
Fermi National
Accelerator Laboratory

Summer internship 2018

Final report

Data Management for High
Energy Physics – Monitoring the

SAM system

Author:
Francesco Paciolla

Supervisor:
Robert Illingworth

September 26, 2018

Abstract

Current and future Fermilab experiments are using the Sequential Access
via Metadata (SAM) system to manage their data. SAM is a highly auto-
mated data management system that provides file metadata and location
cataloguing, uploading of new files to tape storage, dataset management,
file transfers between global processing sites, and processing history track-
ing.
As for any other computing system, SAM requires constant monitoring to
ensure a correct functioning of the system itself and a smarter and more
efficient use of the available resources.
In order to lay the groundwork for a new monitoring system, this work shows
how to extract monitoring data from the SAM system, how to collect them
using open-source software and how to visualize them using different types
of charts.
This report also presents a monitoring system prototype that can be used
for the early tests.

1

Introduction

This report presents the work I performed during the summer 2018 at Fermilab
where I worked as a Summer Student in the Computing Division section. I worked
on a data management system called the SAM system.
The SAM system activity is monitored by an old monitoring system that has some
intrinsic limitations. As will be described later, the aim of my project is to lay
the groundwork for a new monitoring system that must have four key differences
with respect to the old one, as shown in table 1.

Old New
Queries the SAM database Queries the SAM station
Limited set of information Wider set of information
Slowly updating Fast updating
Stand-alone system Easy to integrate

Table 1: Differences between the new and the old monitoring systems.

This report shows how I addressed this task and the results that I achieved.

The first chapter describes the SAM system and its core ideas. Particular empha-
sis is given to the concepts of metadata and dataset to better explain the role of
the SAM database.

The second chapter outlines the functioning of the SAM system. Here are shown
all the various parts of which the SAM systems consists of and how they interact
among each other and with the outside world. The SAM station is also introduced
and its role is explained.

The third chapter consists of three main sections. The first explains how I ex-
tracted the monitoring data from the SAM station and how I stored them in a
log file. The second shows how I collected the data using different open-source
software. The data have been collected in a database shared by other monitoring
systems. The latter deals with the visualization of the data. Some examples of
charts are presented.
Each section contains a subsection that discuss some ideas for future improve-
ments.
Finally, an extra section presents a prototype for the monitoring system that I
created. This prototype has a simple graphical user interface; it is completely
automatic and therefore can be used for the early testing sessions.

2

Contents

1 The SAM data management system 4
1.1 Introduction . 4
1.2 The SAM system . 5
1.3 SAM metadata . 5
1.4 Metadata queries, datasets and snapshots 6

2 How SAM works 7
2.1 SAM overview . 7
2.2 Running a project . 9
2.3 SAM advantages . 9
2.4 The need for a (new) monitoring system 10

3 Creating a new SAM monitoring system 11
3.1 Setting the goals . 11
3.2 Extracting metrics . 12

3.2.1 Future improvements . 13
3.3 Collecting the data . 14

3.3.1 Future improvements . 15
3.4 Visualizing the data . 15

3.4.1 Overview . 17
3.4.2 File Processing Time . 18
3.4.3 File Processing Speed . 19
3.4.4 Files Opened, Closed and Skipped 19
3.4.5 Future improvements . 20

3.5 A prototype for the monitoring system 21

4 Conclusions 23

3

1 The SAM data management system

1.1 Introduction

The Fermilab Scientific Computing Division has to face multiple challenges while
supporting the computing requirements of the many different experiments cur-
rently running or planned to start in the next few years at Fermilab. Each ex-
periment produces a huge amount of data that may range from tens of TB per
year up to many PB per year spread over a number of files that may be well
over the million even for a small experiment. For example, the NOνA experiment
produces about 5000 ÷ 7000 files per day with peaks of 12 000 files [1]. These raw
files, as well as the extensive amount of data coming from the simulations, must
be processed through several stages in order to reconstruct the physical events.
In this environment, it is not practical to store every single file (raw or offline
processed) in a single location and therefore, they are usually spread all over the
world and are stored using a combination of different storage systems as [2]:

• Hierarchical storage

– dCache/Enstore at FermilabdCache/HPSS at BNL

– CASTOR at CERN

– GPFS/TSM at INFN

– etc.

• NFS Filers

– BlueArc at Fermilab

• Distributed Filesystems

– LUSTRE

– CEPH

– AFS

– etc.

The location of a file changes over time as it may be moved from tape to a fast
cache disk to be processed or from BlueArc onto to tape for long-term storage.
To manage the data on a so complicate and vast system each experiment should
provide dedicated experts. This is often not possible given the smaller size of the
experiments compared to the large colliding beam experiments that used to run
at Fermilab.

After evaluating different approaches, a centralized system was thought to be the
easiest way to handle all of the above listed problems at once. Therefore the
decision to adopt the SAM system.

