2= Fermilab

Fermi National Accelerator Laboratory

2018/2019

Fermilab Summer School 2018

Final Report

Black Holes Detection in Fermilab’s Global
Computing Grid

Intern: Supervisor:

Lorenzo Lamberti Kevin Retzke

“R\ U.S. DEPARTMENT OF Oﬁ'ce of

\ EN ERGY Science

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science www.fnal.gov

Title of Notes Document here Lorenzo Lamberti

Abstract

There are a lot of great challenges for utilizing widespread distributed computing resources (for
example Open Science Grid, Cloud computing and High Performance Computing) through a
scheduling/queueing system.

One of the main issues is the detection of faulty nodes of the grid, that are called blackholes,
because they cause failure of the jobs submitted to the distributed system. It’s important to
detect these nodes as soon as possible to not waste computing resources and to minimize the
number of failed jobs that are not due to user errors.

The aim of this work is to develop algorithms to analyze monitoring data streams from

Fermilab’s global computing grid in order to rapidly detect and identify aberrant conditions.

Fermi National Accelerator Laboratory

Title of Notes Document here Lorenzo Lamberti

Summary
1. Working Environment 5
2. Training required 7
1. Learn Python programming language: 7
2. Understanding Landscape’s monitoring tools: 7
3. FIFE’s data exploration through Grafana and Kibana 7
3. Challenges 8
3.1 Challenge 1 8
3.2 Challenge 2 12
3.3 Challenge 3 12
3.4 Challenge 4 13
3.5 Challenge 5 16
4, Blackhole Detection 18
4.1 What s a Blackhole 18
4.2 How to detect a Blackhole 18
4.3 Data Exploration & Features Extraction 19
4.4 Blackhole Node Detection: approach 20
4.5 Blackhole Node Detection: attempts 21
1. First Attempt 21
2. Second Attempt 22
4.6 Blackholes Database 23
5. Results 23
6. Implementation 25
7. Future work 26
1. A more accurate training: 26

Fermi National Accelerator Laboratory

Title of Notes Document here Lorenzo Lamberti

2. Integration of a control over transfer fails: 26
3. Integration of a control over sites and users: 26
8. Code 27

Fermi National Accelerator Laboratory

Title of Notes Document here Lorenzo Lamberti

1. Working Environment

The data of Fermilab’s experiments are processed through Fermilab’s Global Computing
Grid. The term “Grid Computing” indicates the usage of distributed computing resources
that work through a scheduling/queueing system. This system in particular is widespread all

over the world.

FIFE (Fabrique For Frontier Experiments) is a high-level project that provides offline
computing services for all Fermilab’s experiments.
Landscape is a project born with the intention to create a monitoring system for FIFE and

other scientific computing services at Fermilab.

-
DTy

.mwxfﬁw

,/\/_A/-\/\“/\/\/\

There are a lot of data to analyze in this complex system and some graphic tools are very
useful to gather information. Grafana and Kibana software are used for the visualization of

collected data from FIFE:

Fermi National Accelerator Laboratory

Title of Notes Document here Lorenzo Lamberti

— Grafanais used for a general overview

— Kibana is useful for a more in-depth look

{ ‘kibana
Grafana

Both Kibana and Grafana work on Elastisearch’s server: it stores detailed documents and

logs about the jobs submitted. Its data storage engine is Apache Lucene. The data on this

server is organized in indices and fields.

elasticsearch

All the algorithms implemented are written through the Python programming language.

Fermi National Accelerator Laboratory

Title of Notes Document here Lorenzo Lamberti

2.Training required

All the environments listed before require a proper training to better understand all the tools
available for the analysis of data. If none of these tools are already familiar to the user, this

should be the chronological path to be followed:

1. Learn Python programming language:
1. Google’s online python class;
2. Python programming course by Marco Mambelli.
2. Understanding Landscape’s monitoring tools:
— Elasticsearch database;
— Grafana software;
— Kibana software.
3. FIFE’s data exploration through Grafana and Kibana

— Understanding data structure;

— Learn JSON queries language;

Fermi National Accelerator Laboratory

Title of Notes Document here Lorenzo Lamberti

3. Challenges

In order to get familiar with all the tools available for the analysis and explore FIFE’'s monitoring
data it was set up a list of challenges to be accomplished. This chapter is going through every
challenge followed by the answer to the question, the source of the data and code written (if the

graphic tools Kibana and Grafana were not sufficient to answer to the question).

3.1 Challenge 1

1. How many jobs were run in the past week?
Source of the data: fifebatch-history-*
It was just counted how many jobs were present in this index of memory. The output is a

number (no graphs).

2. How many succeeded (exit code 0) and how many failed?
Source of the data: fifebatch-history-*
It was put a double filter for successful jobs (Exit Code=0) and failed jobs (Exit Code!=0).

The result is displayed with both Grafana (count over time) and Kibana (total count)

Jobs succeeded / failed

8/8 8/9 8/10 8/m 8/12 813 8/14

Grafana Kibana

3. What experiment ran the most jobs?
Source of the data: fifebatch-history-*
Aggregation by: Jobsub_Group

Fermi National Accelerator Laboratory

Title of Notes Document here

Lorenzo Lamberti

The result is displayed with both Grafana (count over time) and Kibana (total count):

Grafana

Kibana

[

What experiment ran the most jobs
50K

40K

30K

20K

10K

el shnd

darkside minerva [I“n’é m 2
lariat > nova o gml; mﬁ uboone

Table -

Jobsub_Group: Descending
dune

mu2e

minerva

lariat

uboone

nova

minos

gm2

des

icarus

4. What was the average walltime?

Source of the data: fifebatch-history-*

Aggregation by: Jobsub_Group

- Minerva 198.7K
dune 187.2K
gm2 180.8 K

- NOVa 120.3K

- MmuZe 117.8K

- MINOS 101K

== Uuboone 84.0K

= lariat 288K

- Marsmue 15.9K

= annie 10.0K

- des 82K

- cdf 31K

- icarus 24K

- marsgm2 20K

== sbnd 14K

Count
168,674
132,324
128674
21,826
79,417
67,749
67,421
63,219
12,812

8,668

The result displayed on Kibana is the average Committed Time (wall time) for every

experiment.

