

2018/2019

Fermilab Summer School 2018

Final Report

Black Holes Detection in Fermilab’s Global
Computing Grid

Intern:

Lorenzo Lamberti

Supervisor:

Kevin Retzke

Title of Notes Document here Lorenzo Lamberti

2

Abstract

There are a lot of great challenges for utilizing widespread distributed computing resources (for

example Open Science Grid, Cloud computing and High Performance Computing) through a

scheduling/queueing system.

One of the main issues is the detection of faulty nodes of the grid, that are called blackholes,

because they cause failure of the jobs submitted to the distributed system. It’s important to

detect these nodes as soon as possible to not waste computing resources and to minimize the

number of failed jobs that are not due to user errors.

The aim of this work is to develop algorithms to analyze monitoring data streams from

Fermilab’s global computing grid in order to rapidly detect and identify aberrant conditions.

Title of Notes Document here Lorenzo Lamberti

3

Summary
1. Working Environment 5

2. Training required 7

1. Learn Python programming language: 7

2. Understanding Landscape’s monitoring tools: 7

3. FIFE’s data exploration through Grafana and Kibana 7

3. Challenges 8

3.1 Challenge 1 8

3.2 Challenge 2 12

3.3 Challenge 3 12

3.4 Challenge 4 13

3.5 Challenge 5 16

4. Blackhole Detection 18

4.1 What is a Blackhole 18

4.2 How to detect a Blackhole 18

4.3 Data Exploration & Features Extraction 19

4.4 Blackhole Node Detection: approach 20

4.5 Blackhole Node Detection: attempts 21

1. First Attempt 21

2. Second Attempt 22

4.6 Blackholes Database 23

5. Results 23

6. Implementation 25

7. Future work 26

1. A more accurate training: 26

Title of Notes Document here Lorenzo Lamberti

4

2. Integration of a control over transfer fails: 26

3. Integration of a control over sites and users: 26

8. Code 27

Title of Notes Document here Lorenzo Lamberti

5

1. Working Environment
The data of Fermilab’s experiments are processed through Fermilab’s Global Computing

Grid. The term “Grid Computing” indicates the usage of distributed computing resources

that work through a scheduling/queueing system. This system in particular is widespread all

over the world.

FIFE (Fabrique For Frontier Experiments) is a high-level project that provides offline

computing services for all Fermilab’s experiments.

Landscape is a project born with the intention to create a monitoring system for FIFE and

other scientific computing services at Fermilab.

There are a lot of data to analyze in this complex system and some graphic tools are very

useful to gather information. Grafana and Kibana software are used for the visualization of

collected data from FIFE:

Title of Notes Document here Lorenzo Lamberti

6

− Grafana is used for a general overview

− Kibana is useful for a more in-depth look

Both Kibana and Grafana work on Elastisearch’s server: it stores detailed documents and

logs about the jobs submitted. Its data storage engine is Apache Lucene. The data on this

server is organized in indices and fields.

All the algorithms implemented are written through the Python programming language.

Title of Notes Document here Lorenzo Lamberti

7

2. Training required
All the environments listed before require a proper training to better understand all the tools

available for the analysis of data. If none of these tools are already familiar to the user, this

should be the chronological path to be followed:

1. Learn Python programming language:

1. Google’s online python class;

2. Python programming course by Marco Mambelli.

2. Understanding Landscape’s monitoring tools:

− Elasticsearch database;

− Grafana software;

− Kibana software.

3. FIFE’s data exploration through Grafana and Kibana

− Understanding data structure;

− Learn JSON queries language;

Title of Notes Document here Lorenzo Lamberti

8

3. Challenges
In order to get familiar with all the tools available for the analysis and explore FIFE’s monitoring

data it was set up a list of challenges to be accomplished. This chapter is going through every

challenge followed by the answer to the question, the source of the data and code written (if the

graphic tools Kibana and Grafana were not sufficient to answer to the question).

3.1 Challenge 1

1. How many jobs were run in the past week?

Source of the data: fifebatch-history-*

It was just counted how many jobs were present in this index of memory. The output is a

number (no graphs).

2. How many succeeded (exit code 0) and how many failed?

Source of the data: fifebatch-history-*

It was put a double filter for successful jobs (Exit Code=0) and failed jobs (Exit Code!=0).

The result is displayed with both Grafana (count over time) and Kibana (total count)

3. What experiment ran the most jobs?

Source of the data: fifebatch-history-*

Aggregation by: Jobsub_Group

Grafana Kibana

Title of Notes Document here Lorenzo Lamberti

9

The result is displayed with both Grafana (count over time) and Kibana (total count):

4. What was the average walltime?

Source of the data: fifebatch-history-*

Aggregation by: Jobsub_Group

The result displayed on Kibana is the average Committed Time (wall time) for every

experiment.

