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1 Neutrino Oscillations and SBN

The field of neutrino physics has rapidly evolved over the past two decades
thanks to many successful experiments which have established that neutrinos
have mass and oscillate between different flavors. More recently, many of the
neutrino mixing parameters which govern oscillations have been precisely
measured. There are still many ananswered questions regarding neutrinos
behaviour though, such as: are there additional neutrino flavour states that
are invisible to our detectors since they don’t interact? How do neutrinos
aquire mass? and so on.
Many experiments are being employed right now in order to answer some of
these questions, most of which make use of the Liquid Argon Time Projection
Chamber detectors, who have been chosen or their fine-grained spatial and
calorimetric resolution which can be used to accurately identify particles
produced in neutrino interactions with low detection thresholds. One of
these experiments is the Short Baseline Neutrino (SBN) collaboration.
In order to understand what the goals and difficulties of this experiment
are, in this section we present a review of the current status of neutrino
oscillation physics, together with an overview of the anomalies that motivate
the construction of a short baseline oscillation neutrino experiment.

1.1 Neutrino oscillation physics

Neutrino oscillations describe the phenomenon of neutrino flavor mixing
which has now been observed by numerous experiments performing a variety
of measurements, the first of which were the Super-K and SNO collabora-
tions. The mixing of neutrino flavors is a quantum mechanical effect caused
by the non-orthogonality of the neutrino flavor eigenstate basis (through
which neutrinos are observed as they interact via the weak force) and the
mass-eigenstate basis which appears in the Hamiltonian and governs neutrino
propagation.

1.1.1 Two-flavor mixing

A simple approach to explaining neutrino flavor mixing is to assume the ex-
istence of only two flavor eigenstates and then generalize to the three real
eigenstates dictated by the standard model and experimental observations
[1]. Following this approach, let’s assume the exisistance of two flavor states
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|να〉 and |νβ〉 and two mass states |ν1〉 and |ν2〉. The two eigenstate cathe-
gories are related by a unitary matrix:

(
|να〉 |νβ〉

)
=

(
cosθ sinθ
−sinθ cosθ

)(
|ν1〉
|ν2〉

)
(1)

Neutrinos interact as well-defined flavor eigenstates, but they propagate as
mass eigenstates of the Hamiltonian. A neutrino which was originally pro-
duced in the flavor eigenstate |να〉 will evolve as:

|να(t, ~r)〉 = cosθ e−ip1r |ν1〉+ sinθ e−ip2r |ν2〉 (2)

p1 and p2 are the mass eigenstates’ momentums, which can be written, as-
suming the neutrino is ultra-relativistic, as:

pi =
√
E2 −m2

i ≈ E[1− m2
i

2
] (3)

pi · r = E · t− ~pi~r ≈ (E − pi)r =
m2
i

2E
r (4)

r being the distance travelled by the neutrino. From this we get:

|να(r)〉 = cos θ e−i
m2

1
2E

r |ν1〉+ sinθ e−i
m2

2
2E

r |ν2〉 (5)

The probability of the neutrino interacting as the flavor eigenstate να will be
given by the amplitude:

Pαα = | 〈να|να(r)〉 |2 = 1− sin2(2θ)sin2(
∆m2

12L

4E
) (6)

As it is clear by the formula the probability for a neutrino produced in a cer-
tain state to be detected in the same state (referred to as survival probability)
depends on two fundamental quantities set by nature: the mixing angle θ,
which dictates the oscillation amplitude, and the squared difference between
the mass eigenstates ∆m2

12 = m2
2 −m2

1. The energy E and propagation dis-
tance of the neutrino L are the only two that can be directly manipulated,
which contribute to the oscillation frequency.
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1.1.2 Basic structure of a Neutrino Oscillation Experiment

Measuring the mixing angles and mass-splittings of equation 6 requires map-
ping out the oscillation probability as a function of L and E. In order to
do so one must be able to infer the neutrino energy, propagation distance,
and neutrino flavor. One possible source of neutrinos are accelerators, which
have the advantage of a very well known L and an energy spectrum that can
somewhat be tuned.

