

Final Report

CAIF 2019 Summer Student Training Program July25-September 27, 2019

Develop software for the Mu2e trigger and data acquisition test stand

Micol Rigatti

Supervisor: Gregory Rackness

The following document describes the design and simulation work performed during the training stage

at Fermilab. Chapter 1 and Chapter 2 report a description of the Mu2e physics motivation and detectors.

The following Chapters describe the Mu2e data acquisition system and the work performed by the

student to develop a data acquisition test stand at Fermilab Feynman Center.

Contents

1 The Mu2e Experiment 1

1.1 The Standard Model . 1
1.1.1 Charged Lepton Flavor Violation (CLFV) 3

1.2 The Experiment . 4
1.3 The Fermilab Accelerator Complex 5

1.3.1 The Accelerators Chain . 5
1.4 The Mu2e Experimental Facility 6

1.4.1 Production Solenoid . 6
1.4.2 Transport Solenoid . 7
1.4.3 Detector solenoid . 8
1.4.4 The Tracker and the Electromagnetic Calorimeter 8
1.4.5 Cosmic Ray Veto . 10
1.4.6 Trigger and Data Acquisition System 11

2 The Mu2e Detectors 13

2.1 The Tracker . 13
2.1.1 Mechanical Construction 14
2.1.2 Front End Electronics . 16
2.1.3 Readout Controller . 18

2.2 The Calorimeter . 19
2.2.1 Mechanical Construction 20
2.2.2 Calorimeter electronics . 23

3 TDAQ – Trigger and Data Acquisiton 27

3.1 Requirements . 27
3.2 Architecture . 29

3.2.1 Readout Controllers . 31
3.2.2 Data Transfer Controller 32
3.2.3 DTC/ROC Interface . 34
3.2.4 Run Control Host . 36
3.2.5 CFO - Command Fan-Out 36
3.2.6 Event Building . 38
3.2.7 System Parameters . 39
3.2.8 Detector Control System (DCS) 39

3.3 Timing System . 41
3.3.1 Timestamps . 45

3.4 TDAQ Software: artdaq . 45
3.4.1 otsdaq . 48

iii

iv CONTENTS

4 DRAC - Digital Readout Assembler & Controller 53

4.1 Data Transfer between the Digitizer and ROC 54
4.1.1 Packet Definition . 57
4.1.2 Data Rate . 58

4.2 Clock . 58
4.3 DDR3 Memory . 60

4.3.1 Tracker Hit Data . 60
4.3.2 Memory Protocol . 61

5 DIRAC - DIgitizer ReAdout Controller 67

5.1 Test Stand . 67

6 SERDES 73

6.1 XCVR - Optical Links Management 73
6.1.1 8b/10b Encoding . 75
6.1.2 Implementation . 76
6.1.3 Clock Distribution . 78

6.2 Communication Protocol . 79
6.2.1 Packet Protocol . 79
6.2.2 Firmware Structure . 84
6.2.3 Packet Managing . 89

6.3 ROCs Synchronization . 95
6.3.1 Loopback . 95
6.3.2 Timestamping . 95
6.3.3 ... 95

7 Appendix 107

7.1 Identify Instrumentor . 107
7.2 Libero . 108

Bibliography 113

Chapter 1

The Mu2e Experiment

This chapter is all about the physics motivations and the experimental techniques
used by the muon to electron conversion experiment (Mu2e), in place at Fermi
National Accelerator Laboratory (Fermilab) [3]. Is also reported an overview of
the Fermilab accelerator complex necessary to provide the high intensity muon
beam line, along with the necessary particle detectors. The Italian National
Institute of Nuclear Physics (INFN), in collaboration with the California Institute
of Technology (Caltech) and Fermilab, is the responsible for the design and
manufacturing of the detector named electromagnetic calorimeter. The calorimeter
is almost completely designed, and will be constructed within the year 2021, just
in time to begin the Mu2e data taking, planned for the year 2022.

1.1 The Standard Model

The theory named Standard Model of the Particle Physics provides a satisfactory
physical model to explain the phenomenology of three among the four known
fundamental forces1. It describes the interactions between the known elementary
particles, and how they are mediated by a “relative exchange” of particles (figure
1.1). Attempts to embed the gravitational force in this model have been carried
out without satisfactory results2. Although the Standard Model predictions have
been experimentally verified with high precision, we know this theory is incomplete
and needs an extension to incorporate phenomena such as neutrino oscillations3

and dark matter4, both observed experimentally.
We basically know two di↵erent categories of elementary particles: fermions,

the 1/2 spin5 elementary constituents of matter, and bosons, the integer spin

1The four fundamental forces are: the electromagnetic, the weak, the strong and the
gravitational force. The gravitational is the only one not covered by the standard model

2The theory able to link together general relativity and quantum mechanics would be the
so called “Theory of everything”, that would fully explains and links together all the physical
aspects of the universe

3Neutrino oscillation is a quantum mechanical phenomenon whereby a neutrino created with
a specific lepton family number (lepton flavor: electron, muon, or tau) can later be measured
having a di↵erent lepton family number.

4Dark matter is a form of matter thought to account for approximately 85% of the matter
in the universe, and about a quarter of its total energy density. Its presence is implied in a
variety of astrophysical observations, including gravitational e↵ects which cannot be explained
by accepted theories of gravity unless more matter is present than the visible one.

5In quantum mechanics the spin is an intrinsic form of angular momentum carried by
elementary particles, composite particles (hadrons), and atomic nuclei.

1

2 CHAPTER 1. THE MU2E EXPERIMENT

Figure 1.1: Summary table of the elementary constituents of matter, quarks,
leptons and gauge bosons (image courtesy of Fehling, Dave. The Standard Model
of Particle Physics: A Lunchbox’s Guide. The Johns Hopkins University)

mediators of the fundamental forces.
Fermions are classified according to how they interact (or equivalently, by

what charges they carry). There are six quarks (up, down, charm, strange, top,
bottom), and six leptons (electron, electron neutrino, muon, muon neutrino, tau,
tau neutrino). Pairs from each classification are grouped together to form a
generation, with corresponding particles exhibiting similar physical behavior. The
defining property of quarks is that they carry color charge, and hence interact
via the strong interaction. A phenomenon called color confinement results in
quarks being very strongly bound to one another, forming color-neutral composite
particles (hadrons) containing either a quark and an antiquark (mesons) or three
quarks (baryons). The familiar proton and neutron are the two baryons having
the smallest mass. Quarks also carry electric charge and weak isospin. Hence they
interact with other fermions both electromagnetically and via the weak interaction.
The remaining six fermions do not carry color charge and are called leptons. The
three neutrinos do not carry electric charge either, so their motion is directly
influenced only by the weak nuclear force, which makes them notoriously di�cult
to detect. However, by virtue of carrying an electric charge, the electron, muon,
and tau all interact electromagnetically and weakly.