Grafana

Kibana

Title of Notes Document here Lorenzo Lamberti

10

The wall time is the actual time taken from the start of a computer program to the end. In

other words, it is the difference between the time at which a task finishes and the time at

which the task started on the Grid.

5. What was the overall CPU efficiency for all jobs (
𝒄𝒑𝒖𝒕𝒊𝒎𝒆∗𝒏°𝒄𝒐𝒓𝒆𝒔

𝒘𝒂𝒍𝒍𝒕𝒊𝒎𝒆
) ?

Source of the data: fifebatch-history-*

Aggregation by: Jobsub_Group

This result needed the combination of three different information:

Title of Notes Document here Lorenzo Lamberti

11

− CpuTime: how much time (seconds) the CPU was busy

− N° Cores: number of cores of the Grid’s nodes

− Walltime: average time (seconds) in which the experiment was running on the Grid.

−

mu2e

CommittedTime_dict : 256959.99

RequestCpus_dict : 1.0

RemoteSysCpu_dict : 4444.66

RemoteUserCpu_dict : 212680.43

dune

CommittedTime_dict : 374501.34

RequestCpus_dict : 1.42

RemoteSysCpu_dict : 10852.28

RemoteUserCpu_dict : 356118.46

…
…

EFFICIENCY:

dune 1.4510446440455007

minerva 1.367907158302796

mu2e 1.1834652621299644

gm2 1.5771239620829476

uboone 1.3327282482045406

cdf 1.485566431028936

nova 1.3144842954757536

lariat 1.016526965315123

minos 1.0473985215982602

des 2.4452951469652624

Title of Notes Document here Lorenzo Lamberti

12

For this reason it was used the low-level Elasticsearch library to get the data from

Elasticsearch’s server: this allows to write complex queries and they can be used in different

languages/libraries, e.g Kibana.

The result displayed is the output of the code written in Python

3.2 Challenge 2

1. What node had the most failed jobs in the past week?

Source of the data: fifebatch-history-*

Aggregation by: MachineAttrMachine0

3.3 Challenge 3

1. What site had the most disconnected jobs in the past week?

Source of the data: fifebatch-events-*

Aggregation by: MachineAttrGLIDEIN_Site0

The jobs were filtered by “event type number 22” that indicates an event of

disconnection.

Title of Notes Document here Lorenzo Lamberti

13

3.4 Challenge 4

1. How many files were transferred in the past day?

Source of the data: fife-dh-*

Aggregation by: ifdh_event_type

It was considered just 3 transfer event types:

• starting transfer

• transferred

• failed transfer

Title of Notes Document here Lorenzo Lamberti

14

2. How many transfers were made to/from the dCache?

Source of the data: fife-dh-*

Data filtered by destination and source path to recognize if it’s a transfer to/from dCache

(the directory of dCache is “pnfs”):

• To dCache fetered by DestPath: *pnfs*

• From dCache filtered by SourcePath: *pnfs*

The results are displayed on Kibana over the last day:

Title of Notes Document here Lorenzo Lamberti

15

3. Create a histogram of transfer times

Source of the data: fife-dh-*

Aggregation by: transfer_time

The graph on Grafana displays the how many jobs (y-axes) took a certain amount of time

(x-axis, in seconds) to be fully transferred in the last day. We can see that most of the jobs

are transferred within 14 seconds.

Title of Notes Document here Lorenzo Lamberti

16

3.5 Challenge 5

1. For a given job, calculate how much time was spent transferring input/output to job

Source of the data: fife-dh-*

Data filtered by destination and source path to recognize if it’s a transfer to/from dCache:

• To dCache filtered by NOT SourcePath:*pnfs*

• From dCache filtered by SourcePath:*pnfs*

The result displayed is a graph in Kibana that shows both information:

2. For a given job, calculate how much time was spent running (CPU time) and the Walltime

Source of the data: fifebatch-history-*

The wall time is the actual time taken from the start of a computer program to the end.