The experimental setup for an accelerator based oscillation experiment is
shown in Figure 1 [2]. A near detector is placed close to the un-oscillated
source, the neutrino flux can be accuratly scanned in order to exactly know
its initial composition . The ”far” detector is then placed at a baseline such
that the oscillation feature being studied (∆m2L/4E)is enhanced; its task
is to count neutrino interactions, tag their flavor, and measure the neutrino
energy.
Oscillation experiments can be performed as either appearance or disappear-
ance measurements. In the first case, one searches for the appearance of
neutrinos of flavor β in a να beam. For disappearance experiments the sur-
vival probability Pαα of the state α is measured.

Figure 1: Layout of a basic Oscillation experiment

1.1.3 Three Flavor Neutrino Oscillations

The two-flavor formalism discussed in section 1.1.1 can be generalized to in-
clude other neutrino states. The EW unitary matrix, in the case of three
neutrino flavors can be expressed as:

U =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 (7)
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This matrix can be divided into three terms, one for each mixing angle θ12, θ23

and θ13:

U =

1 0 0
0 cosθ23 sinθ23

0 −sinθ23 cosθ23

×
 cosθ13 0 sinθ13e

−iδ

0 1 0
−sinθ13 0 cosθ13

×
 cosθ12 sinθ12 0
−sinθ12 cosθ12 0

0 0 1

×
eiα1/2 0 0

0 eiα2/2 0
0 0 1

 (8)

The matrix U is called Pontecorvo, Maki, Nakagawa, and Sakata (PMNS)
matrix. Oscillation probabilities can be derived as for the two-neutrino sim-
ple example, but now will exhibit contributions from three mixing angles
and mass-splittings which interfere with each other. The generic oscillation
probability in a three-flavor scenario can be expressed as:

Pνα→νβ(ν̄α→ν̄β) =
∑
i

|Uβi|2|Uαi|2+

2
∑
i

|UβjU∗αjUαiU∗βi|cos
(

∆mij

2E
L− (+) arg(UβjU

∗
αjUαiU

∗
βi)

)
(9)

Note that the mixing angles of the PMNS matrix are accompanied by three
phases: δ which measures the CP violating angle, and α1 and α2 which are
the Majorana phases, important if neutrinos are Majorana particles.
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1.2 Hints for Additional neutrino States

The absence of a right-handed neutrino in the SM EW theory causes neutri-
nos to be massless. Neutrinos (anti-neutrinos) are produced via weak inter-
actions in a predominantly left-handed (right-handed) state. For non-zero
neutrino masses, the neutrino field can be expressed as a linear superposition
of a left-handed helicity -1/2 and right handed helicity +1/2 states, with the
right-handed component heavily suppressed by a term proportional to mν/E.
Right handed sterile neutrinos (which do not interact with the weak bosons
W+− and Z0 ) can be added as an extension to the SM.
Hints for sterile neutrino states have emerged from several neutrino experi-
ments performed with different sources and detectors [3], even though none
of these measurements offers yet a conclusive evidence of their existence and
of oscillation into and from them. All potential signal, if interpreted as due
to oscillations, are compatible with a mass-splitting of order 1 eV 2.

1.2.1 The Gallium Anomaly and the Reactor Anomaly

GALLEX and SAGE were solar neutrino detectors working in the spectrum of
the few hundred keV. During calibration measurements with neutrino sources
51Cr and 37Ar these experiments measured a deficit of νµ from both of order
∼ 2 − 3σ. Being the deficit from a low energy source (400-700 keV) 10 cm
from the detector led to speculation that the cause of this anomaly could be
due to oscillations to sterile neutrinos in the eV 2 range.
A similar anomaly has been widely observed in reactor neutrino experiments
as a deficit of a few percentage points in ∼ 1− 10 MeV ν̄e events,uniform in
events. Such deficit has been hypothesised to also be linked to oscillations
into a sterile neutrino.

1.2.2 The LSND Anomaly

The LSND (Liquid Scintillator Neutrino detector) operated recording the
neutrino flux produced by the LANSCE neutrino beam, composed of νµ and
νe from muon and pion decay at rest. The main goal of the experiment was
to study neutrino oscillations at the ∆m2 ∼ 1eV 2 at a time when there still
was much uncertainty on the frequencies at which to expect oscillations. The
analysis consisted of a measurement of νe from inverse β decay and recorded
an excess of electron neutrino interactions with respect to predictions for in-
trinsic events from the beam [4]. The excess of events (Figure 2 (a)) was fit
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to an oscillation appearance signal under a two-flavor hypothesis, leaving to
the constrained parameter space shown in Figure 2 (b).
The ∼ 1eV 2 mass splitting suggested by LSND’s results interpretation as
neutrino oscillation is non-conclusive, but it has led to an interest in the field
for the search for potential sterile neutrinos in that range.

