
Fermi National
Accelerator Laboratory

Summer internship

Final report

Applying Deep Learning
techniques to improve semantic

image CAPTCHAs

Author:
Paolo Didier Alfano

Supervisor:
Mine Altunay

Jeny Teheran

October 24, 2018

Abstract

New developments in artificial intelligence and deep learning are
offering advanced solutions to mitigate the increasing security threats;
for example, malware detection is being boosted by neural networks
that are trained to distinguish a file with malicious content in real-time
and at a detection rate higher than the traditional detection mecha-
nisms based on signatures and heuristics.
CAPTCHA is a common mechanism to stop bots from accessing a
web service and perform malicious actions like automated password
hacking, spam propagation, etc. Neural networks have been used with
great success to defeat CAPTCHAs leveraging on deep learning tech-
nologies.
The aim of this project is to write deep learning algorithms to extract
information from a set of images presented in CAPTCHAs to iden-
tify which of the given images are semantically similar to the sample
image. We also produced a series of recommendations to built more
robust CAPTCHAs.
This project also expand our knowledge on the implementation of deep
learning techniques that could be applied to malicious code detection.

1

Contents

1 Introduction 3

2 CAPTCHAs 4
2.1 CAPTCHA types . 4
2.2 Google reCAPTCHA . 5
2.3 Attack CAPTCHAs . 6

3 Designing the architecture 8
3.1 General architecture . 8
3.2 Dataset . 9

4 Implementation 12
4.1 First generation . 12
4.2 Data augmentation . 13
4.3 Second generation . 15
4.4 A more complex model . 15
4.5 Third generation . 16
4.6 Data normalization . 19
4.7 Fourth generation . 21

5 Google’s data 22

6 Future works 26

7 Security recommendations 28

8 Conclusions 30

2

1 Introduction

A very common tool used in cybersecurity to distinguish human from com-
puters is CAPTCHA. This term refers to a generic challenge-response algo-
rithm used to determine whether the user is human.
The first type of CAPTCHA was invented in 1997, although the most com-
mon type of CAPTCHA, the one made with distorted characters and num-
bers, was introduced in 2003.
As we will see, during the next fifteen years CAPTCHA evolved in different
directions and at the present time we have different type of challenge.
At the same time, during the last few years, deep learning techniques were
developed and used in a very large number of research field: computer sci-
ence, engineering, physics. . .
Since 2012, a particular type of neural network is often used to solve im-
age analysis tasks. This kind o neural network is called convolutional neural
network. With the victory of the ImageNet Large Scale Visual Recognition
Competition(ILSVRC-2012) by a convolutional neural network developed by
Google, an increasing attention has been focused over this particular model.

Throughout this report we’ll see how this particular type of network could
be used to solve the CAPTCHA problem and how we can develop some rec-
ommendations to make more robust CAPTCHA against this type of deep
learning attacks.

3

2 CAPTCHAs

Every time there is an online service a human being can use, this service can
be also used in a illicit way from an automated program called bot. In fact,
without limiting only to the users the access to a service, a bot could do how
many requests it wants, resulting in a illicit use of the service or reducing the
access to the service itself.
CAPTCHA is a common tool that wants to prevent this situations by giving
the user a challenge to solve, to certify that on the client side there’s really
a human being.
In the following page we’ll see the most common CAPTCHA types used in
the past and nowaday.

2.1 CAPTCHA types

Although the first commercial use of CAPTCHA was the Gausebeck-Levchin
test in 2003 to protect the login page of a website, CAPTCHAs were used
for the first time in 1997. Their implementation was based on reverting the
guidelines of readability in the optical character recognition(OCR). These
guidelines were about having similar typefaces, plain backgrounds. . .
By reverting these guidelines, the firsts CAPTCHAs were similar to what we
can see in Figure 1.

This type of CAPTCHA bring some disadvantages:

- User experience: usually this type of CAPTCHA can be hard to solve
even for human. Usually they are not perceived like an easy and intu-
itive tool to use.
At the same time, in certain jurisdictions, site owners could become tar-
gets of litigation as this type of CAPTCHA can discriminate certain
people with disabilities.