The the first generation of leptons family includes:

• The electron e

• The electron neutrino ⌫e

The second one contains the muonic leptons:

• The muon µ

• The muon neutrino ⌫µ

And finally the third one, containing the tauonic leptons:

• The tau ⌧

1.1. THE STANDARD MODEL 3

• The tau neutrino ⌫⌧

Each member of a generation has greater mass than particles belonging to lower
generations. Ordinary matter (i.e. atoms, neutrons, and protons) is made of
particles belonging to the first generation. Specifically, all atoms consist of electrons
orbiting around atomic nuclei, ultimately constituted of up and down quarks. The
second and third generation charged particles, on the other hand, decay with very
short half-lives and are observed only in very high-energy environments. Neutrinos
of all generations also do not decay and pervade the universe, but rarely interact
with baryonic matter.

In the Standard Model, bosons are defined as force carriers that mediate the
strong, weak, and electromagnetic fundamental interactions. The interactions in
physics are the ways in which the particles influence other particles. The Standard
Model explains such forces as resulting from elementary particles exchanging other
particles, generally referred to as force mediating particles (i.e. the bosons), as
listed below:

• The photons �, that mediate the electromagnetic force between charged
particles. They are massless.

• The W+,W� and Z bosons mediate the weak interactions between particles
of di↵erent flavors. They are massive.

• The eigth gluons mediate the strong interactions between color charged
particles (the quarks). They are massless and with an e↵ective color charge,
hence they can also interact among themselves.

• The Higgs particle is a massive scalar elementary particle theorized by Peter
Higgs in 1964. It plays a unique role in the Standard Model, explaining why
the other elementary particles, except the photon and gluon, are massive.
In particular, the Higgs boson explains why the photon has no mass, while
the W and Z bosons are very heavy.

1.1.1 Charged Lepton Flavor Violation (CLFV)

The muon and tau are unstable particles, while the electron is stable. The muon
decays with a probability of approximately 100% to a muon neutrino ⌫µ, an
electron e, and an electron antineutrino ⌫̄e6. In symbols the previous reaction
becomes: µ ! ⌫µe⌫̄e.

In a small fraction of cases, also other particles with a net charge equal to zero
may be produced in the muon decay (e.g. a photon, or an electron-positron7 pair).
In all these processes the lepton flavor is conserved separately for every lepton
family. In other words in the final state there is a muon neutrino, which belongs
to the same family and has the same lepton number as the parent muon; and
there are an electron and an electron antineutrino, having globally a zero lepton
number, since particles and antiparticles are conventionally assigned opposite
lepton numbers.

Searches for Charged Lepton Flavor Violating processes, such as the muon
to electron conversion (µ ! e�)8, which has not muon neutrino, nor electron

6In particle physics, every type of particle has an associated antiparticle with the same mass
but with opposite physical charges (such as electric charge).

7the positron is the antiparticle of electron
8� is the symbol representing the photon.

4 CHAPTER 1. THE MU2E EXPERIMENT

antineutrino in the final state, have so far yielded null results. CLFV processes
are expected within the Standard Model with a probability < 10�50.

With the current level of experimental precision, such e↵ects are obviously
beyond the experimental reach. Although the Standard Model has been accurately
tested, it’s a matter of fact that is an incomplete theory. Several extensions of the
model include CLFV processes, allowing the decay µ ! e� , and also the coherent
neutrino-less muon conversion to an electron in the field of a nucleus (µN ! eN),
with probability rates suitable for the next generation experiments (including
Mu2e).

Mu2e has been designed and is currently being constructed at Fermilab to
search for the neutrino-less muon conversion to an electron in the field of an
aluminum nucleus. The current experimental limit on the branching factor of this
process has been set to be 10�12 by the SINDRUM II experiment, performed at the
Paul Scherrer Institut at Zurich. The Mu2e sensitivity will allow to observe muon
conversion events if the probability of the process is larger than 10�17. However,
if nothing will be observed, Mu2e will fix an upper limit to the probability of the
process, gaining an improvement of four orders of magnitude over the current
experimental limit (SINDRUM II).

The international Mu2e collaboration is completing the design of the various
components, and soon will be ready to build the experiment. The construction
is expected to be completed within the year 2021. The beginning of data taking
is planned for the year 2022, and will continue for about three years. Future
upgrades of the experimental apparatus planned for the years 2025 and beyond
will further improve the experimental Mu2e sensitivity by a factor of 10.

1.2 The Experiment

The Mu2e experiment at Fermilab will be 10,000 times more sensitive than
previous experiments looking for muon-to-electron conversion [4]. This precise
and complex apparatus will be able to produce 200 million billion muons per year.
Mu2e will repurpose elements of the complex that had produce anti-protons for
the Tevatron experiments so that they instead are used to produce the muons
needed for Mu2e and the Muon (g-2) experiment.

The Fermilab Booster will accelerate protons to the 8 GeV needed to produce
the intense muon beam for Mu2e.

The protons will travel from the Booster to the Recycler where they will
be stacked, bunched, and extracted to the Delivery ring. The Delivery ring is
located in the repurposed Debuncher. Once in the Delivery ring the protons
will be slow extracted and delivered to the Mu2e apparatus. A system of three
superconducting solenoids magnets will produce and transport the low-energy
intense muon beam and then detect the conversion to electrons from stopped
muons.

The 8 GeV protons will arrive in bunches from the Delivery ring and enter
the Mu2e Production Solenoid at a slight angle to its axis and strike a tungsten
production target about the size of a pencil. These collisions will create a cascade
of particles, including pions that decay into muons. The magnetic field of the
Production Solenoid will capture some of the muons and spiral them into the
Transport Solenoid. Only about 1 in 300 protons that collide with the production
target will generate a muon that moves into the Transport Solenoid. Throughout

1.3. THE FERMILAB ACCELERATOR COMPLEX 5

the experiment’s projected three-year running period, roughly 10 billion muons
per second will be stopped.

Muons in the Transport Solenoid will travel to a detector inside an evacuated
vessel. The Mu2e detector is a particle physics detector embedded in a series of
superconducting magnets. The magnets are designed to create a low-energy muon
beam that can be stopped in a thin aluminum stopping target. The magnets also
provide a constant magnetic field in the detector region that allows the momentum
of the conversion electrons to be accurately determined. The detector consists of
two main parts. A magnetic spectrometer measures the particle momentum. An
electromagnetic calorimeter tells the electronic system what particle interactions
to record for further study and confirms the measurements taken by the magnetic
spectrometer.