The CPU time is the time in which the job was actually running on a CPU. It’s divided in

RemoteSysCpu (CPUtime_1) and RemoteUserCpu (CPUtime_2)

Title of Notes Document here Lorenzo Lamberti

17

3. For a given job, calculate how much time was wasted

Source of the data:

fifebatch-history-* for CPU time and walltime

fife-dh-* for the transfer time

The formula to calculate the wasted time is:

𝑊𝑎𝑠𝑡𝑒𝑑_𝑡𝑖𝑚𝑒 = 𝑊𝑎𝑙𝑙𝑡𝑖𝑚𝑒 − (𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 + 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑇𝑖𝑚𝑒)

The output is an example for a specific job (JobsubJobId: 10834906):

CommittedTime in seconds, CpuTime in seconds, transfer_time in seconds:

CommittedTime: 20364.0

RemoteSysCpu : 35.0

RemoteUserCpu: 20198.0

transfer_time: 86.64

Wasted time in seconds: 44.36

Title of Notes Document here Lorenzo Lamberti

18

4. Blackhole Detection
The aim of this section is to develop a program that identifies potential black hole nodes and

sends an alert.

4.1 What is a Blackhole

We have two possible definitions for a blackhole:

1. Nodes or sites with high number of failed, held or disconnected jobs that are not user error.

We don’t want to start more jobs on these nodes because they are malfunctioning.

2. Job clusters with high failure rate due to user error. We don’t want to start more jobs on

these nodes since they will just waste resources.

4.2 How to detect a Blackhole

Indications of a Blackhole node:

• High rate of failed jobs: Exit code ≠ 0

• High rate of held jobs: Jobs not finished for an error

• High rate of disconnections: Data exchange interrupted

• dCache issues: Transfer Fails

• No successful jobs recently: a high rate of held and failed jobs without any successful

jobs

The transfer fails will not be considered in this analysis.

Title of Notes Document here Lorenzo Lamberti

19

4.3 Data Exploration & Features Extraction

To find the best data suitable for the analysis it was necessary to explore every index type and

field in the memory database.

The fifebatch-events index contains all the data necessary for a preliminary approximation: it

has HTCondor event logs collected in real time.

The features extracted from this index of memory are:

• How many succeeded jobs we had

• How many failed jobs we had

• How many held jobs we had, divided into different “hold reason” codes

• How many disconnections we had

The hold reasons were divided because some of them are more crucial than others:

• Manual Hold reason: the user manually hold his jobs, it is usually not an issue;

• Resources Hold reason: the jobs are hold because they are exceeding the limit of the

resources assigned (memory available, too much processing time, number of CPU etc...);

• Starter Hold reason: the jobs do not start on the worker node, it is usually the biggest

issue;

• Other Hold reasons: this groups all the other hold reason codes.

So, the final features extracted are listed in the following figure:

 Nodes

Title of Notes Document here Lorenzo Lamberti

20

4.4 Blackhole Node Detection: approach

For the detection of the blackholes it was implemented a double “sliding window” over the

entire day. We consider a time window for the analysis of the data and another time window as

a reference point. Once the analysis is terminated both windows are moved forward in time.

1. Analisys Window:

In this short time interval the features listed before are analyzed for each node in the grid to

detect aberrant conditions. Produces a ‘’total count’’ for each feature. The time interval

selected for the analysis is 30 minutes.

2. Average Window:

This longer time interval is used to calculate the average of each feature in order to create a

reference for the analysis window. In particular, it produces a reference value called the

Global Average for each feature: it’s the average computed considering the values from all

the nodes. The time interval selected for the average is 2 hours.

An example of Global Average computed for a generic node is shown in the following

figure:

Title of Notes Document here Lorenzo Lamberti

21

4.5 Blackhole Node Detection: attempts

1. First Attempt:

As a first try was set a threshold (in this case the global average) for each feature.

If a node gets over this value it was printed the corresponding problem.

Here is an example of the python script’s output that performs this analysis: we can see

three nodes that had 11 or 8 jobs held with a resource error versus an average (threshold)

of 0.1. All these nodes were labelled as possible blackholes.

The problem of this method is that it considers each feature separately, it doesn’t combine

them all.

𝑖𝑓 𝑡𝑜𝑡𝑎𝑙 (𝑐𝑜𝑢𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) > 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑓𝑒𝑎𝑡𝑢𝑟𝑒): 𝑻𝒓𝒊𝒈𝒈𝒆𝒓!

Suspicious nodes

Title of Notes Document here Lorenzo Lamberti

22

2. Second Attempt:

This attempt tries to make an analysis that considers all the features combined.

It was computed a weighted average for each node over all his features in this way:

• It was given to each node and feature a 𝒔𝒄𝒐𝒓𝒆 =
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)

𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)
 ;

• It was then given each score a weight and it was made a linear combination of all

these values.