Figure 2: (a) Distribution of measured νe events, with the best-fit excess
modeled as oscillations in blue(b) Constraints on parameter space under a
two-flavor oscillation hypothesis

1.2.3 The MiniBooNe Low Energy Excess

MiniBooNE’s goal was to test the 1 eV 2 oscillations hypothesis but with
a different neutrino beam and detector in order to not be affected by the
same systematics of LSND. The detector consists of an 800 ton circular
tank filled with mineral oil surrounded by PMTs which observe Cherenkov
light produced by leptons and other particles originating in neutrino interac-
tions. The experiment was a νe appearence experiment in a largely νµ beam.
The detector was able to distinguish the two topologies by the difference
in PMT signature: electrons produced unfocused Cherenkov rings caused
by the broadening elecro-magnetic showers, while muons produced a sharp
Cherenkov ring.
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The latest results of MiniBooNe’s νe and ν̄e appearance searches present
an excess of events in both channels that falls below 475 MeV of recon-
structed neutrino energy. This excess falls below where an appearance signal
consistent with that of LSND would have been expected, and is foer this
reason referred to as Low Energy Excess (LEE). Sterile neutrino states of
∆m2 ∼ 1eV 2 have been proposed as an explanation for this anomaly as well
, even though the data would seem to suggest a more complex sterile neutrino
model with two or three additional neutrino states.

A clear picture for what is the nature of the MiniBooNE LEE is yet to be
identified. The most significant backgrounds to the MiniBooNE low-energy
excess are of two types: intrinsic electron neutrinos in the muon neutrino
beams, and interactions producing photons which are mis-identified as elec-
trons. While the first background is irreducible, the second is present because
MiniBooNE cannot distinguish between electrons and photons. This is one of
the main arguements that led to the development of new experiments using
the LArTPC technology.

Figure 3: Neutrino mode (a) and anti-neutrino mode (b) results for a νe
appearance search in the MiniBooNE detector. The excess of events at low
energies (¡ 475 MeV) is referred to as the low energy excess (LEE). The
same excess seen by LSND would show up in MiniBooNE at slightly higher
energies. The dominant backgrounds to the selection are caused by single
photon events from ∆→ Nγ and neutral current π0 production.
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1.3 SBN

The Short Baseline Neutrino (SBN) Program is an extensive experimental
edeavour set to explore neutrino properties and detector technology in the
Fermilab Booster Neutrino Beam-line [5]. It consists of three Liquid Argon
Time Projection Chambers(LArTPCs): SBND, MicroBooNe and ICARUS,
placed at varying distances from the neautrino source, running in Booster
Neutrino Beam-line(BNB) at Fermilab (Figure 4). The goals of the program
are to followup on the MiniBooNE low energy excess, explore the phase space
of short baseline neutrino oscillations, make precise measurements of of cross
sections of neutrinos interacting in liquid Argon and further develop LArTPC
technology.

Figure 4: Layout of the three detectors composing the SBN Program.

The primary goal of SBN is to investigate the hints of the possible exis-
tence of one or more sterile neutrino states in the 1eV mass range, suggested
by the LSND and MiniBooNe experiments (as discussed in Section 1.2).
These new sterile states would cause an excess in oscillation towards electron
neutrinos at short baselines (< 1km) in pion-decay in flight based neutrino
beams such as BNB.

The size and placement of the three TPCs allows for a characterization of
the neutrino beam before the oscillation in SBND and simoultaneous mea-
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surements of νe appearence and νµ disappearence in the MicroBooNe and
ICARUS detectors. The LArTPC technology also solves one of MiniBooNe
problems, which was the fact that the Cherenkov light based detectors in
use were not able to easily distinguish between electron and photon induced
interactions. The new TPCs are able to distinguish between the two topolo-
gies by either observing a gap between a neutrino interaction vertex and a
shower or by observing calorimetric differences in the beginning of a shower
between a γ → e+e− pair production and a single ionazing electron.
The SBN configuration will enable measurements at the 5σ level all in a sin-
gle experiment, obviating the need for aglobal fit over multiple experiments
to reach sensitivity in the ∆m2 ∼ 1eV 2 region.