Fermi National Accelerator Laboratory

Title of Notes Document here Lorenzo Lamberti

The wall time is the actual time taken from the start of a computer program to the end. In
other words, it is the difference between the time at which a task finishes and the time at
which the task started on the Grid.

Average CommittedTime

Jobsub_Group: Descending Average CommittedTime
cdf 18.12
dune 2.22
minerva 212
mule 1.94
gm2 1.48
des 1.24
seaquest 1.18
uboone 0.81
nova 0.77
darkside 0.66

timexn®
5. What was the overall CPU efficiency for all jobs (Cpu amen cores) ?

walltime

Source of the data: fifebatch-history-*
Aggregation by: Jobsub_Group

This result needed the combination of three different information:

Fermi National Accelerator Laboratory

10

Title of Notes Document here

CpuTime: how much time (seconds) the CPU was busy

— NP° Cores: number of cores of the Grid’s nodes

Lorenzo Lamberti

Walltime: average time (seconds) in which the experiment was running on the Grid.

Walltime

o @ n° of CPU
@ CPUtime_1
N ® CPUtime_2
mu2e EFFICIENCY:
CommittedTime_dict : 256959.99
RequestCpus_dict : 1.0 dune 1.4510446440455007
RemoteSysCpu_dict : 4444.66 minerva 1.367907158302796
RemoteUserCpu_dict : 212680.43 mu2e 1.1834652621239644
g gm?2 1.5771239620829476
une
uboone 1.3327282482045406
CommittedTime_dict : 374501.34
cdf 1.485566431028936
RequestCpus_dict: 1.42 nova 1.3144842954757536
RemoteSysCpu_dict : 10852.28 lariat 1.016526965315123
RemoteUserCpu_dict : 356118.46 minos 1.0473985215982602
des 2.4452951469652624

Fermi National Accelerator Laboratory

11

Title of Notes Document here Lorenzo Lamberti

For this reason it was used the low-level Elasticsearch library to get the data from
Elasticsearch’s server: this allows to write complex queries and they can be used in different
languages/libraries, e.g Kibana.

The result displayed is the output of the code written in Python

3.2 Challenge 2

1. What node had the most failed jobs in the past week?
Source of the data: fifebatch-history-*
Aggregation by: MachineAttrMachine0

Failed or Held Jobs by Node
MachineAttrMachine0 Count »

fnpc5022.fnal.gov

fnpc9027.fnal.gov

ﬁl

]
b=

fnpc4530.fnal.gov
CRUSH-0SG-10-5-87-174

fnpc5030.fnal.gov

X
&

fnpc9075.fnal.gov

-
(2]
w

fnpc17147.fnal.gov
fnpc9041.fnal.gov

fnpc17105.fnal.gov

EE

—
&

fnpc17157.inal.gov

T ET

3.3 Challenge 3

1. What site had the most disconnected jobs in the past week?
Source of the data: fifebatch-events-*
Aggregation by: MachineAttrGLIDEIN_SiteO
The jobs were filtered by “event type number 22” that indicates an event of

disconnection.

Fermi National Accelerator Laboratory

12

Title of Notes Document here

Count

FermiGrid

3.4 Challenge 4

W X
Wisconsin

MotreDame

MNebraska

CERM

MachineAttrGLIDEIN Site0:
FermiGrid

SU-ITS

Wisconsin

NotreDame

Nebraska

CERN

London

UChicago

ucso
BrL

L
UChicago

1. How many files were transferred in the past day?

Source of the data: fife-dh-*
Aggregation by: ifdh_event_type

It was considered just 3 transfer event types:

e starting transfer
e transferred

e failed transfer

Omaha

MIT

Lorenzo Lamberti

Count
60,301
5,105
4217
426
297

56

Fermi National Accelerator Laboratory

Title of Notes Document here Lorenzo Lamberti

80.000

70,000

€ @ starting_transfer
@ transferred
@ failed_transfer

50.000

50.000

hMMMMMM

Count

01:00 04:00 07:00 10:00 13:00 16:00
ifdh_event_type: Descending = Count =
starting_transfer 1,065,955
transferred 991,809
failed_transfer 5,011

2. How many transfers were made to/from the dCache?
Source of the data: fife-dh-*
Data filtered by destination and source path to recognize if it’s a transfer to/from dCache
(the directory of dCache is “pnfs”):
e To dCache fetered by DestPath: *pnfs*
e From dCache filtered by SourcePath: *pnfs*

The results are displayed on Kibana over the last day:

Fermi National Accelerator Laboratory 14

Title of Notes Document here

120,000

100,000

80,000

Count

60,000

40,000

20,000

]

Lorenzo Lamberti

© ®TodCache
@ from dCache

i Ill|| ..Ih.mn“

01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00

3. Create a histogram of transfer times
Source of the data: fife-dh-*

Aggregation by: transfer_time

The graph on Grafana displays the how many jobs (y-axes) took a certain amount of time

(x-axis, in seconds) to be fully transferred in the last day. We can see that most of the jobs

are transferred within 14 seconds.