𝑇𝑜𝑡𝑎𝑙_𝑆𝑐𝑜𝑟𝑒 = ෍ 𝒔𝒄𝒐𝒓𝒆(𝑓𝑒𝑎𝑡𝑢𝑟𝑒) ∗ 𝒘𝒆𝒊𝒈𝒉𝒕(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

Here is an example of the python script’s output that performs this analysis: from the

left to the right there is the list of suspicious nodes, than the list of the scores and

finally the reason of the scores.

We can see two nodes have a very high score (respectively 3460 and 1555) that is due

to a high rate of disconnected jobs, and the node fnpc9027 that has a score of 71

because it has not any successful job. All these nodes were labelled as possible

blackholes.

This was the analysis type implemented and then iterated over more hours/days. The

code used for the analysis is shown in section number 8.

Suspicious nodes Scores Reasons

Title of Notes Document here Lorenzo Lamberti

23

4.6 Blackholes Database

The full list of the suspicious nodes was saved in a unique dictionary called

blackholes_database structured as following:

• Intervals of time analyzed;

• Suspicious node list inside a certain interval of time;

• Score of each node and reason (criteria) of the score;

This structure is shown in the figure below:

5. Results
In this section are reported some examples of the results obtained with this implementation.

The threshold for the score was set to 100 to minimize the number of false positives.

The time for the analysis was 30 minutes and the the time for the average was 2 hours.

The weights used are the following:

scores_weight={'disconnections': 5,

 'fail': 0.1,

 'manual': 0,

 'others': 10,

 'resources': 10,

 'starter': 500,

 'no_successful_jobs': 2

 }

Title of Notes Document here Lorenzo Lamberti

24

• 17th 𝐒𝐞𝐩𝐭𝐞𝐦𝐛𝐞𝐫 there were four confirmed blackholes:

The nodes fnpc5020 and fnpc4514 had a very high score due to an high disconnection rate

(269 and 179 jobs disconnected in just 30 minutes)

The nodes fnpc9071 and fnpc9073 had zero successful jobs in the 30 minutes of analysis

and respectively 32 and 103 jobs were held.

• 26th 𝐒𝐞𝐩𝐭𝐞𝐦𝐛𝐞𝐫 there were four confirmed blackholes:

In this case we had 2 blackholes due to several held jobs with a starter error, that is usually

the most weighted type of error: in fact the scores of the nodes are over 3k.

• 12th 𝐒𝐞𝐩𝐭𝐞𝐦𝐛𝐞𝐫 there was one confirmed blackhole:

The node fnpc9054 had zero successful jobs in the 30 minutes of analysis and 20 jobs were

held for the lack of resources. Even if the numbers are significantly smaller than before, the

algorithm recognized this blackhole.

Title of Notes Document here Lorenzo Lamberti

25

6. Implementation
The algorithm created was then implemented to run on a Slack channel in real-time. The scan

for any new suspicious node is repeated every 5 minutes and in the output is reported just the

final score of the suspicious nodes:

This is just an alert and the nodes shall be checked manually to verify if they are effectively

malfunctioning.

Title of Notes Document here Lorenzo Lamberti

26

7. Future work
There are a lot of things in this algorithm that need to be improved:

1. A more accurate training:

There are some parameters that could be adjusted to make the algorithm more precise, for

example the weights of the weighted average, the windows sizes (for both analysis and

reference) and the threshold for the detection.

2. Integration of a control over transfer fails:

Until now we considered a very small set of possible blackholes because the anomalies

considered are related to failed jobs, held jobs and disconnected jobs. It’s possible to

extend the analysis over possible transfer fails, that are usually dCache problems, and over

the transfer time (that shouldn’t be too long)

3. Integration of a control over sites and users:

The algorithm could be trained also to reveal faulty sites and users: for the moment it is

considering only suspicious nodes.

Title of Notes Document here Lorenzo Lamberti

27

8. Code
LIBRARIES

from elasticsearch import Elasticsearch

from elasticsearch_dsl import Search,Q

from operator import itemgetter

import datetime

from collections import OrderedDict

GLOBAL VARIABLES

global term_to_search

PARAMTERS:

numebr_of_nodes_analyzed = 1000

SCORES WEIGHTS:

score_threshold = 30 # Tolerance

scores_weight={'disconnections': 5,

 'fail': 0.1,

 'manual': 0,

 'others': 10,

 'resources': 10,

 'starter': 500,

 'no_successful_jobs': 2

 }

TIME VARIABLES:

time_analysis =30

year = 2018

month = 9

days_range=range(12,28)

hours_range=range(0,24)

minutes_range=range (0,60,time_analysis)

scaling_factor = 0.25 # Sets time for the average_window=time_analysis/scaling_factor