1.3.1 The LArTPC technology

Figure 5: Working principle of a LArTPC. A constant electric field applied
to the cathode (left-hand side) produces a uniform drift-field in the drift-
coordinate direction. Charged particles traversing the TPC, will ionize the
argon, depositing a trail of ionized electrons, which will then begin to drift
towards the wire planes under the effect of the electric field

In a LArTPC [6] charged particles lose energy as they travel through
the detector volume by exciting and ionizing the argon. Energy lost to ion-
ization will manifest itself as a trail of electrons which faithfully maps the
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three-dimensional trajectory of a charged particle. Excited argon atoms can
form excimers which then decay leading to the production of scintillation
light. The energy lost by the traversing charged particle is split roughly
equally between ionization charge and scintillation photons.
Scintillation light will propagate isotropically through the detector volume
and can be measured with photomultiplier tubes. Ionization charge, on the
other hand, will remain stationary in the detector. In order to measure the
ionization charge preserving the topological and calorimetric information it
conveys an electric field is applied across the detector volume which drifts
the ionization electrons towards a mesh or wires. Ionization electron clouds,
by drifting past or being collected on the wires will induce a current which
can be recorded. The pattern of charge deposited on the wires as a function
of time can be used to produce an image of interactions in the detector of
comparable quality to those produced by bubble-chamber detectors.

The basic setup of LArTPC is shown in Figure 5. The TPC has three
main components: a cathode-plane, field cage, and anode plane. These are
responsible for maintaining a uniform electric field in the detector volume al-
lowing ionization electrons to drift towards the sense-wire. The anode plane
houses the sense-wires, usually arranged in three planes, kept at a fixed elec-
tric potential in order to shape the electric field in a way that maximizes
signal transparency.Drifting electrons will pass by two wire-planes closest to
the cathode, producing an induction signal, and will be collected on the last
plane, denoted as the collection plane. By allowing the same electron cloud
to leave a time-coincident signature on multiple planes with different orien-
tation one is able to produce images which show different two-dimensional
projections of the same three- dimensional energy deposition pattern. These
multiple view points allow to triangulate the exact 3D location of energy
deposited in the detector.

1.3.2 Neutrino-Argon Interactions and LArTPC Detector Devel-
opment

Future long-baseline neutrino experiments such as DuNe will require much
improved neutrino interaction models in order to achieve the precision re-
quired for the neutrino oscilation measurements. The SBN Program will
make the highest precision cross section measurements of νe−Ar and νµ−Ar
scattering in the few hundreds of MeV to few GeV range, using neutrinos
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both from the on-axis BNB and off-axis NuMI beams [7].

The SBND design also includes features that are similar to the ones
planned for the Deep Underground Neutrino Experiment (DUNE) far de-
tector and so it will be a critical proof of concept of these designs. Scaling
up to these larger detector masses will benefit from the developments in,
for example, LAr purifications, modular detector anode components, and
scintillation-light detection systems used in the SBN program.

In addition simulation, reconstruction and event selection algorithms are
being developed in a shared software platform for use by all LArTPC based
experiments.
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2 Cosmic Background rejection using Boosted

Decision Trees

2.1 The Cosmic Background

The SBN LArTPC detectors lack appreciable shielding from cosmic rays
(CR) since they are at the earth’s surface and have little overburden[8]. Trig-
gered events with a neutrino interaction typically have the products of up to
20 cosmic rays coincident with the beam spill in the event readout window
(4.8 msec) contributing to a recorded event along with the products of the
neutrino collision. The situation is particularly complicated with events con-
taining neutrino interactions with an isolated µ being produced, which share
the same topology with the most common single-muon CR configuration.

In order to separate between these two muon configurations one of the var-
ious options is to use a multivariate analysis technique which aims to use a
certain number of the variables characterizing the muon tracks and to aggre-
gate them into a single classifier. Some of these techniques, such as boosted
tecision trees fall into the cathegory of machine learning.

2.2 Decision Trees and Machine learning

Decision trees are a machine learning technique used more and more com-
monly in high energy physics [9], first developed and formalized by Breiman
with the proposal of the CART algorithm (Classification and Regression
Trees). The basic idea behind decision trees consists in extending a sim-
ple cut-based analysis into a multivariate technique by continuing to analyse
events that fail a particular criterion since most events do not have all char-
acteristics of either signal or background.