4

1.2 The SAM system

The Sequential Access via Metadata (SAM) system was originally used as a data
handling system for the Run II of the Fermilab Tevatron [3]. Afterwards it was
adopted by the D0 and CDF experiments. Having acquired a lot of experience
from a decade of operation, SAM was a good choice as a unique data management
system for the experiments at Fermilab.
Nowadays SAM is in use by the Minos, Minerνa, NOνA, µBoone, DarkSide, and
LBNE experiments and is planned to be used at the Muon g-2 experiment [3].

SAM is designed as a highly automated data management system that requires
minimal routine intervention. Data staging from tape and from storage element to
storage element is completely automatic. This is good for the experiments, which
cannot provide dedicated expertise for operating data management systems.
The original version of SAM was designed as a stand-alone system and it required
a heavyweight client implementation. This made difficult its integration with
other experiments and with the variety of standardized services that have become
available as part of the Grid infrastructure. The Fermilab Scientific Computing
Division has progressively updated SAM trying to combine modern, standardized,
technologies with the past experience of the Run II in order to obtain a lightweight
system with an easy to use interface and capable of being used by multiple exper-
iments.

Although the updates and the changes in the SAM architecture, the ideas at
its core have been remained the same and are tightly linked to the concept of
metadata as will be shown in the next section.

1.3 SAM metadata

One of the main goals of the SAM system is to allow the user to get the files he
needs without having to specify, or to know at all, the specific details about its
name or position. In order to achieve this, every file stored in SAM has metadata
associated with it. The metadata is usually added when the file is first uploaded
into the database. As the file is processed or moves from a storage element to
storage element the metadata is updated with it.

Metadata is data about the data. It mostly consist of a dictionary of key-value
pairs and contains information useful in understanding what is in a file, how the
file was generated or how it should be grouped with other files. Metadata may
often include:

• physical data such as file size, data and time of creation, format, etc.;

• physics metadata such as run number, detector configuration, simulation
parameters, etc.;

• provenance that is the complete history of a file. It stores information about
the parent files from which it was derived and the application and version
that was used to create it;

• quality check that states whether a data file has passed a quality check.

5

A list of predefined metadata is available [4].
Some fields are mandatory but the experiments can freely define their own fields,
called parameters, depending on their needs. Most experiments have usually one
person or few people that define the parameters to be used. The general user
needs only to know the complete list of the parameters in use.
As for the fields, the values can be freely defined by the experiments and may be
anything, e.g., integer numbers, strings or lists.
Table 2 shows a metadata example from the NOνA experiment [3].

File Name reco r00013501 s00 t00 numi.root

File Id 4079577

File Format root

File Size 18931848

Crc 4220712658 (adler 32 crc type)

Content Status good

Data Tier reconstructed

Data Stream 0

NOVA.DetectorID ndos

NOVA.HornConfig LE010z185

NOVA.HornPolarity FHC

NOVA.Label preMeta

NOVA.Special none

NOVA.SubVersion 1

Online.RunEndTime 1329248111

Online.RunNumber 13501

Online.RunStartTime 1329244506

Online.SubRunEndTime 1329248111

Online.SubRunStartTime 1329244506

Online.Subrun 1329244506

Reconstructed.base release S12.02.14

Runs S12.02.14

Parents ndos r00013501 s00 t00.raw

Table 2: Example of metadata from the NOνA experiment.

SAM stores the metadata in a database that can be queried to obtain the needed
files.

1.4 Metadata queries, datasets and snapshots

Users often want to analyze files that share common characteristics, e.g., run num-
ber, time range, trigger setup. A group of files that share common characteristic
is called a dataset. There can be hundreds, thousands, or hundreds of thousands
of files in a single dataset.
A dataset can be created querying the SAM database where all the SAM meta-
data are stored. There is a specific language to query the catalogue that has
been improved thanks to the experience gained from the past implementations.
Examples of queries are:

6

• run_number 13501 and file_format raw – this returns all the raw data
files from run 13501. Here run number and file format are the fields whereas
13501 and raw are their values;

• run_number 13501 and file_format raw and not isparentof:(appli-

cation reconstruction and version S12.02.14) – this returns all the
raw files from run 13501 which do not have a derived file reconstructed with
the specified version of the software.

Since the database is queried whenever the user requests the dataset, a query may
return different datasets when run multiple times. If more files with matching
criteria are added into the system since the query was created, they are automat-
ically included in the dataset when the query runs. The resulting dataset may
vary depending on many factor and in particular on the query itself. For example,
querying the database for all the files created since August 1, 2018, may return a
growing dataset. Instead querying the database for files created from August 1,
2018 to October 1, 2018 may return a static dataset. However, if files are back-
dated later, and fall within that time range, then the dataset will change.
When a static dataset is needed, a direct query of the database is not the recom-
mended solution since it may lead to different sets of files. A snapshot may be
used instead.