GMT = 5 # It's -5 hours for Chicago

Functions Definition

def set_time_intervals(year_temp, month_temp, day_temp, hour_temp, minutes_temp):

 global start_time_analysis

 global end_time_analysis

 global end_time_average

 global start_time_average

 # TIME FOR ANALYSIS

 start_time_analysis = datetime.datetime(year_temp, month_temp, day_temp,

hour_temp,minutes_temp) + datetime.timedelta(hours=GMT)

 end_time_analysis = start_time_analysis + datetime.timedelta(minutes=time_analysis)

 # TIME FOR AVERAGE

 end_time_average = start_time_analysis

 start_time_average = end_time_average - datetime.timedelta(minutes=time_analysis /

scaling_factor)

 # return start_time_analysis, end_time_analysis, start_time_average, end_time_average

def get_elasticsearch_data(term_to_search, query):

 """

 This function creates the "global average" and two dictionaries:

 - The "analysis_dictionary" collects the data for the analysis

 - The "average_dictionary" collects the data in order to create a reference point

Title of Notes Document here Lorenzo Lamberti

28

 the average_dictionary needs to be normalized because it takes in account a time interval

much bigger compared to the analysis time (look at the "scale" variable)

 :param term_to_search : The data will be aggregated according to this term. Type

"MachineAttrMachine0" to aggregate by nodes, type "MachineAttrGLIDEIN_Site0" to aggregate by

Sites

 :param query : you can pass here a specific query, for example with

"MachineAttrMachine0: fnpc17146.fnal.gov" you will get only informations about that specific node

 :var analysis_dictionary : is the dictionary of nodes under analysis. it takes the time

interval between (start_time_analysis ; end_time_analysis)

 :var average_dictionary : is the dictionary of average features of each node. it takes the

time interval between (start_time_average ; end_time_average)

 :var global_average : is a dictionary in which we save the average value for every

feature. every average value considers the data from all the nodes

 :return : the function returns these three dictionaries:

analysis_dictionary,average_dictionary, global_average

 """

 # 1: analysis_dictionary is the dictionary of nodes under analysis

 analysis_dictionary = get_fifebatch_events(start_time_analysis, end_time_analysis,

'fifebatch-events-*', term_to_search, query=None)

 # 2: average_dictionary is the dictionary of average features of each node in a previous time

interval

 average_dictionary = get_fifebatch_events(start_time_average, end_time_average, 'fifebatch-

events-*', term_to_search, query=None)

 # Normalization: multiplies by scaling factor (to compensate the fact that the time window is

bigger = much more informations)

 for node, stats in average_dictionary.items():

 stats.update((k, v * scaling_factor) for k, v in

 average_dictionary[node].items()) # Scaling factor is for normalization

over time

 # Compute global average of nodes values

 global_average = calculate_global_average(average_dictionary)

 return analysis_dictionary, average_dictionary, global_average

def get_fifebatch_events(start, end, fife_index, term_to_search, query=None): ##initialization

between brackets

 '''

 This function makes a query to elasticsearch server

 :param start : start time for the query to elasticsearch

 :param end : end time for the query to elasticsearch

 :param fife_index : string that provides the index name in which i'm searching the data

 :param term_to_search : The data will be aggregated according to this term. Type

"MachineAttrMachine0" to aggregate by nodes, type "MachineAttrGLIDEIN_Site0" to aggregate by

Sites

 :param query : you can pass here a specific query, for example with

"MachineAttrMachine0: fnpc17146.fnal.gov" you will get only informations about that specific node

 :var number_of_nodes_analyzed : it's the number of nodes that will be analyzed

 :var query_events : JSON query to the elasticsearch server

 :return complete : returns a dictionary with the full list of nodes and their features

 '''

 query_events = {

 "size": 0,

 "query": {

 "bool": {

 "must": [

 {

 "match_all": {}

 },

],

 'filter': [{'range': {'@timestamp': {"gte": start, "lte": end}}}],

Title of Notes Document here Lorenzo Lamberti

29

 "must_not": []

 }

 },

 "_source": {

 "excludes": []

 },

 "aggs": {

 "node": {

 "terms": {

 "field": term_to_search,

 "size": numebr_of_nodes_analyzed,

 "order": {

 "_count": "desc"