600K

500K

300K

200K

100K

0

0123456789 10111213141516171819202122232425262728293031323334353637383940414242

Fermi National Accelerator Laboratory

15

Title of Notes Document here

3.5 Challenge 5

1. For a given job, calculate how much time was spent transferring input/output to job

Source of the data: fife-dh-*

Lorenzo Lamberti

Data filtered by destination and source path to recognize if it’s a transfer to/from dCache:

e To dCache filtered by NOT SourcePath: *pnfs*

From dCache filtered by SourcePath:*pnfs*

The result displayed is a graph in Kibana that shows both information:

....... To dCache
® from dCache

For a given job, calculate how much time was spent running (CPU time) and the Walltime

Source of the data: fifebatch-history-*

The wall time is the actual time taken from the start of a computer program to the end.
The CPU time is the time in which the job was actually running on a CPU. It’s divided in

RemoteSysCpu (CPUtime_1) and RemoteUserCpu (CPUtime_2)

Fermi National Accelerator Laboratory

16

Title of Notes Document here

Sum of RequestCpus

Lorenzo Lamberti

Sum of CommittedTi..
@ CPUtime_1
® CPUtime_2

3. For agiven job, calculate how much time was wasted

Source of the data:

fifebatch-history-* for CPU time and walltime

fife-dh-* for

the transfer time

The formula to calculate the wasted time is:

Wasted_time = Walltime — (CPU time + Transfer_Time)

The output is an example for a specific job (JobsubJobld: 10834906):

CommittedTime

CommittedTime:
RemoteSysCpu
RemoteUserCpu:

transfer time:

Wasted time in

in seconds, CpuTime in seconds, transfer time in seconds:

20364.0
35.0
20198.0
86.64

seconds: 44.36

Fermi National Accelerator Laboratory

17

Title of Notes Document here Lorenzo Lamberti

4. Blackhole Detection

The aim of this section is to develop a program that identifies potential black hole nodes and

sends an alert.

4.1 What s a Blackhole

We have two possible definitions for a blackhole:

1. Nodes or sites with high number of failed, held or disconnected jobs that are not user error.
We don’t want to start more jobs on these nodes because they are malfunctioning.
2. Job clusters with high failure rate due to user error. We don’t want to start more jobs on

these nodes since they will just waste resources.

(b)

A

y
-~ " “ ’ =
Cluster Monitor's 42— .

4

Master Node L.t
Cluster Monitor .~ ok Cluster Monitor
AL - V 40 p

=
- ‘
X
-~
. e ®
. .Mal:cious Node

4.2 How to detect a Blackhole
Indications of a Blackhole node:
e High rate of failed jobs: Exit code # 0
e High rate of held jobs: Jobs not finished for an error
e High rate of disconnections: Data exchange interrupted
e dCache issues: Transfer Fails
e No successful jobs recently: a high rate of held and failed jobs without any successful
jobs

The transfer fails will not be considered in this analysis.

Fermi National Accelerator Laboratory

Title of Notes Document here Lorenzo Lamberti

4.3 Data Exploration & Features Extraction

To find the best data suitable for the analysis it was necessary to explore every index type and
field in the memory database.

The fifebatch-events index contains all the data necessary for a preliminary approximation: it

has HTCondor event logs collected in real time.

The features extracted from this index of memory are:
e How many succeeded jobs we had
e How many failed jobs we had
e How many held jobs we had, divided into different “hold reason” codes

e How many disconnections we had

The hold reasons were divided because some of them are more crucial than others:
e Manual Hold reason: the user manually hold his jobs, it is usually not an issue;
e Resources Hold reason: the jobs are hold because they are exceeding the limit of the
resources assigned (memory available, too much processing time, number of CPU etc...);
e Starter Hold reason: the jobs do not start on the worker node, it is usually the biggest
issue;

e Other Hold reasons: this groups all the other hold reason codes.

So, the final features extracted are listed in the following figure:

Manual hold
Others hold
@ Resources hold
® Starter hold
@ disconnections
@ fail
hold 40
® success

Count

.tnu,lmjmmmmﬂmu_

Fermi National Accelerator Laboratory 19

Title of Notes Document here

4.4 Blackhole Node Detection: approach

Lorenzo Lamberti

For the detection of the blackholes it was implemented a double “sliding window” over the

entire day. We consider a time window for the analysis of the data and another time window as

a reference point. Once the analysis is terminated both windows are moved forward in time.

1. Analisys Window:

In this short time interval the features listed before are analyzed for each node in the grid to

detect aberrant conditions. Produces a “total count” for each feature. The time interval

selected for the analysis is 30 minutes.

2. Average Window:

This longer time interval is used to calculate the average of each feature in order to create a

reference for the analysis window. In particular, it produces a reference value called the

Global Average for each feature: it’s the average computed considering the values from all

the nodes. The time interval selected for the average is 2 hours.

Average Window Analysis Window

Pl

WWWM\WWWHW

Average Window

Analysis Window

—

.\WW

An example of Global Average computed for a generic node is shown in the following

figure:

Fermi National Accelerator Laboratory

20

Title of Notes Document here

Global averages:
disconnections
fail

hold

manual

others
resources
starter

success

0N

00 0 0 0 0O

.922
14.
.183
.000

335

.000
.183
.000
.382

Lorenzo Lamberti

4.5 Blackhole Node Detection: attempts

1. First Attempt:

As a first try was set a threshold (in this case the global average) for each feature.