- Security: with the recent machine vision development, this text-based

Figure 1: Two examples of CAPTCHA

4

Figure 2: A reCaptcha widget

CAPTCHAs are not considered secure anymore, as characters recogni-
tion challenge are easy to solve nowaday.

2.2 Google reCAPTCHA

Developed by the Carnegie Mellon University and later acquired by Google,
reCAPTCHA is a new type of CAPTCHA that doesn’t make use of textual
CAPTCHA1. A reCAPTCHA widget it’s showed in Figure 2

Every time we click over the reCAPTCHA widget, a score is assigned to
the user, based over his Google’s login information, how the user has moved
the mouse pointer through the web page and other information.
Basing on this score, Google can sends two different challenge:

• No CAPTCHA reCAPTCHA: when the user receives an high score he
doesn’t need to solve any CAPTCHA at all. This situation is showed
on the left part of Figure 3

• reCAPTCHA challenge: every time a user is not fully trusted, Google
sends a challenge the user must solve to proceed in using the service.
Usually is a sequence of visual challenges about recognizing whether an
image contains an object. A typical reCAPTCHA challenge is showed
in the right part of Figure 3

One important thing to notice is that every reCAPTCHA challenge is related
to a ”category”. For example the user could be asked to recognize cars,
crosswalks, road signs. . .
The most common categories are the following:

1Textual CAPTCHA were used in the reCAPTCHA system during it’s early months
but the textual challenge was removed later.

5

(a) No CAPTCHA reCAPTCHA chal-
lenge

(b) One of the challenge
received when the user is
not fully trusted

Figure 3: The two possible situations in a reCAPTCHA challenge

- Road signs

- Store fronts

- Cars

- Vehicles

- Motorcycles

- Roads

- Bicycle

- Bus

- A fire hydrant

- Mountains or hills

- Taxis

- Sidewalk

In the following pages the category is also called hint or semantic hint.

2.3 Attack CAPTCHAs

Since their inception, solving CAPTCHAs has been one of the most inter-
esting and complex challenge in the computing security field.
One of the most popular technique used to solve CAPTCHAs in the past was
cheap human labor. After some time automated techniques were developed
to solve the firsts type of CAPTCHA.
As usually happens in the security field, after the inception of reCAPTCHA,

6

different methods to solve them were proposed. One of the most known
method is the one proposed by Sivakorn et al.[1].
Our purpose is to understand whether a deep learning tool can solve this chal-
lenge, in order to produce some security recommendations to make CAPTCHAs
more robust.

The tool we decided to use is one of the most popular and effective in the
image analysis field: convolutional neural network.

7

3 Designing the architecture

To verify whether our idea was good, we started by designing the architecture.

3.1 General architecture

The first thing we do was to design an architecture able to solve the re-
CAPTCHA problem.
As we notice that the categories number is quite small, let’s say n, we thought
about two different designs, both solving a classification problem:

1. One neural network with n + 1 classes: as we have n different cate-
gories we can have one class for every category with another generic
”negative” category representing every image that doesn’t belong to
any category.

2. n neural networks with two categories each: with this second approach
we develop a different neural network for every category.
Every neural network has two classes: positive representing the image
containing the entity of the category, negative representing the images
not containing that entity.
This second architecture is showed in Figure 4

Figure 4: General architecture to solve the reCAPTCHA problem

8

Even if theoretically the two previous architectures solve the same prob-
lem, we decided to use the second architecture with n neural networks for
the following reasons:

• Hint, semantic information: the semantic information that comes with
the hint(i.e. the category name) is easier to use in the second archi-
tecture. In fact, as we can see in Figure 4 our program receives as
input the image and the hint. With this informations it has to decide
whether the image contains the entity indicated in the hint.
With the architecture shown in Figure 4, is quite simple to use the
semantic information as we can run one of the n neural networks by
using the hint.

• Easier to test: as we had just a couple of weeks to study the prob-
lem, the second architecture seems easier to develop and test. In fact
in neural networks the importance of having a proper dataset is well
known and the second architecture allows us to build/retrieve just two
dataset and start developing and testing over a reduced reCAPTCHA
problem.