A SAM snapshot is the actual list of files that satisfy the metadata query at a
particular point in time. Being static, the snapshots can be used to compare cur-
rent analysis with earlier ones. Moreover, the use of snapshots reduces the load
on the central database. This is because the snapshot stores all the information
about the list of the required files and therefore it does not search the database
when it is used.

Having covered the basic ideas behind the SAM system, now it will be shown how
these concepts are implemented in order to make the SAM system work.

2 How SAM works

2.1 SAM overview

Figure 1 shows a simplified diagram of the SAM system and its interactions with
the outside world.
There are five main parts:

• the user: it may be a physicist that wants to run an analysis on some data
collected by an experiment;

• the project: it is created by the user and contains information about the
physical analysis to be carried out and about the dataset or snapshot on
which the analysis has to be performed;

• SAM: it represent the SAM system as a whole and it is connected to the
SAM database, which stores the metadata;

7

Figure 1: The SAM system and its interactions with the outside world

• the storage system: it is where all the actual files are stored. As already
said, they may be stored all over the world. The storage system is connected
to SAM through an HTTP protocol;

• the processes: they are the consumers that carry out the analysis on the
files.

In the diagram, the SAM system has been oversimplified on purpose. In reality,
the SAM system is much more complex than what shown in figure 1. It consists
of many subsystems that make it easier to integrate SAM with the outside world
and fulfil other different specific tasks. Many of these subsystems have not been
used directly and are not relevant to the work done. Therefore, they have been
omitted in the diagram to highlight the external connections of SAM with respect
to the internal ones.
Among these subsystems, the samweb server and the SAM station need to be
mentioned because they were relevant to the creation of the new monitoring sys-
tem.

The samweb server allows the user to interact with the SAM database. Whenever
it is needed to add, delete or modify metadata entries in the database, the user
sends an HTTP(s) request to the samweb server. This is generally done via a
command line application or a Python or C++ API. In this work, a Python API
was used. Through the same interface many more action can be performed, e.g.
start or kill a project or process, check the state of a project, recover a project.
A complete list of samweb commands can be found here [5].

The SAM station is an application that coordinates all communication between
projects, processes and the database, as well as all file delivery activities. Each
experiment has his own station on which it runs his projects. Other stations are

8

used for testing and development. The SAM station can be considered as the
core of the SAM system, meaning that it can hold information about projects,
processes and files, at the same time. Therefore, this project aims at creating a
monitoring system that works querying the SAM station, as it will be explained
in the section 2.4.

2.2 Running a project

When a physical analysis has to be carried out, the operation of the SAM system
can be schematized as follow:

1. The user creates a project as, e.g. a Python script. In the project, the user
must specify the SAM station to use, the dataset and the actual physical
analysis. Other optional information may be specified, e.g. the maximum
number of processes to start or the actions to perform when errors occur;

2. The script, i.e. the project, is sent to the SAM system through the samweb
server via command line and it is interpreted;

3. Information about the dataset are looked up in the SAM database and the
actual list of file is created, as well as the snapshot;

4. The list of files is passed to the storage system. The storage system begins
preparing the needed files. For example, if a file is on tape, it is moved to
the disk;

5. While the storage system gets ready, the chosen SAM station starts the
project. Later, the processes are started as well1;

6. The SAM station asks and receives the URLs that can be used to retrieve
the files from the storage system. Each URL is unique and it is directly
linked to a specific file;

7. The processes ask for files and the SAM station gives them the URLs one at
a time. Once a process receives a URL, it can access the file in the storage
system and it can carry out the physical analysis. Individual processes have
no direct control over the order the files are delivered;

8. When a process completes the analysis on a file, the SAM station will give
it another URL. If there are no more files to be processed, the process is left
to die;

9. Once all the processes are dead, the SAM station closes the project.

2.3 SAM advantages

One of the biggest benefits of SAM is that it is not directly coupled with any ex-
periment’s framework. Thanks to the samweb server, there is no need to integrate
any code into the experiment framework to communicate with SAM. Instead, com-
munication is performed via an HTTP protocol. Therefore, SAM can be modified

1The processes are not started by the SAM station but for the sake of simplicity, the actual
work chain will be omitted. More information can be found here [2].

9

and updated or completely replaced with some other data management system
without having to touch either the experiment framework or the data handling
code.

Requiring no direct coupling, SAM can be also easily coupled with any experi-
ment without having to know its framework. Both the size and the location of
the experiments do not matter. Scaling up the SAM system is easy because mul-
tiple instances of its component as the SAM station and the samweb server can
be created. Moreover, nothing has to be deployed at remote sites since the SAM
servers can remain at Fermilab and they can be accessed from everywhere thanks
to the HTTP protocol.