If a node gets over this value it was printed the corresponding problem.

if total count(feature) > global average(feature): Trigger!

Here is an example of the python script’s output that performs this analysis: we can see

three nodes that had 11 or 8 jobs held with a resource error versus an average (threshold)

of 0.1. All these nodes were labelled as possible blackholes.

Too many held jobs by resources:

number of rescurces jobs: 11.0 vs|glokal average:
number of rescurces jobs: 11.0 vs|glokal averags:
number of resources jobs: 8.0 vslglobal average:

fnpeT017.fnal.gov
fnpe9050.fnal.gov
fnpeT7009. fnal.gov

Suspicious nodes

The problem of this method is that it considers each feature separately, it doesn’t combine

them all.

Fermi National Accelerator Laboratory

21

Title of Notes Document here Lorenzo Lamberti

2. Second Attempt:
This attempt tries to make an analysis that considers all the features combined.

It was computed a weighted average for each node over all his features in this way:

total count(feature)

e |t was given to each node and feature a score = ;
global average(feature)

e It was then given each score a weight and it was made a linear combination of all

these values.

Total_Score = Z score(feature) » weight(feature)

features

Here is an example of the python script’s output that performs this analysis: from the
left to the right there is the list of suspicious nodes, than the list of the scores and
finally the reason of the scores.

We can see two nodes have a very high score (respectively 3460 and 1555) that is due
to a high rate of disconnected jobs, and the node fnpc9027 that has a score of 71
because it has not any successful job. All these nodes were labelled as possible

blackholes.
start_time end time
Analysis: 2018-09-17 16:30:00 2018-09%-17 17:00:00
Average: 2018-09-17 15:30:00 2018-09-17 16:30:00

Pt - Py

z/ ~ Vg Soo
/ \, 4 g
4 node: '\ 'I score:

fail manual resources others starter ,“disconn.\ no succ. jobs

s

:'I fnpceSl4.fnal.gov Y[3460.00 ‘\‘ 0.00 0.0 0.00 0.00 0.00 { esz.00 0.00
| £npc5020.fnal.gov |}l 1555.00 | 0.00 0.0 0.00 0.00 0.00 311,007 0.00
\ £npc9027.fnal.gev [\ 71.63 K 0.00 0.0 9.53 0.00 0.00 5,00 12.00

! 12.35 0.0 4.7¢ 0.00 0.00 0.00 0.00

~

4
\ rpes105. fnal . gov, s \\ 25.05

I\

‘‘‘‘‘‘ - R

Suspicious nodes

This was the analysis type implemented and then iterated over more hours/days. The

code used for the analysis is shown in section number 8.

Fermi National Accelerator Laboratory

22

Title of Notes Document here Lorenzo Lamberti

4.6 Blackholes Database
The full list of the suspicious nodes was saved in a unique dictionary called
blackholes_database structured as following:

e Intervals of time analyzed;
e Suspicious node list inside a certain interval of time;

e Score of each node and reason (criteria) of the score;

This structure is shown in the figure below:

= blackholes database 'score’ = {float} 9.976322020520916

> = 2018-09-17 00:30:00 >

> = 2018-09-17 01:00:00 > = Tnpc/012algov

> = 2018-09-17 01:30:00 > = fnpc6017.fnal gov 1) "no_successful_jobs’ (2731673845952) = {float]
> = 2018-09-17 02:00:00 > = 'fnpc7003.fnalgov) ‘disconnections' (2731720324144) = {int} 0

‘fail’ (2731718298176) = {float] 0.0

‘manual’ (2731718296160) = [float} 0.0

‘others' (2731718296776) = {float} 0.0
‘resources’ (2731720324080) = {float} 0.997632
‘starter’ (2731718298512) = {int} 0

5.Results

In this section are reported some examples of the results obtained with this implementation.
The threshold for the score was set to 100 to minimize the number of false positives.
The time for the analysis was 30 minutes and the the time for the average was 2 hours.

The weights used are the following:

scores_weight={'disconnections': 5,
'fail': 0.1,
'manual': O,
'others': 10,
'resources': 10,
'starter': 500,
'no_successful jobs': 2

}

Fermi National Accelerator Laboratory

23

Title of Notes Document here Lorenzo Lamberti

e 17t September there were four confirmed blackholes:
The nodes fnpc5020 and fnpc4514 had a very high score due to an high disconnection rate
(269 and 179 jobs disconnected in just 30 minutes)
The nodes fnpc9071 and fnpc9073 had zero successful jobs in the 30 minutes of analysis

and respectively 32 and 103 jobs were held.

start_time end_time
Znalysis: 2018-09-17 13:00:00 2018-09-17 13:30:00
Average: 2018-09-17 12:00:00 2018-09-17 13:00:00

Top Suspicious Nodes Scores:

node: score: fail manual resources others starter disconn. no succ. jobs

fnpc5020. fnal.gov 1345.00 0.00 0.0 0.00 0.00 0.00 269.00 0.00
fnpc4514.£fnal.gov 895.04 0.44 0.0 0.00 0.00 0.00 179.00 Q0
fnpcS071.fnal.gov 380.36 0.00 0.0 0.00 31.¢64 0.00 0.00 3z2.00
fnpcS073.fnal.gov 22.76 0.0 0.00 0.00 0.00 0.00 103.00

21.22 0.0 0.00 0.00 0.00 0.00 S6.00

e 26'™ September there were four confirmed blackholes:

