimension) 
layer specifying the number of features, the 
kernel size, and optionally the stride.

Input

Kernel

Kernel size

Stride

Example for one features :

*



Pooling Layer Input

2 type: max or average

In this layer we reduce the space by 
doing a reduction operation like 
maximum or average. 
We can choose pool size and stride. 

In this case the stride have 
the same size of the pool.



Dense Layer

This layer is a fully connected layer where exists a link between every pair of neuron.

We can choose the number of unit.

Also in this layer we can define an activation function,
a function that “normalize” the output in order to get a values more uniformly possible.