The SAM system frees the user from having to know the location of the file almost
at no cost; the user is not required to have an intimate knowledge of SAM but he
needs only to know how to make certain HTTP requests and deal with responses.
Moreover, because SAM works with datasets rather than individual files, the user
is not required to manual determine the order with which the files have to be
processed. At the same time, SAM can command pre-staging of files from tape,
or transfers from storage system to storage system, before the process needs to
access the file. This enables more efficient file access than a purely access driven
system.

2.4 The need for a (new) monitoring system

As for any other computing system, SAM requires constant monitoring. A good
monitoring system allows for a quick solution of the problems that may occur, a
correction of possible coding errors and a smarter and more efficient use of the
available resources. In fact, many times projects do not proceed as smoothly as
presented in section 2.2 for different reasons, e.g. a file transferring may not yet
be completed and a process has to hold, a file may be corrupted and could be
impossible to process, a project script may contain errors making the analysis
impossible to carry out.

To check the SAM operation, a SAM monitoring system is available and it is
accessible here [6]. Since it works querying the SAM database, it has some limi-
tations:

• limited amount of available information: since the database stores only the
metadata about the files, some information are not passed to the database.
For example the file URL cannot be retrieved querying the database;

• slow updates: even though a specific query of the SAM database takes few
seconds, a general-purpose monitoring query may take several minutes. The
monitoring system updates its data every half an hour;

• stand-alone system: during the last few years, Fermilab has been trying to
unify all the monitoring systems created over time for the different exper-
iments. The current SAM monitoring system has not been yet integrated
with the others.

10

To solve these and other smaller issues, it has been decided to create a new mon-
itoring system that queries the SAM station instead of the SAM database.

Extracting the monitoring data from the station has some nice advantages. For
example, it allows to collect more information about the system because the SAM
station is tightly connected with all the other systems, as it can be seen in figure 1,
and holds information about projects, processes and files. Moreover, the station
can produce the monitoring data as soon as something of interest happens. There
is no need for a database query and consequently there is no need to wait for the
query to finish. Therefore, the data can be collected as soon as they are created
increasing dramatically the updating speed of the monitoring system.
Creating a new monitoring system comes also with the freedom of choosing where
to collect the data making it easier to integrate this monitoring system with all
the others.

The goal of the present work is to create such a monitoring system and the next
chapter will shows this task has been carried out.

3 Creating a new SAM monitoring system

3.1 Setting the goals

A new monitoring system based on the SAM station instead than the SAM
database has multiple advantages as shown in section 2.4. The new system would
have extended information on SAM, it would reduce the workload on the SAM
database, it would have reduced updating time and it would be easier to integrate
it with all the other monitoring systems. These and other advantages come at the
cost of having to create a new system from scratches. To get a perfectly function-
ing system requires time for coding, testing and in particular for making different
system to work together smoothly.
Therefore, the main goal of this work is to lay the groundwork for a new moni-
toring system.

In order to create a working prototype of the monitoring system in the shortest
time possible, I decided to focus on three specific tasks:

• extracting metrics from the SAM station;

• collecting the data on a platform shared by other monitoring systems;

• visualizing the data using different types of graphs.

To complete these tasks I borrowed some ideas from the SAM system itself.
As said in section 2.1, the samweb server couples loosely SAM to the other sys-
tems in such a way that if SAM needs to be changed, nothing else has to be
touched. Following the same idea, I treated each task as a standalone problem.
The tasks are connected to each other by the use of dictionaries. The dictionaries,
specifically the Python dictionaries, are at the core of the SAM database and I
found them greatly useful since I needed to deal with different systems. Their
simple structure as a list of key:value pairs makes it easy to avoid confusion

11

when passing information from system to system. This is because every value is
always paired up with its brief description, i.e. the key.
Thanks to this approach, I was able to try many different solutions having always
a functioning system and clear results. Most importantly, I managed to avoid
time losses. This was a key element for the success of the project since many of
the choices I made were dictated by the amount of time left.

Before starting tackling the main tasks, I had to complete a training session aimed
at learning how to set up a working SAM station and how to interact with it.
Therefore, besides studying the functioning of the SAM system already explained
in the first two chapter, I had to:

• undergo a Python training. In particular, I focused on classes [7] and dictio-
naries [8]. The first were fundamental to understand the SAM station code;
the latter are at the core of both the SAM database and the new monitoring
system;

• set up a virtual machine where to run the SAM station. This was proba-
bly the most time consuming task due to compatibility problems between
various programs, e.g. Putty, Kerberos and different Operating Systems;

• learn how to use the samweb server interface to create, run and stop a new
project;

• learn about the Fermilab monitoring systems: Landscape [9], Kibana [10]
and Grafana [11].

3.2 Extracting metrics

The key difference between a monitoring system based on the SAM database
and one based on the SAM station is the way the data are collected. The SAM
database being a collection of data has to be queried to extract the needed data.
Instead, the SAM station is an actual software written on Python and therefore
there is no need for a query. Whenever a significant event happens, it is possible
to store on a file all the relevant information just by changing the code of the
SAM station.
Examples of significant events are:

• the start/end of a project;

• the start/end of a process;

• the opening/closing of a file;

• the update of a project/process/file state;

• the dataset retrieval.