In this case we had 2 blackholes due to several held jobs with a starter error, that is usually

the most weighted type of error: in fact the scores of the nodes are over 3k.

start_time end_time
Analysis: 2018-059-26 17:00:00 2018-09-26 17:30:00
Average: 2018-09-26 15:00:00 2018-09-26 17:00:00

Top Suspicious Nodes Scores:

node: score: fail manual resources others starter disconn no succ. jobs
fnpc7009.fnal.gov 4016.00 0.00 0.0 0.00 0.00 8.00 0.00 8.00
fnpc5002.fnal.gov 3517.49 0.96 0.0 1.74 0.00 7.00 0.00 0.00

e 12t September there was one confirmed blackhole:
The node fnpc9054 had zero successful jobs in the 30 minutes of analysis and 20 jobs were
held for the lack of resources. Even if the numbers are significantly smaller than before, the

algorithm recognized this blackhole.

Fermi National Accelerator Laboratory

Title of Notes Document here Lorenzo Lamberti

e
start_time end_time
Analysis: 2018-09-12 19:00:00 2018-09-12 19:30:00
Averags: 2018-09-12 18:00:00 2018-09-12 19%:00:00
Top Suspicious MNodes Scores:
node: SCore: fail manual resources others starter disconn. no succ. jobs
I fnpc9054.fnal.gov 174.26 0.00 0.0 13.43 0.00 0.00 0.00 20.00
6 I I i
.Implementation

The algorithm created was then implemented to run on a Slack channel in real-time. The scan
for any new suspicious node is repeated every 5 minutes and in the output is reported just the

final score of the suspicious nodes:

o/ blackhole detector APP 6:16 AM
¥ o fnpc?069.fnal.gov 122.146909090920909

fnpc4506.fnal.gov 25.447272727272725
fnpc6015.fnal.gov 76.26483613817538
fnpc?064.fnal.gov 96.60212577502215

~s" blackhole detector APP 11:11 PM
o fnpc7310.fnal.gov 34.265479815725776

o/~ blackhole detector APP 11:16 PM
o fnpc7205.fnal.gov 46.36476092300373

This is just an alert and the nodes shall be checked manually to verify if they are effectively

malfunctioning.

Fermi National Accelerator Laboratory

25

Title of Notes Document here Lorenzo Lamberti

7. Future work

There are a lot of things in this algorithm that need to be improved:

1. A more accurate training:
There are some parameters that could be adjusted to make the algorithm more precise, for
example the weights of the weighted average, the windows sizes (for both analysis and

reference) and the threshold for the detection.

2. Integration of a control over transfer fails:
Until now we considered a very small set of possible blackholes because the anomalies
considered are related to failed jobs, held jobs and disconnected jobs. It’s possible to
extend the analysis over possible transfer fails, that are usually dCache problems, and over

the transfer time (that shouldn’t be too long)

3. Integration of a control over sites and users:
The algorithm could be trained also to reveal faulty sites and users: for the moment it is

considering only suspicious nodes.

Fermi National Accelerator Laboratory

26

Title of Notes Document here Lorenzo Lamberti

8. Code

LIBRARIES

from elasticsearch import Elasticsearch
from elasticsearch dsl import Search,Q
from operator import itemgetter

import datetime

from collections import OrderedDict

GLOBAL VARIABLES
global term to search

PARAMTERS:
numebr of nodes_analyzed = 1000

SCORES WEIGHTS:

score_threshold = 30 # Tolerance
scores_weight={'disconnections': 5,
'fail': 0.1,

'manual’': O,

'others': 10,
'resources': 10,
'starter': 500,
'no_successful jobs': 2

}

TIME VARIABLES:

time_analysis =30

year = 2018

month = 9

days_range=range (12,28)
hours_range=range (0, 24)

minutes range=range (0,60,time analysis)

scaling factor = 0.25 # Sets time for the average window=time analysis/scaling factor

GMT = 5 # It's -5 hours for Chicago

tHE#HAAAFFRAAAFFHAAAAFFRAA A HAAAAFARAA A #F##A####4## Functions Definition
FHEHHAAAFHRAAAFFRAA A FHRAAAFFRAA A FRAAAAFFRAAAFFRAAAAAF

def set time intervals(year temp, month temp, day temp, hour temp, minutes temp) :
global start time analysis
global end time analysis
global end time average

global start time average

TIME FOR ANALYSIS

start time analysis = datetime.datetime (year temp, month temp, day temp,
hour temp,minutes_temp) + datetime.timedelta (hours=GMT)
end_time analysis = start time analysis + datetime.timedelta(minutes=time analysis)

TIME FOR AVERAGE

end time average = start time analysis

start time average = end time average - datetime.timedelta (minutes=time analysis /
scaling factor)

return start time analysis, end time analysis, start time average, end time average

def get elasticsearch data(term to search, query):
i
This function creates the "global average"”" and two dictionaries:
- The "analysis dictionary" collects the data for the analysis
- The "average dictionary" collects the data in order to create a reference point

Fermi National Accelerator Laboratory 27

Title of Notes Document here Lorenzo Lamberti

the average dictionary needs to be normalized because it takes in account a time interval
much bigger compared to the analysis time (look at the '"scale" variable)

:param term to search : The data will be aggregated according to this term. Type
"MachineAttrMachine(O" to aggregate by nodes, type "MachineAttrGLIDEIN Site0O" to aggregate by
Sites