Improvements to the accelerator could extend the initial experiment’s sensitiv-
ity by a factor of ten or more. This is comparable to Mu2e initially producing a
number of muons equivalent to all the grains of the grains of sand on the Earth’s
beaches. This would provide a valuable tool for physics research whether or not
Mu2e discovers muon-to-electron conversion during its first, lower-intensity phase.
If Mu2e does observe charged lepton conversion, an upgraded accelerator would
enable Mu2e to study in depth the details of the conversion by providing more
data. If Mu2e does not observe the conversion, the collaboration could continue
the search with a wider net and also search for signs of never-before-seen physics
in rare processes that have previously been out of reach of physics machines.

1.3 The Fermilab Accelerator Complex

Fermilab is located in Batavia, about 50 km west of Chicago, Illinois (USA). It is
a US Department of Energy Laboratory, operated by the Universities Research
Association (URA) since its founding in 1967 to 2006 [3]. Since 2007 is operated
by the partnership between the University of Chicago and the University Research
Association, named Fermilab Research Alliance (FRA). The name Fermilab was
given to the laboratory in 1974 in honor of the italian Nobel prize Enrico Fermi.

Figure 1.2 shows an aerial view of the laboratory, which has played a major
role in the field of high energy physics for the last forty years. Among its scientific
achievements, it is worth mentioning the discovery of three among the four particles
of the model’s third generation: the bottom quark (May-June 1977), the top
quark (February 1995) and the tau neutrino (July 2000).

1.3.1 The Accelerators Chain

The accelerator [2] complex is composed of several stages.

• The first stage is a Cockcroft-Walton generator, which turns hydrogen gas
into H� ions by flowing it into a container lined with molybdenum electrodes
(a matchbox sized, oval shaped cathode and a surrounding anode, separated
by 1 mm and held in place by glass ceramic insulators). A magnetron9 is
used to generate a plasma to form H� ions close to the metal surface. A
750 keV electrostatic field is applied by the Cockcroft- Walton generator,
and the ions are accelerated out of the container.

9A high powered vacuum tube that generates microwaves using the interaction of electrons
streams with a magnetic field, while moving past a series of open metal cavities (cavity resonators).

6 CHAPTER 1. THE MU2E EXPERIMENT

Figure 1.2: Aerial view of the Fermilab site. The Mu2e facility is close to the
center. Many other experiments are hosted in the site (TEVATRON etc . . .)

• The second stage is a Linear Accelerator (or Linac), which accelerates the
ions to the energy of 400 MeV (approximately 70% of the speed of light).
Just before entering the next accelerator, the ions pass through a carbon
foil, where they lose the electrons producing a H+ ion beam (called proton
beam).

• The third section is the Booster Ring. The Booster ring is a 468 m circular
accelerator that uses magnets to bend the proton beam in a circular path.
The protons coming from the Linac travel around the Booster about 20000
times in 33 ms, in order to multiply the accelerating electric field. Each
revolution gives the protons more energy, until the beam leaves the ring at
approximately 8 GeV.

• Finally the protons are injected into the Recycler Ring, where they circulate
while getting rebounded by a 2.5 MHz frequency system. The reformatted
bunches are transported to the delivery ring, where they are slowly extracted
from the Mu2e detector through a new external beamline (figure 1.3).

1.4 The Mu2e Experimental Facility

The Mu2e apparatus is extensively documented in the conceptual Design and
Technical Report [1]. The layout of the muon beam line and the detector system
are sketched in figure 1.4.

1.4.1 Production Solenoid

The Mu2e magnet system consists of three large superconducting solenoids. The
first in the chain of magnets is the Production Solenoid (PS), whose role is to
collect and focus pions10 and muons generated in interactions of an 8-GeV proton
beam with a tilted high-Z target, by supplying a peak axial field between 4.6 T
and 5.0 T and an axial field gradient of about 1 T/m, within a 1.5 m warm bore.

10In particle physics, a pion is any of the three subatomic particles: ⇡+, ⇡�, ⇡0 (depending
of their net charge). Pions consist of a quark and antiquark, and are the lightest among the
mesons. Charged pions most often decay into muons and muon neutrinos, while neutral pions
generally decay into gamma rays.

1.4. THE MU2E EXPERIMENTAL FACILITY 7

Figure 1.3: Layout of the Mu2e facility (lower right) relative to the accelerator
complex that provides the proton beam to the detector. Protons are transported
from the Booster through the MI-8 beamline to the Recycler Ring, where they
circulate while being rebounded by a 2.5 MHz RF system. The reformatted
bunches are kicked into the P1 line and transported to the Delivery Ring, where
they are slowly extracted for the Mu2e detectors

The PS is a challenging magnet because of the relatively high magnetic field
and a harsh radiation environment that requires the state-of-the-art conductor,
both in terms of the current-carrying capacity and structural strength. The PS
coil is protected by a massive Heat and Radiation Shield (HRS).

1.4.2 Transport Solenoid

The role of the S-shaped Transport Solenoid (TS) is to filter and transport the
muon beam (around 1011 muons per second) to the Detector Solenoid. It is
composed of 14 superconducting units (solenoids and toroids) and is divided in
five sections:

• a 1 m long straight section

• a 90-degree elbow, with 3 meters radius of curvature

• a second 2 m long straight section

• a second 90-degree elbow, similar to the first, that turns the beam line in a
direction parallel to the first one

• a final 1 m long straigth section

The resulting length of the Transport Solenoid is 13 m. To improve the
purity of the muon beam, the Transport Solenoid has an absorber placed in its

8 CHAPTER 1. THE MU2E EXPERIMENT

Figure 1.4: Mu2e apparatus: the proton beam enters from the right at the junction
between the Production Solenoid and the Transport Solenoid, and strikes the
production target. The cosmic ray veto system, which surrounds the Detector
Solenoid, and the muon stopping monitor are not shown in this scheme (source:
Mu2e experiment data center).

central part that stops charged particles (mainly antiprotons). A state-of-the-art
collimator system is placed in the same zone to select only low energy muons with
momentum below 0.08 GeV/c0. Moreover, the S-shape of the solenoid removes
neutral particles, that in absence of an electromagnetic interaction travel in a
straight direction.

1.4.3 Detector solenoid

The Detector Solenoid (DS) is a 11 m long component, with a decreasing magnetic
field in the first sector (from 2 T to 1 T). It hosts the muon stopping target,
schematically represented in figure 1.5.