 }

 },

 "aggs": {

 "status": {

 "filters": {

 "filters": {

 "hold": {

 "query_string": {

 "query": "MyType:JobHeldEvent",

 "analyze_wildcard": True

 }

 },

 "fail": {

 "query_string": {

 "query": "MyType:JobTerminatedEvent AND NOT

ReturnValue:0",

 "analyze_wildcard": True

 }

 },

 "success": {

 "query_string": {

 "query": "MyType:JobTerminatedEvent AND ReturnValue:0",

 "analyze_wildcard": True

 }

 },

 "disconnections": {

 "query_string": {

 "query": "MyType: JobReconnectFailedEvent",

 "analyze_wildcard": True

 }

 },

 "manual": {

 "query_string": {

 "query": "HoldReasonCode: 1",

 "analyze_wildcard": True

 }

 },

 "resources": {

 "query_string": {

 "query": "HoldReasonCode: (34 26)",

 "analyze_wildcard": True

 }

 },

 "starter": {

 "query_string": {

 "query": "HoldReasonCode: 6",

 "analyze_wildcard": True

 }

 },

 "others": {

 "query_string": {

 "query": "MyType:JobHeldEvent AND (NOT HoldReasonCode: (1

6 26 34))",

 "analyze_wildcard": True

 }

Title of Notes Document here Lorenzo Lamberti

30

 }

 }

 }

 }

 }

 }

 }

 }

 if query is not None:

 query_events['query']['bool']['must'] = {'query_string': {'query': query}}

 r = client.search(fife_index, body=query_events)

 # print (r , '\n\n')

 complete = {}

 for node in r['aggregations']['node']['buckets']:

 # print vo

 complete[node['key']] = {}

 for status, stats in node['status']['buckets'].items():

 complete[node['key']][status] = stats['doc_count']

 # print(complete)

 return complete

def calculate_global_average(dictionary):

 '''

 This function computes the global average.

 We get a dictionary from the input and then:

 - we sum up the values of every node for every feature

 - we divide the sum obtained by the number of the nodes (:var lenght)

 :param dictionary : it's the dictionary over which we calculate the global average

 :return : we obtain a dictionary that stores the average of every feature computed

considering the values from all the nodes. This variable obtained is useful as a pint of

reference for the analysis

 '''

 lenght = len(dictionary)

 complete = {}

 for node, status in dictionary.items():

 for bucket, value in status.items():

 complete.setdefault(bucket, 0) # Adds the new key with default value=0 (if not

present)

 complete[bucket] += value

 for bucket, stats in complete.items():

 complete[bucket] = stats/lenght

 return complete

def create_suspicious_nodes_dictionary(analysis, threshold=0): # We calculate the average for

every single node. use thethreshold just to set a threshold

 '''

 This function takes the dictionary "analysis" of the analysis interval of time and creates a

new dictionary that includes some new entries:

 "score" and "no_successful_jobs". it also moves all the features inside the "criteria" entry.

 We still need to compute the scores, so it is still 0.

 :param analysis: it's the dictionary on which we want to work

 :return: a dictionary with all the nodes, scores and criteria for the scores. We still need

to compute the scores, so it is still 0

 '''

 result ={}

 for node, stats_analysis in analysis.items():

 for aggr, value_analysis in stats_analysis.items():

 # if (value_analysis > threshold[aggr]): # THRESHOLD

 if node not in result:

 result[node] = {}

 result[node]['criteria'] = {}

 result[node]['criteria']['no_successful_jobs'] = float(0)

 result[node]['score'] = float(0)

 if aggr != 'success' and aggr != 'hold': ################################ EXCLUDES

Title of Notes Document here Lorenzo Lamberti

31

SUCCESS and HOLD aggregation

 result[node]['criteria'][aggr] = value_analysis

 if analysis[node]['success']==0:

 result[node]['criteria']['no_successful_jobs'] =

float(analysis[node]['hold']+analysis[node]['fail'])

 return result

def calculate_score_suspicious_nodes(suspicious_dict,average):

 '''

 This function computes the score for each node.

 The score is a weighted average and it takes in consideration the average value of the

features in a precedent interval of time (global_average)

 score = (count(feature)/global average(feature)) * weight

 NOTE: we don't take in account global_average when we compute the score for "starter" hold

reason and for the number of "no_successful_jobs"

 :param suspicious_dict: this is the initialized dictionary of the suspicious nodes, in wich

the scores are still 0

 :param average: it's the global_average, it's a reference point of a precedent interval of

time (longer than the analysis time, look at the "scale" variable)

 :return: it returns the same dictionary in wich the scores and the reasons of the scores

(criteria:features) are updated (features are divided by the global average, the score is

computed as a weighted average)