Mathematically decision trees are rooted binary trees ( Figure 6 ). A
decision tree starts from a root node and then recursevely split into two
daughters or branches, until some stopping condition is reached. The algo-
rithm used to grow a tree from a root node can be simply described in a few
passages. Consider a sample of signal si and background bi events, each with
weights wsi and wbi respectivelly, described by a set of xi varibles.This sample
constitutes the root node of the decision tree and starting from it this is the
algorithm:
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Figure 6: Schematic view of a decision tree. Starting from the root node,
a sequence of binary splits using the discriminating variables xi is applied
to the data. Each split uses the variable that at this node gives the best
separation between signal and background when being cut on. The same
variable may thus be used at several nodes, while others might not be used
at all. The leaf nodes at the bottom end of the tree are labeled ”S” for signal
and ”B” for background depending on the majority of events that end up in
the respective nodes.

1. If the node satisfies a stopping criterion, end the algorithm and lable
the sample as a leaf of either signal or background

2. Sort all events according to each variable in xi

3. For each variable, find the cut value that gives the best separation
between one mostly signal branch and one mostly background. If no
splitting gives any improvement exit the algorithm and lable as either
signal or background leaf.

4. Select the variable and splitting value leading to the best separation
and split into two new nodes.

5. Apply recursively from step 1 to each node.

At each node all variables can be considered, even if they have been used in
previous iterations: this allows to find intervals of interest either then limit-
ing oneself to simple cuts. The output for the decision tree is defined by the
purity of the leaf to which the event will be associated after having passed
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all the different cuts, where purity is defined as:

p =

∑
i∈signal w

i
s∑

i∈signal w
i
s +
∑

i∈backgroundw
i
b

=
s

s+ b
(10)

Background purity will easily be defined as 1− p.
To choose what the ideal split for a certain node would be we want to max-
imize the decrease of impurity from one level to the next. To describe what
impurity is we would need a function such that is:

• maximal for an equal mix of background and signal(no separation)

• minimal for nodes with either only signal or only background events

• symmetric in signal and background purities.

Common impurity functions that exhibit most or all these characteristics are:

• the misclassification error: 1−max(1, 1− p)

• the cross entropy: 1−
∑

1=s,b pilogpi

• the Gini index of diversity: 2sb/(s+ b)2

These fuctions are plotted in Figure 7.

Regarding the stopping criterions that can be used to end the growth of
the decision tree, the possibilities are various. Some examples of the most
common conditions are:

• Reaching a minimum leaf size inquiring at least Nmin training events in
each node after splitting. This will ensure the statistical significance of
the purity measurement. In the case of weighted events this criterion
can be generalized using the effective number of events instead:

Neff =
(
∑N

i=1 wi)
2∑N

i=1w
2
i

(11)

for a node with N events with weiths wi.

• Reaching perfect separation (each event in the node is either signal or
background)
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Figure 7: Various popular impurity measures as a function of signal purity.

• Having insufficient improvement with further splitting

• Reaching a maximal tree depth: the tree will have no more then a
certain number of layers.

The last condition ensures that the tree structure will remain relatively sim-
ple, which is ideal in the case of Boosted Decision Trees.

2.2.1 Boosting

Despite all the nice features presented above, decision trees are known to be
relatively unstable. If trees are too optimised for the training sample, they
may not generalise very well to unknown events. One of the many techniques
that one can use to circumvent this problem is using the technique known as
Boosting. The boosting algorithm is not unique to decision tree and can in
principle be applied to any classifier.

The basic idea behing the Boosting technique is that other then creating
a single very complex multivariate discriminant, which is usually fairly dif-
ficult, one could instead build many classifiers that are just slightly better
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then a random guess . One could then combine the output of all these so
called weak classifiers obtaining a new, more stable one with a smaller error
rate and better performance.