As we decided to use the second architecture we started by selecting one
category of the reCAPTCHA challenge to develop a neural network solving
that problem.
In the following pages we’ll study the solution to just one of the category of
the reCAPTCHA challenge, assuming that if we are able to solve the problem
over one category, then we can probably solve it for every category.
So we’ll study just the retrieval of one dataset, the developing of one neural
network. . .
The category we decided to use is road signs.
By choosing this category we identified our task: given an image, determine
whether the image contains a road sign.

3.2 Dataset

Once we decided to work with road signs, the first problem we had to solve
was how to get a dataset that we could use to train our neural network.
As our problem is to determine whether an image contains a road signs or
not, we needed to teach our neural network what’s a road sign and what
a road sign is not. To accomplish this task we needed two different types

9

Figure 5: Size distribution of the positive class

of training data. To be more clear, from now on we’ll identify the images
containing a road sign as positive and the images not containing road signs
as negatives.

• Positive class: to teach the neural network what a road sign is, we
built a dataset by merging two different road signs dataset found on
the web. The images of the first dataset were taken in the United
States, the images from the second dataset from China. It’s important
to have road sign from different part of the world, as the images of
the reCAPTCHA challenge were collected with street view from every
country Google can reach.
By merging this two dataset we obtained a larger dataset made by
approximately 104 images. The size of these images it’s not uniform and
it can range between dozens to hundreds of pixels. The size distribution
is shown by Figure 5.

• Negative class: it’s easy to understand that building a dataset of neg-
ative images it’s more difficult as it’s easier to teach what a road sign

10

is, but it’s not as easy to teach(even to a human!) what a road sign is
not. That’s because the best way we have to explain what a road sign
is not is to take a lot of images not containing road signs.
In order to solve this problem we decided to use training data that are
as more similar as possible to the images of the reCAPTCHA challenge:
images from Google’s Street view.
We retrieve approximately 2 · 104 Google’s Street view images from an
online dataset. The size of all these images is 205× 256

11

4 Implementation

In order to solve the problem, we started by building one model and then
by changing it to obtain better performances. With this approach we can
divide our work in four different neural network ”generations”.

4.1 First generation

The first generation of neural network we decided to train was very simple
and used just twelve layers2.

1 # Layer 1

2 CNN_model.add(Conv2D(16, kernel_size=(3, 3),

activation=’relu’,padding=’same’,input_shape=(imageWidth,

imageHeight, channels)))

3 # Layer 2

4 CNN_model.add(Dropout(0.2))

5

6 # Layer 3

7 CNN_model.add(Conv2D(32, (3, 3), activation=’relu’,padding=’same’))

8 # Layer 4

9 CNN_model.add(MaxPooling2D((2, 2),padding=’same’))

10 # Layer 5

11 CNN_model.add(Dropout(0.2))

12

13 # Layer 6

14 CNN_model.add(Conv2D(64, (3, 3), activation=’relu’,padding=’same’))

15 # Layer 7

16 CNN_model.add(MaxPooling2D((2, 2),padding=’same’))

17 # Layer 8

18 CNN_model.add(Dropout(0.2))

19

20 # Layer 9

21 CNN_model.add(Flatten())

22 # Layer 10

23 CNN_model.add(Dense(32, activation=’relu’,

kernel_regularizer=regularizers.l2(0.01)))

24 # Layer 11

2Considering the convolutional, pooling, batch normalization and dropout layers.

12

25 CNN_model.add(Dropout(0.2))

26 # Layer 12

27 CNN_model.add(Dense(num_classes, activation=’softmax’))

As we can see, in this simple model we have the first two layers dealing
with the input. In the next six layers we have a repeated structure:

• A convolutional layer

• A max pooling layer

• A dropout layer

In the last four layers we have a flatten layer followed by the only one dense
layer in the network. After another dropout layer there is the softmax acti-
vation function.

By using this first model we obtained the following accuracy results

Train Validation Test
0.72 0.62 0.61

Table 1: Accuracy results for the first generation

The results showed in Table 1 must be read as following: our neural network
is able to distinguish correctly whether the image contains a road sign or not
in the 61% of the situations.
Even if we’re already doing better than the random guess, the most important
thing to notice is the performance degradation within the training accuracy
and the validation/test accuracy.
This severe degradation can be considered a sign of overfitting.