:param query : you can pass here a specific query, for example with

"MachineAttrMachineO: fnpcl7146.fnal.gov" you will get only informations about that specific node

:var analysis dictionary : is the dictionary of nodes under analysis. it takes the time
interval between (start time analysis ; end time analysis)

:var average dictionary : 1s the dictionary of average features of each node. it takes the
time interval between (start time average ; end time average)
:var global average : 1s a dictionary in which we save the average value for every

feature. every average value considers the data from all the nodes

:return : the function returns these three dictionaries:
analysis dictionary,average dictionary, global average

men

1: analysis dictionary is the dictionary of nodes under analysis
analysis dictionary = get fifebatch events(start time analysis, end time analysis,
'fifebatch-events-*', term to search, query=None)

2: average dictionary is the dictionary of average features of each node in a previous time
interval

average dictionary = get fifebatch events(start time average, end time average, 'fifebatch-
events-*', term to search, query=None)

Normalization: multiplies by scaling factor (to compensate the fact that the time window is
bigger = much more informations)

for node, stats in average dictionary.items():

stats.update ((k, v * scaling factor) for k, v in
average_dictionary[node].items()) # Scaling factor is for normalization

over time

Compute global average of nodes values

global average = calculate global average (average_dictionary)

return analysis dictionary, average dictionary, global average

def get fifebatch events(start, end, fife index, term to search, query=None): ##initialization

between brackets
rr

This function makes a query to elasticsearch server

:param start : start time for the query to elasticsearch

:param end : end time for the query to elasticsearch

:param fife index : string that provides the index name in which i'm searching the data

:param term to search : The data will be aggregated according to this term. Type
"MachineAttrMachine(O" to aggregate by nodes, type "MachineAttrGLIDEIN Site0O" to aggregate by
Sites

:param query : you can pass here a specific query, for example with

"MachineAttrMachineO: fnpcl7146.fnal.gov" you will get only informations about that specific node

:var number of nodes analyzed : it's the number of nodes that will be analyzed
:var query events : JSON query to the elasticsearch server

:return complete : returns a dictionary with the full 1list of nodes and their features
rr

query events = {
"size": O,
"query": {
"bool": ({
"must": [
{
"match all": {}
}l
]I
'filter': [{'range': {'@timestamp': {"gte": start, "lte": end}}}],

Fermi National Accelerator Laboratory 28

Title of Notes Document here

"must_not": []

}

"_source": {
"excludes": []
}I
"aggs": {
"node": {
"terms": {
"field": term to_search,
"size": numebr of nodes analyzed,
"order": ({
"_count": "desc"
}
}I
"aggs": {
"status": {
"filters": {
"filters": {

"hold": {

"query string": {
"query":
"analyze wildcard": True

}

}I
"fail": {

"query string": {

"query":
ReturnValue:0",
"analyze wildcard": True

}

}I
"success": {
"query string": {
"query":
"analyze wildcard": True
}
}I

"disconnections": {
"query string": {
"query": "MyType:

"analyze wildcard": True
}
}l
"manual": {
"query string": {
"query":
"analyze wildcard": True
}
}l

"resources": {
"query string": {
"query": "HoldReasonCode:

"analyze wildcard": True
}
}I
"starter": {
"query string": {
"query":
"analyze wildcard": True
}
}I
"others": ({
"query string": {
"query":
6 26 34))",
"analyze wildcard": True

"HoldReasonCode:

"HoldReasonCode:

Lorenzo Lamberti

"MyType :JobHeldEvent",

"MyType: JobTerminatedEvent AND NOT

"MyType: JobTerminatedEvent AND ReturnValue:0",

JobReconnectFailedEvent",

(34 26)",

va,

"MyType: JobHeldEvent AND (NOT HoldReasonCode:

(1

Fermi National Accelerator Laboratory

29

Title of Notes Document here Lorenzo Lamberti

}

if query is not None:

query events['query']['bool']['must'] = {'query string': {'query': query}}
r = client.search(fife index, body=query events)
print (r , '"\n\n'")
complete = {}
for node in r['aggregations']['node']['buckets']:
print vo
complete[node['key']] = {}
for status, stats in node['status']['buckets'].items():
complete[node['key']] [status] = stats['doc count']

print (complete)
return complete

def calculate global average (dictionary):
rr
This function computes the global average.
We get a dictionary from the input and then:
- we sum up the values of every node for every feature
- we divide the sum obtained by the number of the nodes (:var lenght)

:param dictionary : it's the dictionary over which we calculate the global average
:return : we obtain a dictionary that stores the average of every feature computed
considering the values from all the nodes. This variable obtained is useful as a pint of
reference for the analysis
lenght = len(dictionary)
complete = {}
for node, status in dictionary.items():
for bucket, value in status.items():
complete.setdefault (bucket, 0) # Adds the new key with default value=0 (if not
present)
complete[bucket] += value

for bucket, stats in complete.items/():
complete[bucket] = stats/lenght

return complete

def create suspicious nodes dictionary(analysis, threshold=0): # We calculate the average for
every single node. use thethreshold just to set a threshold

v

This function takes the dictionary "analysis" of the analysis interval of time and creates a
new dictionary that includes some new entries:

"score" and "no successful jobs". it also moves all the features inside the "criteria" entry.

We still need to compute the scores, so it is still O.