Muons impacting the disks come to rest and replace the electrons lying in
the 1s orbit of the aluminum atoms. The lifetime of the muon in the muonic
atom is 864 ns. The non uniformity of magnetic field plays an important role in
reducing the background coming from high energy electrons transported to the
Detector Solenoid. The magnetic field gradient is generated introducing spacers
to change the winding density of the superconducting cable, which is made out of
aluminum-stabilized NiTi.

The second sector of the Detector Solenoid houses the detectors: the Tracker
and the calorimeter, which are described in more detail in the next chapters. In
this sector the field is relatively uniform and has intensity of 1 T.

1.4.4 The Tracker and the Electromagnetic Calorimeter

The Mu2e detector is located inside the evacuated warm bore of the Detector
Solenoid in a nearly uniform 1 Tesla magnetic field and is designed to e�ciently
and accurately identify and analyze the helical trajectories of ⇠105 MeV electrons
in the high-rate timevarying environment of Mu2e. The detector consists of a
Tracker and a calorimeter that provide redundant energy/momentum, timing,
and trajectory measurements. A cosmic ray veto, consisting of both active and
passive elements, surrounds the Detector Solenoid and nearly half of the Transport
Solenoid. The Mu2e collaboration decided to use a Tracker design similar to the
one developed by the MECO collaboration (figure 1.6).

1.4. THE MU2E EXPERIMENTAL FACILITY 9

Figure 1.5: The Mu2e stopping target is made of 17 aluminum disks, 0.2 mm thick,
spaced 5.0cm apart along the Detector Solenoid axis. The disks radii decrease
from 8.3 cm at the upstream end to 6.53 cm at the downstream end (source:
Mu2e experiment data center).

The Mu2e Tracker is designed to accurately measure the helical trajectory of
electrons in a uniform 1 Tesla magnetic field in order to determine their momenta,
and is kept at 1.33 ·10�2 Pa vacuum to reduce multiple scattering11 to a negligible
level.

Given that multiple scattering in the Tracker dominates the resolution on the
measurement of the helix parameters, the mechanical structure of the detector
has been made extremely light. The Tracker is made of straw drift tubes; and
is called T-Tracker because the straws are transverse to the axis of the Detector
Solenoid. The basic detector element is made of a 20 µm sense wire inside a straw
tube filled with gas. The straws are 5 mm diameter tubes, made of 15 µm thick
metallic Mylar. The Tracker is made of approximately 2000 straws arranged along
18 stations across the 3 m Tracker length. One Tracker plane consists of two
layers of straws to improve the reconstruction e�ciency and help to overcome the
classic left-right ambiguity. A 1 mm gap between straws allows for manufacturing
tolerance and expansion due to the internal pressure. A larger radius ring outside
the active detector region supports the straws and the electronics boards.

Each straw has one preamplifier and one time-to-digital converter (TDC)
placed on each tip, in order to measure the signal arrival time on both sides.
It uses also analog to digital converters (ADC) to measure the total integrated
charge, providing useful information for particle identification.

The Tracker has been designed to observe only electrons with energy greater
than 53 MeV. Electrons below this threshold travel undetected in the central
instrumentless volume of the Tracker. They are approximately the 3% of the total
electron flux coming from muon decays. Since that momentum resolution is a
crucial factor to suppress critical backgrounds, the Tracker is required to have a
momentum resolution better than 180 keV for 100 MeV electrons.

11Scattering produced with lower energy level particles

10 CHAPTER 1. THE MU2E EXPERIMENT

Figure 1.6: Mu2e Tracker layout. The picture displays the 18 tracking system
stations. Thanks to the desing selected only the electrons with energies greater
than 53 MeV are reconstructed. Lower energy electrons pass through the central
part of the device, without leaving any track. This e↵ect is due to the spiral
motion of electrical charges in a uniform magnetic field (source: Mu2e experiment
data center)

The Mu2e calorimeter provides additional energy, position, and timing infor-
mation for particles’ trajectory reconstructed by the Tracker. The two detectors
use di↵erent physical and technological processes to perform their measurements,
to rely on uncorrelated error sources. This helps to reduce backgrounds and
provides a cross check to verify the quality of signal events.

The calorimeter operates in the same solenoidal magnetic field and vacuum
level of the Tracker. It handles a large flux of particles, mostly a low energy
background of protons, neutrons and gamma rays produced by muon captures in
the stopping target. It also manages a large flux of electrons coming from muons
decays in the aluminum stopping target, and other produced particles during the
beam injection.

1.4.5 Cosmic Ray Veto

Cosmic ray muons can initiate processes and produce particles that interact with
the detectors, producing unwanted backgrounds. The simulations show that
approximately one background event generated by cosmic ray muons may be
erroneously reconstructed as a conversion electron signal per day. This source of
background can be reduced to a negligible level introducing passive and active
shielding.

The Cosmic Ray Veto (CRV) surrounds the entire volume occupied by the
Detector Solenoid and the downstream part of the Transport Solenoid. It consists
of four layers of extruded scintillator strips with silicon photosensors and aluminum
absorbers.

The cosmic ray induced background rate will be monitored between beam
spills and when the beam will be turned o↵. This allows to perform a direct
measurement of the background level. The study of the background rate will be
initiated as soon as the Detector Solenoid and the cosmic ray veto are in place.

1.4. THE MU2E EXPERIMENTAL FACILITY 11

1.4.6 Trigger and Data Acquisition System

The Trigger and Data Acquisition (TDAQ) systems provide hardware and software
tools to record the digitized data received from the detectors. It is crucial to
collect, organize, filter, build events, and make trigger decisions to validate physics
and calibration data for the experiment. Data from the detectors will be processed,
digitized and transferred to the TDAQ system. It also combines information from
all the detector data sources and applies filters (triggers) to reduce this rate by a
factor of several thousands, before the data get delivered to the o✏ine permanent
storage.

Signals from the detectors are amplified, digitized and trasmitted to Readout
Controllers (ROCs), that will be attached to the Mu2e detectors as a subsystem
for data transfer. Digitization is performed in the front end electronics, then,
digital data is trasmitted to the TDAQ over optical fiber. All communication
between the TDAQ software framework and the ROCs go through the Data
Transfer Controllers (DTCs).

A more detailed description of the TDAQ is the main purpose of this thesis,
and is reported in the following chapters.