I added a class WriteToLogFile to the SAM station code. The class has a
__init__ method that checks for the existence of a log file. If there is none,
it creates a new one. Among the other methods, the main one is the send. The
send method requires a dictionary when called. It takes the dictionary, adds a

12

time information to it and sends (writes) it to the log file. The dictionary is writ-
ten to the file using the json format.
The time information is added by calling the add_time method. The time is
added as an ISO 8601 formatted UTC time. The time zone information has been
explicitly added to avoid confusion.

When a significant event happens, relevant information about the event are stored
in a dictionary. The dictionary does not need to have a predefined list of data; only
the event key that defines the type of event is mandatory. Once the dictionary
is created, the send method is called to write the dictionary in the log file. An
example of a dictionary is shown in table 3.

event open_file

project_id 74469

project_name paciolla_ifdh_test_2018091714_30452

station_name paciolla_python_station

snapshot_id 24288

username paciolla

process_id 78010

process_state active

file_name ifdh_test_file_0

file_id 6387608

file_url gsiftp://fndca1.fnal.gov:2811/pnfs/fnal.gov

/usr/nova/users/bjwhite/ifdh_test_file_0

file_state delivered

file_size 1457546274

time 2018-09-17T19:33:17.777201+00:00

Table 3: Example of dictionary stored in the log file. In this example, the event
that triggered the logging is the opening of a new file.

When a station runs, hundreds of projects may be processing thousands of files
at the same time. Between an open_file and a close_file event there may be
hundreds of thousands unrelated entries. Therefore, the dictionaries contain seem-
ingly redundant information to allow for a precise reconstruction of the events.

Sometimes the SAM station discards information not relevant to its functioning.
For example, the station_name value is only used by the station when it first
chooses where to run a project. The value is discarded as soon as the project
starts although for monitoring reasons it needs to be stored until the project
stops. To avoid losses of vital monitoring data, I changed some of the classes’
definition, as well as their respective __init__ modules, in the SAM station code.

3.2.1 Future improvements

In order to make it easier to improve the code later, I found convenient to create
the WriteToLogFile class. Classes are easy to modify by simply adding new
methods.

13

For example, a new method may be created to set a limit on the log file size. With
the current implementation, every new event is added to the same log file. With
time, its size may increase so much to make it difficult to handle. A limit could
be set on the byte size or on the maximum number of lines to write. Once the
limit is reached, a new log file can be created.
A different approach may instead not require at all the creation of a log file. The
processes of opening, writing and closing a file are usually slow. Therefore, a
method may send the monitoring data directly to the collection system, skipping
the log file creation.
These solutions could result useful when scaling up the system. However, they
were not adopted yet because the system was tested with few simple projects that
did not require storing more than a MB of data per project. Moreover reading a
log file was easier than querying a monitoring system database when checking for
coding errors.

3.3 Collecting the data

Fermilab, during the last few years, has been trying to collect all the data that
come from its many monitoring systems in a unique place. The purpose of this
program is to provide a comprehensive framework to allow the various teams and
experiments to monitor services and jobs running on the Fermilab servers. The
database that is collecting all the monitoring data is Elasticsearch.
Elasticsearch [12] is a distributed real-time document store where every field is
indexed and searchable. It is possible of scaling it to hundreds of servers and
petabytes of structured and unstructured data. It provides a distributed search
engine with real-time analytics. Elasticsearch comes with a collection of other
open-source products designed to help the user managing the data.

The metrics extracted from the SAM station ore stored in a log file. In order
to be properly analysed, they have to be uploaded to the Elasticsearch database.
Since Elasticsearch does not come with an integrated capability of reading log
files, another solution had to be found. Therefore, I adopted a “chain of software”
capable of reading the log file and sending the information to Elasticsearch.
The software used are:

• Filebeat [13]: it is a lightweight shipper for forwarding and centralizing
log data. It reads and forwards log lines and, if interrupted, remembers
the location of where it left off when everything is back online. Filebeat
forwards the data to Kafka;

• Apache Kafka [14]: it is an open-source stream-processing software platform
written in Scala and Java. It aims to provide a unified, high-throughput,
low-latency platform for handling real-time data feeds. Additionally, Kafka
can aggregate and process data and connects to external systems as Elas-
ticsearch;

• Kibana [10]: it is an open-source analytics and visualization platform de-
signed to work with Elasticsearch. It aims to makes it easier to understand
large volumes of data. It can search, view, and interact with data stored in

14

Elasticsearch indices. It can perform data analysis and visualize the data in
a variety of charts, tables, and maps.

Figure 2 sketches how the software are connected. Filebeat reads the entries in
the log file and sends them to Kafka. Kafka aggregates the data and forward
them to Elasticsearch for storing. Once the data reach Elasticsearch, Kibana can
visualize them.