The basic algorithm of any boosting technique can be streamlined in a few
iterative steps. Consider a training sample Tk containing Nk events each as-
sociated with a weight wki , a vector of carachterizing variables ~x and a class
label y = ±1 for signal or background respectivelly. What you do then is:

• Initialize T1 by assignining to each event a weight equal to 1/N1

• Train the classifier C1 on T1

• Reweight the sample T1 by some criterion and rename it as T2

• Assign a weight α1 to C1

• Repeat the process for the number of classifiers you want to train
(Ntrain)

The Boosted output will be some function F (C1, ..., CNtrain), typically a
weighted average:

F (i) =

Ntrain∑
k=1

αkTk(~xi) (12)

2.2.2 AdaBoost

AdaBoost is one of the most succsessful and most used implementations of
the boosting algorithm. The term stands for adaptive Boosting, referring to
the fact that during the training procedure the classifier is adjusted to the
data in order to better classify it. Its implementation works as follows. After
the Ck tree has been built one checks for the events in the training sample Tk
that have been misclassified and defines the misclassification rate R(Ck) as
the number of misclassified events over the total. Let’s now define a boolean
function I : x → I(X) such that I(X) = 1) if X is true. One can then
define a function that tells wether an event is misclassified by the tree. If
the output of the tree is given by the purity of the leaf to which the event
belongs to, with a critical purity of 0.5, then the fuction can be defined as:

Mk(i) = I(yi × Tk(i) ≤ 0) (13)
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Figure 8: Schematic rappresentation of the AdaBoost algorithm. The first
classifier is trained over a evenly weighted sample containing two classes of
events: + and − . The weights of the misclassified events are then Boosted
in order to be more heavily scrutinized by the next tree in the chain (the
symbols are litteraly bigger in the picture). After this process has been
repeated a set number of times the output of all the trees is combined in
order to build the final Boosted classifier.

The misclassification rate can then be defined as:

R(Tk) = εk =

∑Nk
i=1w

k
i ×Mk(i)∑Nk
i=1 w

k
i

(14)

We can then assign to the tree Tk a weight that is inversely proportional to
its εk:

αk = β × ln1− εk
εk

(15)

where β is a free parameter that can be used to adjust the strength of Boost-
ing.

The caracterizing step of the AdaBoost algorithm is the following: each event
in the sample Tk is reweighted in order to create a new sample Tk+1 such that:

wki → wk+1
i = wki × eαk·Mk(i) (16)
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This means that properly classified events remain unchanged, while the mis-
classified ones increase their weight by a factor of eαk . The next tree is then
trained on the new sample so that it will be more interested in correctly
classifying the events that the previous itheration found more difficult and
failed to identify correctly. This iterative process is repeated for the number
of classifiers we want to train Ntrain and the final AdaBoost output is given
by the weighted average:

T (i) =
1∑Ntree

k=1 αk

Ntree∑
k=1

αkTk(i) (17)

It can be shown that the misclassification rate ε of the Boosted classifier
on the training sample is bounded from above:

ε ≤
Ntrain∏
k=1

2
√
εk(1− εk) (18)

This leads to the fact that for a sufficiently large number of Ntrain, if each
tree is at least better then a random guess (εk 6= 0.5) ε falls to 0. At the
same time though the classifier goes into overfitting, so that one should find
a good balance beetween ability of classification and specificity.
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2.2.3 TMVA

Integrated into the analysis framework ROOT, TMVA is a toolkit which
hosts a large variety of multivariate classification algorithms. Training, test-
ing, performance evaluation and application of all available classifiers is car-
ried out simultaneously via user-friendly interfaces [10].

A typical TMVA classification (in our case netween signal and cosmic back-
ground) analysis consists of two independent phases: the training phase,
where the multivariate methods are trained, tested and evaluated, and an
application phase,where the chosen methods are applied to the concrete clas-
sification problem they have been trained for. For this project we limited
ourself to the first portion of this process since the goal was to evaluate how
well a trained Boosted Decision Tree would perform over simulated muon
data, and not to use it on any real sample, at least for the moment being.

In the training phase, the communication of the user with the data sets
and the MVA methods is performed via a Factory object, created at the be-
ginning of the program. The TMVA Factory provides member functions to
specify the training and test data sets, to register the discriminating input
and – in case of regression – target variables, and to book the multivariate
methods. Subsequently the Factory calls for training, testing and the evalua-
tion of the booked MVA methods. Specific result (“weight”) files are created
after the training phase by each booked MVA method.