4.2 Data augmentation

When we have to deal with situations like the one presented in Table 1 we
can be quite convinced that we are dealing with an overfitting situation as
the degradation is probably due to a partial memorization of the input in the
net. This memorization make the net unable to generalize over new data.
To solve this situation we decided to change both the model and the data:

• Data: adding data using the data augmentation technique

13

• Model: by increasing the dropout value in the dropout layers

The most important modification is the one about the data.
The data augmentation technique consists in ”augmenting” artificially the
amount of data we have by creating new images originated by the application
of some linear transformations and brightness transformations to the dataset.

We decided to augment our dataset by using an ImageDataGenerator ob-
ject included in the Keras’s Image Preprocessing library.
The code of the ImageDataGenerator we used is the following:

1 datagen = ImageDataGenerator(

2 rotation_range=30,

3 width_shift_range=0.2,

4 height_shift_range=0.2,

5 shear_range=0.2,

6 fill_mode=’nearest’)

The code we just showed is saying that every time we generate a new
image it can be rotated by 30 degrees, with a vertical/horiziontal shifting of
20% of its size. . .
We can show in Figure 6 the result of data augmentation.

In the top left part of the image we can see the original image. In the top
right a new image that is rotated clockwise respect to the original. In the

Figure 6: A typical augmentation

14

bottom left part we can see a shifted image. In the bottom right we can see
a rotated and shifted image. As we can see by using this simple technique
we can obtain a dataset that is much larger than the original.
After we implemented the data augmentation technique we could -potentially-
obtain how many data we wanted3.
We decided to create a new dataset that is four times larger than the original.

4.3 Second generation

By generating more data and with minor model modifications we obtained a
significant improvement in the network performance:

Train Validation Test
0.79 0.79 0.78

Table 2: Accuracy results for the second generation

The results presented in Table 2 shows that the overfitting situations seems
solved.
In fact, aside of the general improvement, the performance degradation be-
tween training set and validation/test set is quite small.

The gap reduction between train and validation/test is a very good news
but the general ”low” accuracy performance is seeming to show us an under-
fitting situation.
This ”inversion” from overfitting to underfitting is related to the augmenta-
tion we performed.

4.4 A more complex model

Usually we have an underfitting situation every time our model is too simple
to understand the data we have.
This shouldn’t be very surprising as we saw in subsection 4.1 that the model
we used was very simple, with just three convolutional layers.
When a model is too simple this means essentially that the network needs
more parameters to understand the data. In order to have a more parameters
we can basically do as follow:

3We have to remember that with too much augmentation we can have some problems
due to redundancy.

15

• Add layers: every time we add a new layer we are increasing consider-
ably the number of parameters in the network.

• Add neurons: also having layers with more neurons means having more
parameters.

• Increasing batch size: the ”batch size” number tell us how many ex-
amples we consider before updating the weight in the network. As
the network use a stochastic gradient descent technique to determine
how to change the parameters, increasing the batch size can lead to
a more precise evaluation of the gradient. This technique contrasts
underfitting.

• Reducing dropout: by reducing the dropout value we can forget less
about the data. This makes our model more complex.

All these and other guidelines can be found in the well-known deep learning
book written by Bengio, Courville and Goodfellow[2].

4.5 Third generation

In order to obtain a more complex model we decided to use a new neural
network made by twenty two layers:

1 # Layer 1

2 CNN_model.add(Conv2D(16, kernel_size=(3, 3),

activation=’relu’,padding=’same’,input_shape=(imageWidth,

imageHeight, channels)))

3 # Layer 2

4 CNN_model.add(Dropout(0.2))

5

6 # Layer 3

7 CNN_model.add(Conv2D(32, (3, 3), activation=’relu’,padding=’same’))

8 # Layer 4

9 CNN_model.add(MaxPooling2D((2, 2),padding=’same’))

10 # Layer 5

11 CNN_model.add(Dropout(0.15))

12

13 # Layer 6

16

14 CNN_model.add(Conv2D(64, (3, 3), activation=’relu’,padding=’same’))

15 # Layer 7

16 CNN_model.add(BatchNormalization())

17 # Layer 8

18 CNN_model.add(Dropout(0.2))

19

20 # Layer 9

21 CNN_model.add(Conv2D(96, (3, 3), activation=’relu’,padding=’same’))

22 # Layer 10

23 CNN_model.add(Dropout(0.15))

24

25 # Layer 11

26 CNN_model.add(Conv2D(128, (3, 3),

activation=’relu’,padding=’same’))