:param analysis: it's the dictionary on which we want to work
:return: a dictionary with all the nodes, scores and criteria for the scores. We still need
to compute the scores, so it is still 0
v
result ={}
for node, stats analysis in analysis.items():
for aggr, value analysis in stats analysis.items():

1f (value analysis > threshold[aggr]): # THRESHOLD
if node not in result:
result[node] = {}
result[node] ['criteria'] = {}
result[node] ['criteria'] ['no_successful jobs'] = float (0)
result[node] ['score'] = float (0)
if aggr != 'success' and aggr != 'hold': #H#HF A ARARARA AR R R R #A##### EXCLUDES

Fermi National Accelerator Laboratory

30

Title of Notes Document here Lorenzo Lamberti

SUCCESS and HOLD aggregation
result[node] ['criteria'] [aggr] = value analysis

if analysis[node]['success']==
result[node] ['criteria'] ['no_successful jobs'] =
float (analysis[node] ['hold']+analysis[node] ['fail'])

return result

def calculate score suspicious_nodes (suspicious dict,average) :

rrr

This function computes the score for each node.

The score is a weighted average and it takes in consideration the average value of the
features in a precedent interval of time (global average)

score = (count (feature)/global average (feature)) * weight
NOTE: we don't take in account global average when we compute the score for "starter" hold
reason and for the number of "no successful jobs"

:param suspicious dict: this iIs the initialized dictionary of the suspicious nodes, in wich
the scores are still 0

:param average: it's the global average, it's a reference point of a precedent interval of
time (longer than the analysis time, look at the "scale'" variable)

:return: it returns the same dictionary in wich the scores and the reasons of the scores
(criteria:features) are updated (features are divided by the global average, the score 1is
computed as a weighted average)

rr

for node, stats analysis in suspicious _dict.items():

for aggr, value_analysis in stats_analysis['criteria'].items():

if aggr=='disconnections':
suspiciousﬁdict[ﬂode]['criteria'][aggr]zvalueﬁanalysis/(average[aggr]+l)
#H### A AR AR AR RAFAFAA AR A AA A AR AR AR AR AR A #A###### T INSERTED AN 1 because the
average 1s often Zero
suspicious dict[node] ['score'] += scores weight[aggr] *
(suspicious dict[node] ['criteria'] [aggr]) # Just INCREMENT the score

if aggr=='fail':
suspicious dict[node] ['criteria'] [aggr] = value analysis / (averagelaggr] + 1)
suspicious dict[node] ['score'] += scores weight[aggr] *
suspicious_dict[node] ['criteria'] [aggr] # Just INCREMENT the score

if aggr == 'manual':
suspicious dict[node] ['criteria'] [aggr] = value analysis / (averagelaggr] + 1)
suspicious_dict[node] ['score'] += scores weight[aggr] *
suspicious_dict[node] ['criteria'] [aggr] # Just INCREMENT the score

if aggr == 'others':
suspicious dict[node] ['criteria'] [aggr] = value analysis / (averagelaggr] + 1)
suspicious_dict[node] ['score'] += scores weight[aggr] *
suspicious_dict[node] ['criteria'] [aggr] # Just INCREMENT the score

if aggr == 'resources':
suspicious dict[node] ['criteria'] [aggr] = value analysis / (averagelaggr] + 1)
suspicious_dict[node] ['score'] += scores weight[aggr] *
suspicious dict[node] ['criteria'] [aggr] # Just INCREMENT the score
if aggr == 'starter':
suspicious dict[node]['criteria'][aggr] = value analysis / (averagel[aggr] + 1)
suspicious_dict[node] ['score'] += scores weightlaggr] *

suspicious dict[node] ['criteria'] [aggr] # Just INCREMENT the score
if aggr == 'no_successful jobs':
suspicious_dict[node] ['score'] += scores weightlaggr] *
suspicious dict[node] ['criteria'] [aggr] # Just INCREMENT the score

return suspicious dict

def print suspicious(suspicious dict):

Fermi National Accelerator Laboratory

Title of Notes Document here

rr

Lorenzo Lamberti

This function prints the list of suspicious nodes sorted by the score

:param suspicious

dict: dicionary to print of the suspicious nodes

:param score threshold: threshold for the score. default value is 1.0

Creating a list
suspicious list =

(node,score) just to sort by scores
list ()

for node, stats analysis in suspicious _dict.items():

if suspicious_.

separate list

dict[node] ['score'] > O: # If we have a score > 0 we put the node on a

suspicious list.append([node, suspicious dict[node]['score']])

Sorting the list by scores

suspicious list =
of the list

sorted(suspicious list, key=itemgetter(l), reverse=True) # sorting elements

#Printing time intervals of Analisys and Average

print ('

")

print ('\n\t\t\t\t

start_time \t\t\t end time')

print ('Analysis:\t\t', start time analysis-datetime.timedelta (hours=GMT), '\t',
end_time analysis-datetime.timedelta (hours=GMT),
"\nAverage:\t\t', start time average-datetime.timedelta (hours=GMT),

"\t',end time average-

datetime.timedelta (hours=GMT))

Printing the elements of the dict sorted by scores
print ('\nTop Suspicious Nodes Scores:\n')
print ("$37s\t%10s\t%15s\t%10s\t %$10s\t%10s\t%10s\t%10s\t%15s " % ("node:", '"score:", "fail",

"manual", "resources",

"others", "starter", "disconn.", "no succ. jobs"))

for elem in suspicious_list:
if elem[l]>score_threshold:
print ("$37s\t%10.2£\t%15.2£\t%10.1f\t %10.2£\t%10.2£\t%10.2f\t%10.2£\t%15.2f " &
(elem[O0],
elem[1],

suspicious _dict[elem[0]] [11
suspicious dict[elem[0]] [11
suspicious dict[elem[0]] [11
suspicious_dict[elem[0]]['criteria']['others'],
suspicious_dict[elem[0]] [11
suspicious dict[elem[0]] [11
suspicious dict[elem[0]] [11