In our case ROOT Trees were used to store the signal and background events
with their defining variables. Data trees can be provided specifically for the
purpose of either training or testing or for both purposes. In the latter case,
which corresponds to our own, the factory then splits the tree into one part
for training, the other for testing.
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2.3 Preliminary Fiducial Cuts and Definition of the
Classifier Variables

Using the functionalities of TMVA building and training any Multivariate
machine learning classifiers is fairly easy; one only needs to choose which
kind of classifier he wants to use and which variables he wants to implement,
and provide a training/testing sample in the form of tree files. The kind of
classifiers we decided to experiment with were, as previously mentioned, are
Boosted Decision Trees.
The data we used was Montecarlo simulated data generated for SBND and
reconstructed using Pandora and PMA algorithms [11]for Signal and Back-
Ground samples respectivelly and contained 74035 signal tracks and 491317
cosmic tracks. As for the spatial coordinates the z axis corrisponded to the
initial direction of the muon neutrino beam, while the x and y correspond
to the horizzontal and vertical directions exactly. The dimensions of the
detector are then:

• x = [−200; 200] cm

• y = [−200; 200] cm

• z = [0; 500] cm

The reconstruction trees contained all sorts of informations regarding the
muon tracks we wanted to analyzed, so we decided to build new trees con-
taining only the information directly relevant to our analysis. Such data
consisted of basic spatial informations such as three-dimensional positions of
the beginning and end of the track and the variables we used to build the
Boosted Decision Tree Classifier.
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Figure 9: 3D distributions of the origins of the muon tracks from the Mon-
tecarlo reconstructed data, produced by νµ (in blue) and by cosmic rays (in
red) inside the SBND detector. The faded dots correspond to the events lo-
cated in the outer 20cm of the detector, that were eliminated by the fiducial
cuts. The sample is mainly constituded by cosmic tracks, roughly respecting
the real proportions that are expected for a surface LArTPC

The spatial information regarding the origin of the tracks was used to
apply a basic fiducial cut over the two samples. A fiducial volume is defined
as the volume of the detector outside of which we can expect that most signal
is actually produced by background sources. In the case of muon tracks in
a surface LArTPC this corresponds to the internal volume of the detector.
This is justified intuitively by the fact that if the neutrino beam is well fo-
cused the muon tracks produced by it will not diverge much laterally, and
that the νµ will take some time to interact in the Liquid Argon Medium. Re-
moving the outer 20cm of the detector volume in each direction we obtained
a sample that was reduced by 31% in signal and by 39.4% in background (
Figure 9 ) with an overall increase in signal/background.
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Having done these preliminary cuts, all that was left to do was to select
which characterizing variables we would use. We decided to let ourself be
guided in our choice by a previous similar work produced at NoVa, where
many different observables where tried in the context of BDT classifiers [12].
The specific ones we decided on in the end where:

(a) The length of the muon track

(b) The cosine of the angle between the direction of the muon track and
the average direction the neutrino flux estimated using the Montecarlo
simulation truth information on the νµ

(c) The maximum value of the vertical coordinate y between the beginning
and the end of the track

(d) The cosine between the direction of the muon track and the y axis

(e) The slope of the muon track defined as :

slope =
z2 − z1

y2 − y1

(19)

where z2 and z1 are the values of the z coordinate at the end and
beginning of the muon track and y2 and y1 are the equivalents for the
y coordinate.

All the histograms of the distributions of the variables for the signal and
background samples are reported in Figure 10.
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(a)

(b) (c)

(d) (e)

Figure 10: Histograms of signal (in blue) and background (in red) events for
each variable used for the BDT (a) length of the muo track (b)cosine of the
angle between the direction of the muon track and the average direction the
neutrino flux (c) maximum value of the vertical coordinate y between the
beginning and the end of the track (d) cosine between the direction of the
muon track and the y axis (e) slope of the muon track

23



2.4 BDT Training and Testing and Results

Using the variables described in the previous section we wrote a root macro
that, using the functionalities of TMVA, would let us build, train and test a
BDT classifier over the neutrino and cosmic files mentioned in section.
In Figure (a) we can see the distribution of the trained BDT over the train-
ing and testing samples which were selected automatically by TMVA from
the SBND files. Note that the performances over the two samples are very
similar, which indicates that the classifier did not get into overtraining.
In Figure (b) we can see how the signal and background efficiency, which
are defined as rhe fraction of events that are correctly classified as signal
or background respectively, vary with respects to the possible cuts on the
trained BDT output. To decide on where to apply the cut we used a well
known factor of quality defined as:

f =
s√

(s · b)
(20)

where s and b are the signal and background efficiencies respectivly. The
value of f resulted maximal for a cut at BDT = −0.05. The results of this
cut can be seen in Figure where we used the length variable as an example.
After the cut the signal sample was reduced by 14%, while the background
sample was reduced by 69% resulting in a clear improvement in signal purity.
This demonstrates the viability of the technique and incoourages further
improvement, i.e. over the quantity and quality of the variables utilized.
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(a)