27 # Layer 12

28 CNN_model.add(MaxPooling2D((2, 2),padding=’same’))

29 # Layer 13

30 CNN_model.add(Dropout(0.2))

31

32 # Layer 14

33 CNN_model.add(Conv2D(96, (3, 3), activation=’relu’,padding=’same’))

34 # Layer 15

35 CNN_model.add(BatchNormalization())

36 # Layer 16

37 CNN_model.add(Dropout(0.2))

38

39 # Layer 17

40 CNN_model.add(Conv2D(64, (3, 3), activation=’relu’,padding=’same’))

41 # Layer 18

42 CNN_model.add(Dropout(0.15))

43

44 # Layer 19

45 CNN_model.add(Flatten())

46 # Layer 20

47 CNN_model.add(Dense(32, activation=’relu’,

kernel_regularizer=regularizers.l2(0.01)))

48 # Layer 21

49 CNN_model.add(Dropout(0.2))

50 # Layer 22

51 CNN_model.add(Dense(num_classes, activation=’softmax’))

17

The structure used has some similarities with the one showed in subsec-
tion 4.1. In fact we have again:

• Two first layers dealing with the input

• A six-times repeated structure

– Convolutional layer

– Other layers like max pooling, batch normalization or dropout
layers

This part of the network involve the layers from layer 3 to layer 18.

• Four final layers dealing with the output

After the implementation of this new model we obtain another performance
improvement:

Train Validation Test
0.82 0.81 0.81

Table 3: Accuracy results for the third generation

In order to obtain better performance we decided to change some others
features of the network including the optimizer, learning rate, learning epochs
number. We can show part of the test we made in Table 4.

As we can see, after some modifications, the best result we were able to
obtain was the one showed in Table 5.

We consider the best result the one showed in Table 5 as the accuracy
over train and validation is quite similar to the others but the accuracy over
the test set is better than all the others4.

As we can see, the improvement obtained is significant but after all this
testing with the model hyperparameters/parameters we came to the conclu-
sion that if we wanted to obtain new improvements we should have work over
the data, not over the model.
In order to improve our data we apply a normalization technique to the data.

4The only other model able to reach similar performance is the one with 36 layers that
is quite complicated. So we consider this model worse than the other one.

18

#Layers Optimizer Learn. rate Batch Train Valid. Test
16 Adadelta 1.0 32 0.79 0.76 0.81
16 Adadelta 1.0 64 0.81 0.76 0.80
16 Adadelta 1.0 128 0.77 0.76 0.81
19 Adam 0.001 64 0.77 0.75 0.81
19 Adam 0.0015 64 0.80 0.81 0.85
16 Adam 0.001 64 0.80 0.76 0.80
19 Adam 0.002 64 0.76 0.73 0.76
22 Adam 0.0015 64 0.78 0.78 0.83
22 Adam 0.002 64 0.77 0.77 0.82
22 Adam 0.003 64 0.76 0.76 0.8
22 Adam 0.005 64 0.50 0.49 0.47
22 Adam 0.001 32 0.77 0.78 0.83
36 Adam 0.0015 64 0.78 0.80 0.84

Table 4: Accuracy results for the third generation

#Layers Optimizer Learn. rate Batch Train Valid. Test
19 Adam 0.0015 64 0.80 0.81 0.85

Table 5: Accuracy results for the best result obtained in the third generation

4.6 Data normalization

Data normalization is a quite common technique in machine learning used
to obtain more ”homogeneous” data.
In literature we can find different types of data normalization:

• Min-Max normalization: x′ =
x−min(X)

max(X)−min(X)

• Mean normalization: x′ =
x− µ(X)

max(X)−min(X)

• Standardization: x′ =
x− µ(X)

σ(X)

• Scaling: x′ =
x

‖ x ‖
In all the formulas showed above x′ is the normalized data, x is the original
data, X is the set of data, µ is the mean and σ the standard deviation.