Figure 2: The “chain of software” needed to bring the monitoring data to Elas-
ticsearch from the log file.

This second task of collecting the data stands a bit apart from the other two
because it did not require extensive coding to be completed. It mostly consisted
in forcing different software to work smoothly with each other.

3.3.1 Future improvements

An easy improvement may consist in removing Kafka from the “chain” and making
Filebeat forward the data directly to Elasticsearch. Other solutions may require
avoiding the creation of the log file. The data may be sent directly to Elasticsearch
and, consequently, there would not be any need for Filebeat or Kafka.
The way the system is built allows for these and other changes. Filebeat, Kafka,
Elasticsearch and Kibana were used just because they were already in use at
Fermilab. In theory, any of the software used can be substituted or removed at
any time. As long as the dictionaries do not change passing from software to
software, it is still possible to visualize the data with the visualization system
that will be discussed in the next section.

3.4 Visualizing the data

As said in section 3.3, Kibana allows visualizing the data stored in the Elastic-
search database. Figure 3 shows an example of a graph obtained with Kibana.

Even though Kibana has many built-in functions designed to make it easy to query
the Elasticsearch database and to aggregate the results, it has two big downsides.
Firstly, Kibana does not provide anything to process raw data, apart from some
simple functions as counting or taking the average. This problem could be solved
if the data were pre-processed before being uploaded. This solution is impracti-
cal for many reasons. It would require a real-time reconstruction of thousands
of events, many of which incomplete, whose time duration may be as long as a

15

Figure 3: Example of chart drawn by Kibana. It shows the number of events per
project occurred in the time interval chosen.

week. Even if this was possible, changes in Kibana may make the old data unus-
able. Moreover, another step would have to be added at the beginning of to the
“software chain” depicted in figure 2. A second downside of Kibana is the limited
amount of available types of charts. For example, a Gantt chart like the one in
figure 4 is, right now, impossible to draw using Kibana. A possible workaround
would require the use of a third-party software resulting in an even longer “soft-
ware chain”.

Different software have been considered as possible alternatives to Kibana. In the
end, I decided to use Python and its matplotlib library [15]. This solution has
the advantages of require no pre-processing of the data and no third-party appli-
cation. A Python code is also relatively easy to integrate in other systems and the
matplotlib library allows drawing virtually any kind of graph. Finally, coding with
Python was time-wise cheaper than having to learn how to use any other software.

The code consists of two classes and four main functions. The two classes are
Query and DataManagement. They retrieve and process the data in Elasticsearch.
The four functions plot four different types of graphs.

The Query class queries the Elasticsearch database through its elastic_query

method. The method search for all the events happened in a defined time interval.
The end of this time interval is defined by the first five arguments (year, month,
day, hour, minute) required when calling the elastic_query method. Other two
optional arguments are available. The first defines the duration of the time inter-
val. The second one is a Boolean value: if true, the end of the time interval is set
to be the running time of the method.
The elastic_query method returns a list of dictionaries called log_file. The
log_file content does not differ in any way from what it would be obtained read-
ing line by line the log file created by the SAM station. Therefore, just by reading

16

the log file, the data can still be visualized even when Elasticsearch cannot be
reached.

The DataManagement class processes the log_file to reconstruct the events. Its
extract_info_project method takes in the log_file list and returns a nested
dictionary called info_project. The info_project resembles a forest in its
structure. Each tree in the forest represent a project. Attached to a project,
there are the processes with their files in the same way as brunches and leaves are
attached to the tree trunk.

The info_project stores all the information needed to plot the graphs. There-
fore, it is a required argument for each of the four functions. Each function has
two parts. The first picks out the information needed to plot the graph from
the info_project dictionary and stores them in some lists since lists are easier
to digest for the matplotlib functions. Moreover, this allows adding any kind of
information to the info_project without having to change the plot functions; if
an information is not relevant to the graph, it is simply ignored. The second part
contains the actual code to plot the graph.

The next paragraphs will show the features of the four graphs obtained. The
data shown in the graphs have been obtained by simulation running a test project
with a dataset consisting of 301 files. When a file was correctly processed, it
was marked as consumed. Randomly, some of the files were marked as skipped to
simulate a processing error.

3.4.1 Overview

Figure 4: A Gantt chart that gives an overview of the projects running on the
SAM station.

The Overview is a Gantt chart that shows what the SAM station was doing during
the specified time interval. The example in figure 4 shows that, during the thirty

17

minutes interval considered, two projects were running. The projects are repre-
sented by the long wide bars. A project, the green one, was completed successfully;
the other, the red one, was interrupted midway. The processes are represented
by the narrow light green bars placed below the project that started them. The
projects started fifteen processes each. The files are shown as small blocks placed
above the process that processed them. Not all the files were correctly processed.
Some, the red ones, contained errors and were skipped after some time. Others
were left incomplete when the project was stopped and therefore are grey coloured.
When a file is consumed or skipped, it may take some time to download the next
file from the storage system. That is why sometimes there is some space between
two consecutive files.