12 CHAPTER 1. THE MU2E EXPERIMENT

Chapter 2

The Mu2e Detectors

The Mu2e Tracker will precisely measure momentum of charged particles that
traverse it. This is critical to distinguish the well-known momentum of the signal
electrons from background particles that have di↵erent momenta. The momentum
measurement can be made because a charged particle will trace a helical path
through the uniform magnetic field of the Detector Solenoid and the radius of
this helix is directly proportional to its momentum. The tracking chamber is
designed to intercept this helical path, enabling the helix to be reconstructed and
the radius to therefore be measured.

The Mu2e calorimeter is vitally important in reducing backgrounds. Its primary
purpose is to provide a set of measurements that complement the information from
the Tracker and enable us to reject backgrounds due to reconstruction errors and
cosmic ray interactions not vetoed by the cosmic ray veto. The energy resolution
of the calorimeter complements, but is not competitive with that of the tracking
detector. Even a coarse confirmation of track energy by the calorimeter will,
however, help reject backgrounds from spurious combinations of hits from lower
energy particles. For real tracks, activity in the Tracker and in the calorimeter will
be correlated in time. The combination of these two timing measurements provides
a time-of-flight system that could be capable of providing particle identification
information.

2.1 The Tracker

The Tracker [1] must accurately and e�ciently identify and measure 105 MeV/c
electrons while rejecting backgrounds and it must provide this functionality in
a relatively unique environment. The Tracker resides in the warm bore of a
superconducting solenoid providing a uniform magnetic field of 1 Tesla; the bore
is evacuated to 10�4 Torr. A key feature of Mu2e is the use of a pulsed beam
that allows for elimination of prompt backgrounds by looking only at tracks that
arrive several hundred nanoseconds after the proton pulse. The Tracker must
survive a large flux of particles during the early burst of “beam flash” particles
that result from the proton pulse striking the production target, but it does not
need to take data during this time. The Mu2e signal window is defined as 700 <
t <1695, where t = 0 is the arrival of the peak of the beam pulse at the stopping
target. However, in order to study backgrounds such as radiative pion capture,
the Tracker must be fully e�cient during the interval 500 < t < 1700 ns; we take
this as the Tracker’s live window. To calibrate using positrons from ⇡+ ! ⌫e+

13

14 CHAPTER 2. THE MU2E DETECTORS

Figure 2.1: Mu2e Detector Solenoid with Tracker and Calorimeter.

decays the Tracker must also be able to collect data, during special runs with
reduced beam intensity, for 300 < t < 1700 ns.

The Detector Solenoid provides a uniform 1 Tesla field in the region occupied
by the Tracker. To have good acceptance for signal electrons without being
overwhelmed by DIO electrons (including electrons scattered into the active
region), the active area of the Tracker extends from about 40 < r < 70 cm (where
radius r is measured from center of the muon beam). Mechanical support, readout
electronics, etc. are to be placed at r > 70 cm, out of the way of both signal and
DIO electrons. These dimensions depend on the size and geometry of the muon
stopping target, the size of the muon beam, and the magnetic field properties;
they have been optimized to maximize the acceptance to conversion electrons
while minimizing the number of low energy electrons that intersect the Tracker.
The momentum resolution requirement is based on background rejection: the
signal is sharply peaked, whereas backgrounds are broad (cosmic rays, radiative
pion capture) or steeply falling (DIO electrons). For a Gaussian error distribution
the requirement is that � < 180 keV/c. This is simply a convenient reference
point; the actual resolution is not Gaussian and may be asymmetric. Furthermore,
scattering and straggling in material upstream of the Tracker are significant
contributors to the final resolution.

2.1.1 Mechanical Construction

The selected design for the Mu2e Tracker is a low mass array of straw drift tubes
aligned transverse to the axis of the Detector Solenoid, referred to as the T-Tracker.
The basic detector element is a 25 µm sense wire inside a 5 mm diameter tube
made of 15 µm thick metalized Mylar, referred to as a straw. This choice is based
on several points.

• The straw can go from zero to 1 atmosphere pressure di↵erential (for

2.1. THE TRACKER 15

Figure 2.2: Straw termination, shown exploded and assembled. The brass tube
connects to the straw with silver epoxy. The green insulator slips inside a brass
tube (red) to prevent breakdown near the tube end. The sense wire is soldered
into the brass pin, and epoxied to the injection molded plastic. After assembly the
brass tube allows connection to the cathode while the brass pin allows connection
to the anode.

operating in a vacuum) without significant change in performance.

• Unlike other types of drift chambers, each sense wire is mechanically con-
tained within a straw. Thus, failures remain isolated, improving reliability.

• The transverse design naturally places mechanical support, readout elec-
tronics, cooling, and gas distribution at large radii.

The detector has ⇠ 23,000 straws distributed into 20 measurement stations
across a ⇠ 3 m length. Each station provides a ⇠ 200 µm measurements of track
position.

Each straw is instrumented on both sides with preamps and TDCs [22]. Each
straw has one ADC for dE/dx capability. The planned digitizer system is 50 MHz,
12-bit ADC. To minimize penetrations into the vacuum, digitization is done at
the detector with readout via optical fibers. Electronics at the detector will not
require an external trigger: all data will be transferred out of the vacuum to the
TDAQ system, and a trigger may be implemented as part of the TDAQ.

The T-Tracker is made from 5 mm diameter straws, the assembly of which is
shown in and figure 2.2. Each straw is made of two layers of ⇠ 6 µm (25 gauge)
Mylar, spiral wound, with a ⇠ 3 µm layer of adhesive between layers, for a total
wall thickness of 15 µm. The inner surface has 500 Å aluminum overlaid with 200
Å gold as the cathode layer. The outer surface has 500 Å of aluminum to act as
additional electrostatic shielding and reduce the leak rate.

A 4.95 mm outer diameter brass tube is mechanically and electrically connected
to each straw end using silver epoxy. Inside the brass tube is an extruded Kapton
tube to protect against breakdown at the edge of the brass tube. Inside the
Kapton tube is an injection molded plastic insert. Attached to a groove in the
insert is a small, U-shaped brass pin. A 25 µm gold plated tungsten wire is
soldered to the pin as well as epoxied to the plastic insert. Both brass parts are
gold-plated to ensure good solder and epoxy joints.

Groups of 96 straws are assembled into panels as shown in figure 2.3. Each
panel covers a 120� arc with two layers of straws. The double layer improves
e�ciency and helps determine on which side of the sense wire a track passes. A
1.25 mm gap is maintained between straws to allow for manufacturing tolerance
and expansion due to gas pressure. This necessitates that individual straws be
self-supporting across their span.

16 CHAPTER 2. THE MU2E DETECTORS

Figure 2.3: Completed panel, with covers shown in red. Screws to attach covers
not shown.