19

Figure 7: The normalization process

Before explaining which technique we decided to use, we must say that the
normalization process allows the network to learn something more about
the data. The downside of this approach is that the normalization is data-
dependent5, so every time we apply this technique to the data we obtain a
new dataset taht is very problem-specific.
The improvement obtained is related to many factors like the data used, the
machine learning technique used and others.
Normally the improvement obtained with the normalization is due to the
greater ease the stochastic gradient descent technique is performed. We can
give an intuition of this with Figure 7.

In the top-left part of the image we can see an hypothetical three dimen-
sional representation of the loss in a neural network with just two parameters,
w1 and w2, with unnormalized data. In the bottom left part we have the same
plot seen from above.
As we can see, with this ”stretched” surface we need more steps to reach
the loss minimum, as with the gradient evaluation we don’t move toward the
”center” of the surface, where the minimum is.

5By ”data dependent” we mean that the process depends from the data minimum,
maximum, mean, standard deviation. . .

20

In the top-right and bottom-right part of the image we can see the plot of
the loss function after the normalization. We can see that is easier to find
the function minimum for the stochastic gradient descent technique because
of a more regular shape of the function.

The normalization technique we decided to use is standardization.
To standardize our data we took every image in the dataset and, for every
color channel, we calculate the mean and the standard deviation.
One thing to notice is that the output of the standardization can be smaller
than zero or greater than one. The problem is that by having negative value
we lose the perception of the input. We don’t have images anymore, but just
number. Usually we have two solutions to this problem:

- Every value smaller than zero is set to zero. Every value greater than
one is set to one. By doing this we’ll still have an image as output.

- We use the value as they are. By doing this we’ll have just number as
input to the neural network

We decided to use the first approach. We can show two standardized images
in Figure 8. After we apply the standardization technique to all the data we
obtain a significant accuracy improvement.

4.7 Fourth generation

After we standardize the data, we start to work again over the model. By ap-
plying some minor modifications to the best model obtained in subsection 4.5
we noticed another accuracy improvement:

Train Validation Test
0.91 0.91 0.92

Table 6: Accuracy results for the fourth generation

As we can see the performance obtained by our neural network are, at this
time, quite good. Having a neural network that is able to tell correctly
whether an image contains a road sign or not in the 92% of the situations is
a very good result.

21

(a) Original image (b) Standardized image

(c) Original image (d) Standardized image

Figure 8: The result of the standardization process

5 Google’s data

After we developed our neural network, we decided to test it offline over
Google’s challenges.
When we talk about recognizing road signs in Google’s challenges, the most
common one is made by a single image separated in a 4 × 4 grid like the
image shown in Figure 9

We collect 800 images forming 50 road signs reCAPTCHA challenge. As
these images weren’t labeled, we labeled them manually.
From now on we’ll use the following -and very important- terms:

• acc: the accuracy obtained by the neural network over our dataset.
This value is equal to the accuracy obtained by the network over the
test set as showed in Table 1, Table 2, Table 5, Table 6.

22

Figure 9: A typical road signs challenge

• accGoogle: the accuracy obtained by the neural network over the 800
images we received from Google.

• solved: as the 800 images forms a pool of 50 reCAPTCHA challenge,
with the term solved we refer to the percentage of challenge solved.

We also need to use the two following quantities: precision and recall.
The precision is the portion of the images that our network classify as positive
and that are truly positive.
The recall is the portion of the truly positive images our network was able
to find.
Let’s clarify this by using an example.

Example : let’s suppose that we have a road signs reCAPTCHA challenge
that is made by a 4× 4 grid, so we have 16 images.
Let’s suppose that our neural network tells us that four images are
positive, and the other twelve are negative. Let’s suppose that one of
the positive was misclassified. The precision is 3

4
= 75%

Let’s suppose that the ”real” positive images were five. As the neural
network found just three of them, the recall is 3

5
= 60%

As the attack was offline we needed some criteria to tell when a reCAPTCHA
challenge was correctly solved. We noticed the following two things:

23

• Every time a single square of the challenge is classified as positive when
the real value was negative, the challenge is considered failed.