Thanks to the colour coding and to the use of the Gantt chart that emphasize
the father-sons relation existing between a project and its processes or between a
processes and its files, it easy to spot different problems. For example, a project
that skips all the files may contain an error in its script, whereas a project that
takes too much time to process the files may indicate a shortage of resources.
Failed projects and processes can be identified by their ID number shown on the
left y-axis of the chart. The right y-axis shows the percentage of files processed by
each project. It can be used to estimate the time needed to complete a project.

3.4.2 File Processing Time

Figure 5: A stacked histogram type of chart that shows the amount of time spent
processing the files.

For each running project, a File Processing Time chart is available. It is a stacked
histogram that shows the time needed to process the files. Files that are currently
being processed are not included in the chart. The example in figure 5 shows that
the average processing time for consumed files is about fifty seconds. Instead, it
takes about forty seconds to skip a file.

18

The difference between the two time averages provides information on the issue
that caused the files to be skipped. In the example, it may reflect an error found
towards the end of the files. Instead, an average time of few milliseconds for the
skipped files may indicate that the files could not be opened at all.
This chart does not take in account file size.

3.4.3 File Processing Speed

Figure 6: A stacked histogram type of chart that shows the processing speed of
the files.

The File Processing Speed chart shown in figure 6 is quite similar to the File Pro-
cessing Time one with the only difference being that it takes into account the size
of the processed files.
Both the File Processing Time and the File Processing Speed graphs can be par-
ticularly useful for testing the storage system since files hosted in different places
have in general different processing speed.

3.4.4 Files Opened, Closed and Skipped

This chart is a cumulative histogram that shows how many files have been con-
sumed or skipped with respect to the number of opened files. A red dotted line
represents the total number of file to be processed. The consumed and skipped
histogram are stacked and overlaid on the opened histogram so that they touch
the red line when the entire project is completed. In the example shown in figure
7, about 190 files have been opened but only about 140 files have been correctly
processed. About 30 files were skipped whereas other 20 were still being processed
when the chart was made.

In the example, the slope of the “skipped” line is constant and may indicate a
problem related to the files. Instead, the presence of jumps may reveal an issue

19

Figure 7: A cumulative histogram type of chart that shows how many files have
been opened, consumed and skipped over time.

with the system itself, e.g. the machine that was processing the files has suddenly
gone offline.

3.4.5 Future improvements

The four charts presented are just few of the many that can help identify the dif-
ferent issues that prevent a correct functioning of the SAM system. A functioning
monitoring system would probably require many more. The same reasoning is
also true for the query performed on the Elasticsearch database. Even tough all
the charts shown above have been creating using the same query, using different
and more specific queries may result in a better visualization of the data and in
an overall increase of the speed of the monitoring system.

Foreseeing the need for new types of charts and queries, classes and functions
have been used in order to make the process of adding new features easier. For
example, more charts can be added by simply defining a new function with the
project_info dictionary as an argument. In the same way, specific queries can
be added to the one in use just by adding other methods to the Query class.
Apart from adding more charts and queries, the way the code is written makes
also easier to add new features to the charts themselves. For example, in the
figures 4, 5, 6, 7 the only two available end states for a file are consumed and
skipped. If a new end state becomes available in the SAM station code, an alert
message informs the user of the change. Moreover, to show the new end state in
the charts, the user needs only to define a name and a colour.

In order to choose the type of features, charts and queries to add, a first testing
session is needed. However, testing the system using the charts alone would be
cumbersome. Switching from chart to chart requires changing slightly the code

20

and selecting a particular project is even more difficult. Therefore, I embedded
the charts in a software with a graphical user interface that will be presented in
the next and last section.

3.5 A prototype for the monitoring system

To check whether my work could be used for a real monitoring system, I embedded
the four charts in a program with a graphical user interface. The graphical user
interface makes it easier to switch between the different charts and projects and
consequently makes the testing process easier.
An important feature of this monitoring system prototype is the automatic update
of the data shown. The program queries the Elasticsearch database and redraws
the charts every thirty seconds. This has to be compared with the thirty minutes
needed to update the old monitoring system.

Figure 8: The GUI interface for the monitoring system prototype.

The graphical user interface has been realized combining the matplotlib [15]
and the tkinter [16] Python libraries and it is shown in picture 8. It consists of
a single window divided in three parts: a menu bar, a canvas and a project sidebar.

The menu bar, shown in detail in picture 9, has four drop-down menus:

• File: it allows to save the current shown graph and to close the program;

• Data Time Frame: it allows to change the duration of the time interval;

• Chart Type: it allows to choose the chart to draw;

• Update: it performs a new query of the Elasticsearch database and updates
the chart.