Six panels are assembled into a plane as shown in figure 2.4. Three 120� panels
complete the ring of one face; another three panels, rotated by 30�, complete
another ring on the opposing face. After the plane is assembled, a cooling ring is
attached around the outer diameter. This arrangement has been found to give
the best stereo performance and is chosen despite the mechanical complications
compared with 60� rotation.

Eighteen stations are assembled into the completed Tracker, shown in figure
2.5. Horizontal beams maintain longitudinal alignment of the rings. The thicker
ring seen at the upstream end, and the two thinner rings placed between stations
at the downstream end, sti↵en the structure. Sti↵ening rings and beams are
stainless steel, pending further analysis and value engineering.

2.1.2 Front End Electronics

To minimize penetrations through the cryostat, digitizers and zero-suppression
logic are located on the detector [20]. Signal from the straws need to be amplified,
digitized and trasmitted to the TDAQ. Front end electronics are defined as all
electronics residing on the detector. Digitization is performed in the front end,
then, digital data is trasmitted to the TDAQ over optical fiber. The bulk of the
electronics is dedicated to amplifying, digitizing, and transmitting signal from
the ⇠ 25 K straws, but in addition there are sensors for monitoring detector
parameters; data from these must also be transmitted to the TDAQ system. Each
straw is read out from both ends.

The front end electronics is divided into the following categories:

• Infrastructure: includes power and cooling.

• Preamps: there is one at the end of each straw to amplify and send an
analog signal via a PCB transmission line to digitizers.

• Digitizers: the digitizer is responsible for receiving and digitizing signal
from both ends of each straw and transmitting that data to the Readout
Controllers. The digitized signal for each “hit” consists of two timing
measurements, one at each straw end, and one amplitude.

2.1. THE TRACKER 17

Figure 2.4: Completed panel, with covers shown in red. Screws to attach covers
not shown.

Figure 2.5: The assembled Tracker, with 18 stations, 2 planes per station. Stations
are shown in grey and support structure in yellow.

18 CHAPTER 2. THE MU2E DETECTORS

Figure 2.6: Signal flow through front end electronics.

• Readout Controller (ROC): interposes a link between the TDAQ and all
other FEE components.

The time di↵erence between the two ends is used as a measure of hit position
along the straw. The average time is used in the conventional fashion for measuring
drift distance. The flow of signals through the readout chain is shown in figure
2.6. Each straw has:

• 2 preamp channels, 1 for each end.

• 2 TDC channels, 1 for each end.

• 1 ADC channel, measuring sum of both ends.

• 1 High voltage feed, with disconnect.

There are a total of 46 080 preamp and TDC channels, and 23 040 ADC
channels.

Communication between the digitizer and ROC is via LVDS signals (Low-
Voltage Di↵erential Signaling). For the current development there are four lines
per 8 straws: clock, frame, and two data lines. However, depending on final
FPGA selection, and board layout issues, more options are available, such as
using 8b/10b or similar SERDES (self-synchronizing) data transfer.

2.1.3 Readout Controller

The Readout Controllers’ primary function is to receive data from the digitizer
boards, bu↵er the data, and then transmit it to the TDAQ system. Bu↵ering is
needed to continue transferring data during the beam inter-spill time (836 ms out
of each 1333 ms). Since all elements of the chain – digitizer, ROC, TDAQ – are
programmable, communication is flexible. The first attempt settled on the same
fixed-length format, 128 bits per hit, as used for digitizer to ROC data transfer,

2.2. THE CALORIMETER 19

Figure 2.7: ROC connection to TDAQ. One of 22 servers shown.

with an additional packet (content and length under discussion) for status and
error information. The connection from ROC to TDAQ is via 2.5 Gbps full-duplex
fiber optic links arranged in rings with multiple ROCs per ring (figure 2.7).

The ROC includes external DRAM for bu↵ering; this allows data transmission
to continue over a full 1.333 s Main Injector cycle. A single optical fiber readily
handles several ROCs, motivating the ring architecture shown in figure 2.7. With
240 controllers, the total rate from the T-Tracker is 55 Gbps. The ROC also
links the experiment’s Slow Controls system to the digitizers and preamps. DACs,
ADCs, and sensors are distributed through each panel and connect to the ROC
via SPI and I2C.

2.2 The Calorimeter

The Mu2e detectors have been designed to reject backgrounds to a level consistent
with a single event sensitivity for the µN ! eN coherent conversion of the
order of 10�17. The electromagnetic calorimeter [6] is a vital link in the chain of
background defenses. Since the quality of track reconstruction is fundamental
for background rejection, a particular concern is due to false tracks arising from
pattern recognition errors, due to high rate hits on the detector. These errors
frequently come from accidental noise and lower energy electrons’ hits. They
create a trajectory similar to a higher energy electron, mimicking the real muon
conversion signal. One of the primary functions of the calorimeter is to provide a
redundant set of measurements to complement the Tracker data and minimize
the level of backgrounds.

The electrons produced in muons’ decay, and just come out of the Tracker, get
stopped by the aluminum target and follow helical trajectories in the solenoidal
magnetic field. Then, they hit the front faces of the calorimeter crystals with a
maximum energy within 100 MeV range. In this energy regime a total absorption
calorimeter employing a homogeneous continuous medium is required to meet
the Mu2e energy and to satisfy the time resolution requirements. The sensitive
material could either be a liquid, such as xenon (Xe), or a scintillating crystal1.

The Mu2e collaboration chose the scintillating crystals technology. Several
types of crystals were considered, including barium fluoride (BaF2) and cesium
iodide (CsI). The baseline design uses an array of relatively cheap undoped CsI
crystals, arranged in two annular disks (figures 2.8 and 2.9). Every crystal is read
out by two large-area solid-state photodetectors (SiPMs)2, preferred to standard

1A scintillator is a material that exhibits scintillation (the property of luminescence) when
excited by ionizing radiation.

2SiPMs stand for: Silicon Photomultiplier. It is a sensor that addresses the challenge
of sensing, timing and quantifying low-light signals, coming from the crystals, down to the

20 CHAPTER 2. THE MU2E DETECTORS

Figure 2.8: Exploded CAD view of one calorimeter disk. All the main components
are indicated.

photomultipliers because of the high magnetic field involved.

While the front end electronics (FEE) servicing the SiPMs (represented in
figure 2.10) is mounted on the rear side of every disk, the voltage distribution,
slow control and data acquisition boards are hosted in 10 crates mounted on the
external lateral surface (figure 2.11).

A laser flasher system provides light to each crystal through a network of
optical fibers, for relative calibration and monitoring purposes. A circulating
radioactive liquid source system, housed in the front plate of the disks, provides
absolute calibration and allows to determine the absolute energy scale.