• Even if the user it’s not able to find all the road signs in the challenge,
if it’s able to find most of them(four over five, five over six. . .) the
challenge is considered passed

Considering the two things above we decided to consider a reCAPTCHA
challenge solved every time:

• The precision is exactly 1: we are telling that every time our network
is saying an image contains a road sign, this ”positive” evaluation it
must be correct.

• The recall is at least 0.8: we are asking the neural network to find at
least the 80% of all the road signs.

With all this considerations in mind we obtained the following results:

Generation acc accGoogle solved
First 0.61 − −

Second 0.78 − −
Third 0.85 0.84 0.08
Fourth 0.92 0.63 0.02

Table 7: Results obtained by different generations

It’s possible to see that we didn’t test the two first generations over Google’s
data.
The first important thing to notice is the severe performance degradation
between the third and the fourth column. We must remember that the third
column is simply telling us how often the neural network classify correctly
over a single image of the challenge. As the challenge is made by sixteen
different images we have that:

solved ∝ (accGoogle)
16

There are still two important things to notice:

1. The third generation’s model obtains similar percentages over the sin-
gle images of our dataset(0.85) and over the single images taken from

24

Google(0.84). As this two dataset can be very different one from an-
other we should have expected more degradation. As we collect just
800 images we cannot exclude that the degradation didn’t happened
just because of the data pool we used.

2. The fourth generation’s model is doing better of the previous one over
our data (0.92 versus 0.85) but we have a severe performance degrada-
tion between our data (0.92) and Google’s data(0.63).
This is probably due to the standardization process described in subsec-
tion 4.6. As we already said, every time we go trough a normalization
process, the data become more problem-specific. So, when we use data
that are quite different from the one we used during the training6, a
performance degradation like the one we experienced is always possible.

The fourth generation model was able to classify correctly just the 63% of
the images taken from Google. This low value explains why that model was
able to solve just the 2% of the reCAPTCHA challenges.
As we’ll see in section 6 the gap between acc and accGoogle can probably be
filled. The considerations we’ll make allows us to think that CNN are still
an effective tool against reCAPTCHA.

6We have to remember that we use a dataset with road signs from United States and
China but Google is using Street view images coming from many parts of the world!

25

6 Future works

Even if the results presented in section 5 are not so good-looking we can make
some considerations about what we could do next to get others performance
improvement.

One thing to do could be to collect more and more diversified data.
As we said, Google is using images that comes from every part of the world,
while our data comes from two dataset about United States and China.
As the percentage obtained by the neural network over our data is quite good
(0.92) we can suppose that the network is able to learn even in the complex
context of the street view’s images. By adding more images we should be
able to fill -at least part of- the gap between acc and accGoogle.

Another thing to do could be to use the standardization process that doesn’t
produce images as output, but just numerical output data. This could be
important because with the process we are using right now, every value lower
than zero is set to zero and every value greater than one is set to one. This
produce an information loss. This technique could probably improve the acc
value.

Another very important thing to change is the dependency between the im-
ages. Right now our neural network is using a training set made of single
road signs cropped images. This images are not related one to each other.
Probably the best way to train the network should be to having as input a
whole challenge (made by sixteen images) and as label an array made by 16
different binary values. Every value should tell us when a road sign is present
in a square or not. For example the label of Figure 9 should be:

[0, 0, 0, 0,
0, 1, 0, 0,
0, 1, 0, 0,
0, 1, 0, 0]

The importance of this approach is that we can do what humans usually
do: consider spatial dependency! In fact every time we find a road sign in a
square, is more probable that the surrounding squares contains a road sign
too.

26

Right now our network would consider the sixteen images as independent.
This way is possible, but it’s quite harder to do! We should use the depen-
dency information that comes from the mutual positions of the road signs.
The difficulty with this approach is that on the web is not so easy to find
generic road signs dataset that comes from different countries, and it would
be impossible to find a dataset whose label are the one we described above.
A dataset like the one we are describing should be created manually.
This new type of dataset could produce a huge improvement in the accGoogle

value, filling the gap between acc and accGoogle.
We also have to say that this new attack would be immune to two of three
recommendations we suggest in section 7, so it’s more difficult to prevent.