 '''

 for node, stats_analysis in suspicious_dict.items():

 for aggr, value_analysis in stats_analysis['criteria'].items():

 if aggr=='disconnections':

 # suspicious_dict[node]['criteria'][aggr]=value_analysis/(average[aggr]+1)

I INSERTED AN 1 because the

average is often Zero

 suspicious_dict[node]['score'] += scores_weight[aggr] *

(suspicious_dict[node]['criteria'][aggr]) # Just INCREMENT the score

 if aggr=='fail':

 suspicious_dict[node]['criteria'][aggr] = value_analysis / (average[aggr] + 1)

 suspicious_dict[node]['score'] += scores_weight[aggr] *

suspicious_dict[node]['criteria'][aggr] # Just INCREMENT the score

 if aggr == 'manual':

 suspicious_dict[node]['criteria'][aggr] = value_analysis / (average[aggr] + 1)

 suspicious_dict[node]['score'] += scores_weight[aggr] *

suspicious_dict[node]['criteria'][aggr] # Just INCREMENT the score

 if aggr == 'others':

 suspicious_dict[node]['criteria'][aggr] = value_analysis / (average[aggr] + 1)

 suspicious_dict[node]['score'] += scores_weight[aggr] *

suspicious_dict[node]['criteria'][aggr] # Just INCREMENT the score

 if aggr == 'resources':

 suspicious_dict[node]['criteria'][aggr] = value_analysis / (average[aggr] + 1)

 suspicious_dict[node]['score'] += scores_weight[aggr] *

suspicious_dict[node]['criteria'][aggr] # Just INCREMENT the score

 if aggr == 'starter':

 # suspicious_dict[node]['criteria'][aggr] = value_analysis / (average[aggr] + 1)

 suspicious_dict[node]['score'] += scores_weight[aggr] *

suspicious_dict[node]['criteria'][aggr] # Just INCREMENT the score

 if aggr == 'no_successful_jobs':

 suspicious_dict[node]['score'] += scores_weight[aggr] *

suspicious_dict[node]['criteria'][aggr] # Just INCREMENT the score

 return suspicious_dict

def print_suspicious(suspicious_dict):

Title of Notes Document here Lorenzo Lamberti

32

 '''

 This function prints the list of suspicious nodes sorted by the score

 :param suspicious_dict: dicionary to print of the suspicious nodes

 :param score_threshold: threshold for the score. default value is 1.0

 '''

 # Creating a list (node,score) just to sort by scores

 suspicious_list = list()

 for node, stats_analysis in suspicious_dict.items():

 if suspicious_dict[node]['score'] > 0: # If we have a score > 0 we put the node on a

separate list

 suspicious_list.append([node, suspicious_dict[node]['score']])

 # Sorting the list by scores

 suspicious_list = sorted(suspicious_list,key=itemgetter(1), reverse=True) # sorting elements

of the list

 #Printing time intervals of Analisys and Average

print('__

__')

 print('\n\t\t\t\t start_time \t\t\t end_time')

 print('Analysis:\t\t', start_time_analysis-datetime.timedelta(hours=GMT),'\t',

end_time_analysis-datetime.timedelta(hours=GMT),

 '\nAverage:\t\t', start_time_average-datetime.timedelta(hours=GMT),

'\t',end_time_average-datetime.timedelta(hours=GMT))

 # Printing the elements of the dict sorted by scores

 print('\nTop Suspicious Nodes Scores:\n')

 print("%37s\t%10s\t%15s\t%10s\t %10s\t%10s\t%10s\t%10s\t%15s " % ("node:", "score:", "fail",

"manual", "resources", "others","starter", "disconn.", "no succ. jobs"))

 for elem in suspicious_list:

 if elem[1]>score_threshold:

 print("%37s\t%10.2f\t%15.2f\t%10.1f\t %10.2f\t%10.2f\t%10.2f\t%10.2f\t%15.2f " %

 (elem[0],

 elem[1],

 suspicious_dict[elem[0]]['criteria']['fail'],

 suspicious_dict[elem[0]]['criteria']['manual'],

 suspicious_dict[elem[0]]['criteria']['resources'],

 suspicious_dict[elem[0]]['criteria']['others'],

 suspicious_dict[elem[0]]['criteria']['starter'],

 suspicious_dict[elem[0]]['criteria']['disconnections'],

 suspicious_dict[elem[0]]['criteria']['no_successful_jobs'])

)

def get_blackholes(analysis_dictionary, global_average):

 '''

 This function sets the interval of time for the analysis and for the average

 Then it gets data from elasticsearch and creates a dictionary with the suspicious nodes