The crystals are supported by a structure composed by two rings: the Inner
Ring and the Outer ring, that can be slided along the beam line thanks to
horizontal rails.

2.2.1 Mechanical Construction

The primary function of the electromagnetic calorimeter is to measure the electrons
energy, position of impact and timing to complement the straw-Tracker information
in the o✏ine reconstruction of the trajectories. Moreover, the calorimeter provides
fast information to the trigger for the online data selection. This leads to the
following technical specifications for the detector:

• provide energy resolution of 5% at 100 MeV to confirm the electron momen-
tum measurement performed by the Tracker;

• provide timing resolution better than 0.5 ns to ensure that energy deposits
in the calorimeter are in time with the hits reconstructed in the Tracker;

• provide position resolution better than 1 cm to allow a comparison between
the energy deposits position measured by the detector, and the extrapolated
trajectories of the reconstructed tracks;

single-photon level, that is the sensitivity needed for this type of experiment

2.2. THE CALORIMETER 21

Figure 2.9: CAD model of the Mu2e electromagnetic calorimeter. The 20 custom
crates host the boards for voltage distribution, slow control and data acquisition,
are colored in grey and green: The calorimeter can slide along the beam line
direction thanks to horizontal rails.

Figure 2.10: Overview of the SiPMs. The 8 pins connect the sensors to the front
end electronic boards.

• provide additional information useful for particle identification that can
be combined with the Tracker information, improving the muon-electron
separation;

• provide a trigger, either in hardware, or in software, or in firmware, that
can be used to identify and select events with significant energy deposits;

• operate in the hostile, high-rate, Mu2e environment with intact functionality
for radiation exposures up to 20 Gy/yr per crystal, and for a neutron
equivalent flux up to 1011 MeV neq/cm2yr.

The calorimeter is located inside the cryostat (part of the detector solenoid).
It’s composed by two identical disks (figure 2.9). The inner cylinder is composed
by carbon fiber in order to minimize the amount of passive material in the
region where spiraling electrons are mostly concentrated. The outer is instead of
aluminum, and can be as robust as required to support the crystals load (mainly
the weight). The disks have an inner radius of 374 mm, outer radius 660 mm, and
are made out of 674 staggered trapezoidal crystals. The crystals are 220 mm long
with a square base and a side length of 34mm. Every crystal is wrapped with 8

22 CHAPTER 2. THE MU2E DETECTORS

Figure 2.11: Backplate of one calorimeter disk. The front end electronics (FEE) is
mounted on the holed plate, while the crates are externally fastened to the disk.

layers of 25 µm thick Tyvek reflective film to maximize light transport within the
crystal and minimize cross-talk among crystals.

The mechanical structure of each disk is composed by two coaxial cylinders
(inner and outer ring in figure 2.8) supporting the weight of the crystals, and by
two plates connecting the rings together. The front plate facing the beam is made
out of low radiation length material to minimize the electron energy deposit and
preserve the electron energy measurement. It is designed to accommodate the
calibration source circuit where a radioactive fluid flows. The back plate supports
the photosensors, the front-end electronics, the cooling pipes and is made out
of the polymer named PEEK (the acronym for PolyEther Ether Ketone). This
material has the important following characteristics:

• it has an extremely limited outgassing rate, which is crucial for operation in
vacuum;

• it has a low thermal conductivity (0.25 W/Km). This important feature
will be explained later;

• it has a good mechanical strength and sti↵ness, so that the plate will have
extremely limited deformations;

• it can be easily machined;

• it can be used in a high magnetic field environment.

Other important components of the calorimeter are the electronic boards.
There are several type of di↵erent boards, each one with its function. Some of
them provide the power to the front-end electronics (that act only as preamplifiers
of the SiPMs signals) and to the SiPMs. They also perform the digitalization of
the signals and are hosted in 20 DAQ (Digital Acquisition) crates (figure 2.11)
positioned on the outer surface of the disks (10 for each disk), in order to gain as
much space as possible. Every crate hosts 9 boards, 8 of them to provide power

2.2. THE CALORIMETER 23

Number of Disks 2
Disk Inner and Outer Radius 374 mm,660 mm
Crystal Type, density, X0, RM CsI,4.9 g/cm3, 2.0 cm, 3.0 cm
Crystal Shape Parallelepiped 35 mm distance
Crystal Length 200 mm
Crystal Transversal Area 34x34 mm2

Total number of crystals Disk 1+2 1348
Single crystal weight 1.14 Kg
Total scintillation mass 1540 kG
Number of SiPM/crystal 2
SiPM transverse dimension active area 12x18 mm2

Total number of SiPMs 2696
Total number of LV/HV boards 136
Total Number of Digitizers 136
Total number of preamplifiers 2696
Power Dissipation AMP-HV 480 mW x 2696 = 1294 W
Power Dissipation LV/HV 4 W x 136 = 544 W
Power Dissipation Digitizer 31 W x 136 = 4100 W
Distance between disks 700 mm

Table 2.1: Summary of calorimeter parameters.

to the photosensors and perform signal digitization. The last one performs clock
distribution.

A crucial function of the mechanical structure is to integrate a dedicated cooling
system able to cool down all the sensitive components. The heat production
mainly comes from the SiPMs and the electronic system. The cooling is a critical
system, since the calorimeter operates in vacuum and there is not any outer
environament able to extract heat spontaneously. Thus it is necessary a dedicated
cooling system.

2.2.2 Calorimeter electronics

The entire calorimeter electronics can be divided in two subsystems with di↵erent
functions and locations: the front end electronics (FEE) and the digital acquisition
electronics (DAQ). The first subsystem is composed by the SiPMs and the front-
end boards. It is placed in the backplate, facing the rear side of the crystals. The
second subsystem is composed by the data acquisition boards, which perform the
digitization of the analog signals received from the front-end boards. They also
provide power and monitor the front end electronics status.