27

7 Security recommendations

By studying the reCAPTCHA challenge we found some security weaknesses
against a convolutional neural network attack. We can summarize them as
follow:

• Few categories: we noticed that there is a very reduced categories num-
ber in the reCAPTCHA challenge. A small amount of categories like
this can be a weakness because an hacker team could design a convolu-
tional neural network that performs very good over one of this category.
By doing this the percentage p of reCAPTCHA challenge that the net
could potentially solve, would be:
p ∝ 1

c

where c is the number of categories used. As c is currently a low value,
the portion p could be quite high.

• Twenty five better than sixteen: when the convolutional neural network
used is like the one we used, considering all the images in the challenge
as independent one from another, the neural network must solve sixteen
different classification problems. By using the same challenge with a
5 × 5 grid instead of a 4 × 4 grid, the network should solve twenty
five classification problems instead of sixteen. Obviously this should be
more difficult.
Of course this recommendations would be useless against convolutional
neural network that uses the whole challenge as training input, like we
explained in section 6.

• Road sign distribution: another improvement could be about the data
distribution. By now, the most common number of road signs images in
a sixteen-images reCAPTCHA challenge like the one showed in Figure 9
is around three or four.
Knowing this we decided to build a road signs dataset that is as more
similar as possible to the one we should have found in the reCAPTCHA
challenge. This means that we built a dataset with approximately
4
16

= 1
4

images containing a road sign. This is important because usually
the network recognize the data distribution and is quite difficult that
a network trained with some distribution will produce an output very
different from that distribution.
One thing to make more difficult the network’s predictions could be to

28

use a more uniform road signs number distribution in the challenges.
Let’s suppose we can have a number of road signs between 0 and 16.
By doing this it becomes difficult to decide the proportion between
positive and negative images in the dataset. In fact if the attacker
decides to train with half of the images as road signs the network will
probably performs bad over all the situations with a reduced number
of road signs and in all the situations with a very large number of road
signs.
Like the previous recommendation, we have to say that this suggestions
it would be useless against the network that uses the whole challenge
as training input.

29

8 Conclusions

In this report we studied how to approach a semantic image security system
by using deep learning techniques.
First thing we have to say is despite of all the weaknesses, breaking re-
CAPTCHA requires a considerable effort.
Breaking reCAPTCHA with deep learning techniques requires different tools
and expertise:

- Dataset: every time we want to use a deep learning system, we need to
find a huge amount of data. As reCAPTCHA proposes approximately
ten categories, we need one dataset for every category. Anyway, the
reduced categories number makes the problem feasible to solve.

- Model: to use the neural network in a efficient way we must find the
proper network model. This means that we have to find a good hyper-
parameter configuration.

- Computational resources: to train a neural network we need computa-
tional power. One single training can requires some hours even with
a dedicated GPU machine. We also have to say that this machine are
quite cheap to rent, so every attacker can train its neural network in a
low cost way.

Aside of this -surmountable- difficulties, the results we got are encourag-
ing. The fourth generation’s model was able to obtain a 92% accuracy over
our data. Of course the performance degradation over Google’s data is re-
markable and to get other improvements we should consider what we said
in section 6; but the most important thing to notice is that with the proper
tools, data and expertise a visual security system like the one used in re-
CAPTCHA can probably be broken. This can question the security of this
security visual systems against deep learning techniques.

30

References

[1] : Suphannee Sivakorn, Iasonas Polakis, Angelos D. Keromytis: I Am
Robot: (Deep) Learning to Break Semantic Image CAPTCHAs, 2016
IEEE European Symposium on Security and Privacy, 2016

[2] : Yoshua Bengio, Aaron Courville and Ian Goodfellow: Deep Learning,
MIT press, 2016

31

	Introduction
	CAPTCHAs
	CAPTCHA types
	Google reCAPTCHA
	Attack CAPTCHAs

	Designing the architecture
	General architecture
	Dataset

	Implementation
	First generation
	Data augmentation
	Second generation
	A more complex model
	Third generation
	Data normalization
	Fourth generation

	Google's data
	Future works
	Security recommendations
	Conclusions