 It returns a dictionary of the suspicious nodes with their scores

 NOTE: Here we set the average_time interval through the "scale" variable

(=analysis_time/scale)

 example: if we set a scale of 0.25, the average time will be four times longer than the

analysis time

 :param end : end time for the analysis

 :param term_to_search : The data will be aggregated according to this term. Type

"MachineAttrMachine0" to aggregate by nodes, type "MachineAttrGLIDEIN_Site0" to aggregate by

Sites

 :param query : you can pass here a specific query, for example with

"MachineAttrMachine0: fnpc17146.fnal.gov" you will get only informations about that specific node

 :return : dictionary of the suspicious nodes with their scores

 '''

 # Get suspicious nodes

 suspicious_nodes_dictionary = create_suspicious_nodes_dictionary(analysis_dictionary)

 # Calculate Scores and Sort the List

Title of Notes Document here Lorenzo Lamberti

33

 suspicious_nodes_dictionary =

calculate_score_suspicious_nodes(suspicious_nodes_dictionary,global_average) # it returns a list

with (node,score) and add the scores to the suspicious_nodes_dictionary

 return suspicious_nodes_dictionary

def create_blackholes_database(term_to_search, query, year, month, days_range, hours_range,

minutes_range):

 '''

 creates an ordered Dict of the suspicious nodes.

 The difference between the previous one is that now we keep track of the time at which we

detected the blackholes

 :param term_to_search : The data will be aggregated according to this term. Type

"MachineAttrMachine0" to aggregate by nodes, type "MachineAttrGLIDEIN_Site0" to aggregate by

Sites

 :param query : you can pass here a specific query, for example with

"MachineAttrMachine0: fnpc17146.fnal.gov" you will get only informations about that specific node

 :param year : insert the year for the analysis time

 :param month : insert the month for the analysis time

 :param days_range : insert the day range for the analysis time

 :param hours_range : insert the hours range for the analysis time

 :param minutes_range : insert the minutes range for the analysis time

 :return : an ordered dictionary with time division, list of suspicious nodes

and their scores

 '''

 blackholes_database = OrderedDict()

 for day in days_range:

 for hour in hours_range:

 for minutes in minutes_range:

 set_time_intervals(year, month, day, hour, minutes)

 analysis_dictionary, average_dictionary, global_average =

get_elasticsearch_data(term_to_search, query)

 blackholes = get_blackholes(analysis_dictionary, global_average)

 # print_suspicious(blackholes)

 blackholes_database.update({start_time_analysis - datetime.timedelta(hours=GMT):

blackholes})

 return blackholes_database

def print_blackholes_database(blackholes_database):

 '''

 this function prints all the suspicious nodes divided by the time ranges of analysis

 :param blackholes_database: ordered dictionary to print

 '''

 for time, blackholes_temp in blackholes_database.items():

 for node, status in blackholes_temp.items():

 if status['score'] > score_threshold: #if i have at least 1 node with score>threshold

then i do:

 set_time_intervals(time.year, time.month, time.day, time.hour, time.minute)

 print_suspicious(blackholes_temp)

 break

MANUAL RANGE

client = Elasticsearch('https://fifemon-es.fnal.gov', timeout=120)

TIME VARIABLES:

year = 2018

month = 9

day = 18

hour = 12

minutes = 0

set_time_intervals(year,month,day,hour,minutes)

Title of Notes Document here Lorenzo Lamberti

34

term_to_search="MachineAttrMachine0"

analysis_dictionary, average_dictionary, global_average =

get_elasticsearch_data(term_to_search, query=None)#

print('\nGlobal averages: ')

for key, value in global_average.items():

print('%15s %10.3f' % (key, value))

print('\nScore Threshold:\t',score_threshold)

print('\nAnalysis_time:\t\t', time_analysis, 'm') # Printing the time intervals considerated

blackholes = get_blackholes(analysis_dictionary, global_average)

print_suspicious(blackholes)

Blackhole Nodes intentification

client = Elasticsearch('https://fifemon-es.fnal.gov', timeout=120)

print('\nScore Threshold:\t',score_threshold) # Printing the threshold for the score

print('\nAnalysis_time:\t\t', time_analysis, 'm') # Printing the time intervals considerated

print('\n\n ### BLACKHOLE NODES

###')

term_to_search="MachineAttrMachine0"

query=None

score_threshold = 100 # Tolerance

blackholes_database = create_blackholes_database(term_to_search, query, year, month, days_range,

hours_range, minutes_range)

print_blackholes_database(blackholes_database)

print()