(b)

Figure 11: (a) Output of the trained BDT classifier over the testingand
training samples (b) Signal efficiency s, Background efficiency b, Signal purity
and s/

√
(s · b) as a function of the cut on the BDT output
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(a) (b)

Figure 12: Distributions of the length of the muon track for the background
events (a) before the cut on the BDT output (b) after the cut on the BDT
output

(a) (b)

Figure 13: Distributions of the length of the muon track for the signal events
(a) before the cut on the BDT output (b) after the cut on the BDT output
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3 Study of the Michel electrons in LArTPC

Michel electrons are defined as electrons produced by the decay-at-rest of
cosmic-ray muons that come to a stop in the LArTPC. Michel electrons have
a well characterized energy spectrum with energies up to 50 MeV. We can
use these electrons to study the response to neutrino interactions which pro-
duce EM activity in the same energy range.

What we tried to do in this study was to develop an algorithm that would let
us identify those muons that are the most likely to have produced a Michel
electron in their interaction with the liquid Argon medium.
The files used for this analysis are SBND Montecarlo produced reconstructed
cosmic files analogous to the ones described in Section 2.3.

Figure 14: Feynmann diagramm of the decay at rest of a muon into an
electron, a muon neutrino and an electron anti-neutrino, via weak interaction

3.1 Topology of the interaction

In order to develop an algorithm that selects the muons that are the most
likely to stop in the detector and produce an electron, we looked at the
energy deposition of the particle and the topology of the interaction. Muons
travelling in the medium will use energy by ionizizing the electrons of the
liquid Argon medium, producing a charachteristic rise in energy deposition
along the particle’s trajectory, when they come to a stop, called the Bragg
peak (Figure). Most Michel electrons produced will then propagate in a
direction different than that of the stopping muon and will lose energy by
either ionizing and exciting the atoms which make up the material (collision
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Figure 15: Visualization of the topology of an interaction of a muon pro-
ducing a Michel electron: spatial 2d reconstruction on the right, energy de-
position on the left. Reconstruction taken from a MicroBoone analysis [13]

stopping power) or by producing photons from a bremsstrahlung interaction
(radiative stopping power).
Concentrating only on the energy deposition of the stopping muon we can
develop an algorithm that lets us do a confrontation between the mean charge
deposition between the beginning and the end of the muon track: the muons
where this value is bigger at the end then at the beginning of the track will
be more likely to have stopped in the medium and have produced a Michel
electron.
Before we do that it is usefull to smooth out the hit charge data.Given a
spatially sorted list of 3D hits we can substitute the charge deposition values
with the median of the surrounding hits (4 on each side), eliminating many
possible outliers. After having done that we can take the and last 10 cm of
the muon track and calculate the median of the charge deposition in each
region. If we plot the two values (figure) we will expect two main regions to
be formed: one where the dqdxbeg and dqdxend have about the same value
and one where dqdxend > dqdxbeg
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3.2 Spacial and Energetic Cuts

Having access to the spatial and energetic information we can try to apply
various selections criterions to the data, such as:

• The muon track must be fully contained in the volume of the SBND
detector: the beginning of the track must be contained in the outer 20
cm of the detector and the end must be contained in the complementary
volume.

• The median of the charge deposition in the last 10 cm of the muon
track must be bigger then the one at the beginning

We can see the effects of these cuts on the data in Figure 17: we reduced the
data sample from 123759 events in the original sample to 5561 events. In
the new set it was easy to find a few that corresponded to the characteristic
Bragg peak structure, such as the one in Figure 15.
To further develop the algorithm one could now look for example to the
change in direction of the track after the production of the electron or the
energy deposition of the electron itseld, as it was done in a previous work for
the MicroBooNe experiment [13].

Figure 16: Example of an event presenting a Bragg peak in its energy
deposition (keV) as a function of residual range (distance in cm from the end
of the track)
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(a) (b)

(c) (d)

Figure 17: Histograms of the dqdxbeg vs dqdxend in keV (a) before any cut (b)
after imposing that the beginning of the track is contained in the outer 20 cm
of the SBND detector (c) after imposing that the end of the track is contained
in the complementary volume (d) after imposing that dqdxbeg > dqdxend
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