)

'criteria’
'criteria’
'criteria’

'fail'],
'manual'],
'resources'],

'criteria’
'criteria’
'criteria’

'starter'],
'disconnections'],
'no_successful jobs'])

def get blackholes(analysis dictionary, global average):

rrr

This function sets the interval of time for the analysis and for the average

Then it gets data

from elasticsearch and creates a dictionary with the suspicious nodes

It returns a dictionary of the suspicious nodes with their scores

NOTE: Here we set
(=analysis time/scale)

the average time interval through the "scale" variable

example: 1f we set a scale of 0.25, the average time will be four times longer than the

analysis time

:param end

end time for the analysis

:param term to search : The data will be aggregated according to this term. Type
"MachineAttrMachine(O" to aggregate by nodes, type "MachineAttrGLIDEIN Site0O" to aggregate by
Sites

:param query you can pass here a specific query, for example with
"MachineAttrMachineO: fnpcl7146.fnal.gov"” you will get only informations about that specific node

:return dictionary of the suspicious nodes with their scores

rrr

Get suspicious nodes
suspicious _nodes dictionary = create suspicious_nodes_dictionary(analysis dictionary)

Calculate Scores and Sort the List

Fermi National Accelerator Laboratory

32

Title of Notes Document here Lorenzo Lamberti

suspicious nodes dictionary =
calculate score suspicious nodes (suspicious nodes dictionary,global average) # it returns a list
with (node,score) and add the scores to the suspicious nodes dictionary

return suspicious nodes_dictionary

def create blackholes database(term to search, query, year, month, days range, hours range,
minutes range) :

creates an ordered Dict of the suspicious nodes.

The difference between the previous one is that now we keep track of the time at which we
detected the blackholes

:param term to search : The data will be aggregated according to this term. Type
"MachineAttrMachine(O" to aggregate by nodes, type "MachineAttrGLIDEIN Site0O" to aggregate by
Sites

:param query : you can pass here a specific query, for example with
"MachineAttrMachineO: fnpcl7146.fnal.gov"” you will get only informations about that specific node

:param year : insert the year for the analysis time

:param month : insert the month for the analysis time

:param days range : insert the day range for the analysis time

:param hours range : insert the hours range for the analysis time

:param minutes range : insert the minutes range for the analysis time

:return : an ordered dictionary with time division, list of suspicious nodes

and their scores

blackholes database = OrderedDict ()
for day in days_range:
for hour in hours_range:
for minutes in minutes range:
set time intervals(year, month, day, hour, minutes)
analysis_dictionary, average dictionary, global average =
get_elasticsearch data(term to_search, query)

blackholes = get blackholes (analysis dictionary, global average)
print suspicious (blackholes)

blackholes database.update({start time analysis - datetime.timedelta (hours=GMT) :
blackholes})
return blackholes database

def print blackholes_database (blackholes_database) :
rr
this function prints all the suspicious nodes divided by the time ranges of analysis
:param blackholes database: ordered dictionary to print

rrr

for time, blackholes temp in blackholes database.items():
for node, status in blackholes temp.items():
if status['score'] > score threshold: #if i have at least 1 node with score>threshold
then 1 do:
set _time intervals(time.year, time.month, time.day, time.hour, time.minute)
print suspicious (blackholes_ temp)
break

FHEFHAFAFHHAAAFFHHARAFFRAA A FHRAAAFFHHA A FHHAA##### MANUAL RANGE
FHEHHARAAFHHAAAFHHAAFFHHAAAFHRAAAFFRHAAAFFRAAAFFRAAAAHF

client = Elasticsearch('https://fifemon-es.fnal.gov', timeout=120)
#

TIME VARIABLES:

year = 2018

month = 9

day = 18

hour = 12

minutes = 0

#

set time intervals (year,month,day,hour,minutes)

Fermi National Accelerator Laboratory

Title of Notes Document here Lorenzo Lamberti

term to search="MachineAttrMachineO"

analysis dictionary, average dictionary, global average =
get elasticsearch data(term to search, query=None)#

#

print ('\nGlobal averages: ')

for key, value in global average.items():

print('%15s %10.3f' % (key, value))

print ('\nScore Threshold:\t',score threshold)

print ('\nAnalysis time:\t\t', time analysis, 'm') # Printing the time intervals considerated

S R KR R R

blackholes = get blackholes(analysis dictionary, global average)
print suspicious (blackholes)

th#A AR AR AR AR AR AR AR A A A A A A4 ####### Blackhole Nodes intentification
#EFFRARAFHRAAAFFFRARAFFRAAAFHFRAAAFFRAAAFHHS

client = Elasticsearch('https://fifemon-es.fnal.gov', timeout=120)

print ('\nScore Threshold:\t‘,score_threshold) # Printing the threshold for the score
print ('\nAnalysis_ time:\t\t', time analysis, 'm') # Printing the time intervals considerated

print ('\n\n #HHHHHHEEHHHHHHEEEHHHHHEEHHHH S 44 BLACKHOLE NODES
FHHHHHEHHHEHH)

term to search="MachineAttrMachineO"

query=None

score_threshold = 100 # Tolerance

blackholes database = create blackholes database (term to search, query, year, month, days range,
hours range, minutes_ range)

print blackholes database (blackholes database)

print ()

Fermi National Accelerator Laboratory