21

Figure 9: Menu bar detail of the GUI.

The canvas shows the selected chart. It contains the standard matplotlib side-
bar that allows the user to interact with the chart performing simple actions like
zooming and panning. A save button is also available.
The project sidebar contains a clickable button for each project that was running
during the chosen time interval. The buttons allow changing the project shown
by the chart.

22

4 Conclusions

The three tasks of extracting, collecting and visualizing the monitoring data have
been completed and therefore the backbone of a new monitoring system has been
successfully created.
The monitoring data are extracted from the SAM station and saved on a log file.
Using different open-source software the monitoring data are then collected in
the Elasticsearch database. Specifically, Filebeat reads the entries in the log files
and sends them to Kafka. Kafka aggregates and forwards them to Elasticsearch.
Querying the Elasticsearch database, the data can be finally visualized using a
Python script. Four different graphs have been obtained so far.
Furthermore, using the matplotlib and tkinter Python libraries, a prototype
for the new monitoring system has also been created. The prototype satisfies all
the four requirements listed in table 1 in the introduction section:

• it works querying the SAM station;

• it has a wider set of available information regarding the SAM system;

• it stores its data on Elasticsearch as other monitoring systems already do;

• it shows live data since it updates every thirty seconds whereas it takes
thirty minutes to update the old monitoring system.

23

References

[1] A. Aurisano et al., “Data handling with SAM and art at the NOvA experi-
ment”, J. Phys. Conf. Ser. 664 (2015) no.4, 042001.

[2] User Guide for SAM,
https://cdcvs.fnal.gov/redmine/projects/sam/wiki/User_Guide_

for_SAM

[3] R. A. Illingworth, “A Data Handling System for Modern and Future Fermilab
Experiments”, J. Phys. Conf. Ser. 513 (2014) 032045.

[4] Metadata format,
https://cdcvs.fnal.gov/redmine/projects/sam-web/wiki/Metadata_

format

[5] Samweb Client Command Reference,
https://cdcvs.fnal.gov/redmine/projects/sam-main/wiki/Sam_web_

client_Command_Reference

[6] SAM Station Monitoring,
http://samweb.fnal.gov:8480/station_monitor

[7] Python 3.6 Classes,
https://docs.python.org/3.6/tutorial/classes.html

[8] Python 3.6 Dictionary,
https://docs.python.org/3.6/tutorial/datastructures.html#

dictionaries

[9] Landscape,
https://landscape.fnal.gov/d/000000097/landscape?refresh=10s&

orgId=1

[10] Kibana,
https://www.elastic.co/products/kibana

[11] Grafana,
https://grafana.com/

[12] Elasticsearch,
https://www.elastic.co/products/elasticsearch

[13] Filebeat,
https://www.elastic.co/products/beats/filebeat

[14] Apache Kafka,
https://kafka.apache.org/

[15] matplotlib,
https://matplotlib.org/

[16] tkinter,
https://docs.python.org/3.6/library/tkinter.html

https://docs.python.org/3.6/library/tkinter.html

24

https://cdcvs.fnal.gov/redmine/projects/sam/wiki/User_Guide_for_SAM
https://cdcvs.fnal.gov/redmine/projects/sam/wiki/User_Guide_for_SAM
https://cdcvs.fnal.gov/redmine/projects/sam-web/wiki/Metadata_format
https://cdcvs.fnal.gov/redmine/projects/sam-web/wiki/Metadata_format
https://cdcvs.fnal.gov/redmine/projects/sam-main/wiki/Sam_web_client_Command_Reference
https://cdcvs.fnal.gov/redmine/projects/sam-main/wiki/Sam_web_client_Command_Reference
http://samweb.fnal.gov:8480/station_monitor
https://docs.python.org/3.6/tutorial/classes.html
https://docs.python.org/3.6/tutorial/datastructures.html#dictionaries
https://docs.python.org/3.6/tutorial/datastructures.html#dictionaries
https://landscape.fnal.gov/d/000000097/landscape?refresh=10s&orgId=1
https://landscape.fnal.gov/d/000000097/landscape?refresh=10s&orgId=1
https://www.elastic.co/products/kibana
https://grafana.com/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/beats/filebeat
https://kafka.apache.org/
https://matplotlib.org/
https://docs.python.org/3.6/library/tkinter.html

	The SAM data management system
	Introduction
	The SAM system
	SAM metadata
	Metadata queries, datasets and snapshots

	How SAM works
	SAM overview
	Running a project
	SAM advantages
	The need for a (new) monitoring system

	Creating a new SAM monitoring system
	Setting the goals
	Extracting metrics
	Future improvements

	Collecting the data
	Future improvements

	Visualizing the data
	Overview
	File Processing Time
	File Processing Speed
	Files Opened, Closed and Skipped
	Future improvements

	A prototype for the monitoring system

	Conclusions