The front end electronics

The front end unit of the calorimeter is composed by the parts (shown in figure
2.12):

• one CsI crystal: the electrons impinging on the crystal’s frontal surface
penetrate the material and generate an electromagnetic shower. The pho-
tons produced by scintillation di↵use through the crystal volume and get
transported to the rear side of the crystal;

24 CHAPTER 2. THE MU2E DETECTORS

Figure 2.12: CAD model of one front-end unit. The brown structure is the copper
mechanical support of the two SiPMs and front-end boards. Is the component
connected directly to the backplate

• two SiPMs: they face the rear side of the crystal and convert the light
produced by the scintillation into an electric signals;

• two front end boards: electrically connected to both the SiPMs. They
provide power to the SiPMs and amplify their signals. The amplification
has to be performed in the immediate proximity of the weak signal source,
otherwise would be lost in electric noise;

• one mechanical support: made of copper to support the SiPMs and the FEE
boards. It also acts as a “bridge” for heat transfer;

The interaction between the electrons and the Csl crystal generates photons,
which di↵use through the crystal towards the photo-sensors. Every crystal has on
its rear side the photo-sensors to convert light into electrical signals. There are
two SiPMs per crystal electrically connected to one front end board. The reason
for having two of them is to provide a more robust measurement and don’t lose
data if one photo-sensor fails during data taking. The total resulting number of
photo-sensors is 1348 per disk (2692 in total).

The front end electronics for the calorimeter readout consists of two discrete and
independent chips (Amp-HV) placed on one unique front end board electrically
connected to the back of the photo-sensor pins. The chips provide both the
amplification and the local linear regulation to the photo-sensor bias voltage.
Groups of 16 Amp-HV chips are controlled by one dedicated ARM controller
placed on one interface board located in the DAQ crate. This board distributes
low voltage and high voltage reference values, sets and reads back the locally
regulated voltages. The Amp-HV is a multilayer double-sided discrete component
board that performs out the two tasks of amplifying the signal and providing a
locally regulated bias voltage, significantly reducing the noise loop-area.

DAQ electronics

The analog signals produced by the front end electronics are transmitted to the
data acquisition boards, hosted in the DAQ crates. Since the main function of the
data acquisition boards is to digitize and transmit the analog signals to the global

2.2. THE CALORIMETER 25

Figure 2.13: Components on a CAD model of the DIRAC board

Mu2e data acquisition, these boards are named waveform digitizers or DIRAC
(Digitizer ReAdout Controller). Additional boards are necessary to provide and
distribute power to the front end boards, monitor photosensors and front-end
electronics performance. These boards are called interface boards. In the current
design, there are 10 DAQ crates per disk, and each crate hosts 8 DIRAC and 8
interface boards (coupled together to form 8 “bigger boards”). Every crate also
hosts one further board to provide the clock distribution.

The DIRAC boards is characterized by the following components (figure 2.13):

• 1 Field Programmable Gate Array (FPGA): it contains an array of pro-
grammable logic blocks, and a hierarchy of reconfigurable interconnects, that
allow the blocks to be “wired together”. It is the most complex component
of the board: logic blocks re configured to perform complex combinational
functions. It processes the data received from the SiPMs previously digitized
by the Analog to Digital Converters (ADC);

• 4 DC-DC converters: they transform the voltage received from the external
power supply to the values required;

• 10 Analog to Digital Converter (ADC): they convert analog signals received
from the front end boards into digital signals to be further processed by the
FPGA and then transmitted to the DAQ system;

• 6 low dropout Linear Regulator: they provide low voltage high current
outputs with a minimum of external components. It o↵ers high precision
and ultra-low dropout of 500mV in the worst case conditions;

• 1 Jitter Cleaner: it cleans the clock signal and distributes it to the ADCs
and the FPGA mainly.

The interface board (also called “mezzanine board”) is mechanically attached to
the DIRAC and has these components:

• one voltage regulator: transforms the 28 V received from the power supplies
(placed outside the cryostat) to the 8 V used by the front end electronics
board;

• One ARM Controller and I2C drivers to monitor the performance of the
front-end electronics.

26 CHAPTER 2. THE MU2E DETECTORS

In addition to improved background rejection, the Calorimeter provides a
robust approach to track reconstruction. Mu2e does not have an “event time”;
all straw hits reconstructed within a µbunch therefore have to be considered by
the track-finding algorithm and the track time is reconstructed as a track fit
parameter. The standalone Mu2e track reconstruction attempts to find the 100
ns time slice within the µbunch with the maximum number of hits in it, and uses
those hits to find a track. In the presence of the correlated in-time background
produced by �-electrons, such an approach relies strongly on the �-electron hits
being identified and excluded before execution of the track reconstruction, which at
present uses a neural network-based procedure. A cluster produced by a track and
reconstructed in the Calorimeter can be used as a seed for the track finding. This
simple cut cleans up the hits not related to real track and increase substantially
the signal/noise ration, thus allowing to reconstruct tracks that are missed by the
standalone tracking algorithm. This Calorimeter driven track finding improves
also the overall track finding e�ciency.

The Calorimeter system can also generate a fast trigger for the experiment that
is independent of the Tracker. This trigger will take the form of an o✏ine HLT/L3-
like filter that can be used after streaming the events to the online computing farm,
but before storing data on disk. The DAQ (Data Acquisition System) will read
events from the tracking and Calorimeter digitizers at a maximum throughput of
20 GByte/sec and the online farm will be able to fully reconstruct nearly all the
streamed data. The Calorimeter filter should be able to process the data in the
online farm with the requirement of rejecting the background by a factor > 200.
The most important aspect of this filter is that it is fully independent of the Tracker,
with completely di↵erent systematics due to environmental backgrounds. First
studies show that, at the required level of rejection, the standalone Calorimeter
trigger will reach e�ciency of 60-70 % that is more than enough to create samples
for an unbiased estimate of the tracking trigger e�ciency.

Chapter 3

TDAQ – Trigger and Data
Acquisiton

The Mu2e Trigger and Data Acquisition (TDAQ) [1] subsystem provides necessary
components for the collection of digitized data from the Tracker, Calorimeter,
Cosmic Ray Veto and Beam Monitoring systems (Stopping Target Monitor and
Extinction Monitor), and delivery of that data to online and o✏ine processing for
analysis. It is also responsible for detector synchronization, control, monitoring,
and operator interfaces. The Mu2e TDAQ is based on a “streaming” readout. This
means that Tracker and Calorimeter detector data is digitized, zero-suppressed
in front-end electronics, and then transmitted o↵ the detector to the TDAQ
system. While this approach results in a higher o↵-detector data rate, it also
provides greater flexibility in data analysis and filtering, as well as a simplified
architecture. The Mu2e TDAQ architecture is further simplified by the integration
of all o↵-detector components in a “TDAQ Server” which functions as a centralized
controller, data collector and data processor. A single TDAQ Server can be used
as a complete standalone data acquisition/processing system or multiple TDAQ
Servers can be connected together to form a highly scalable system.

3.1 Requirements

The TDAQ must monitor, select, and validate physics and calibration data from
the Mu2e detector for final stewardship by the o✏ine computing systems. The
TDAQ must combine information from about 450 detector data sources and apply
filters to reduce the average data volume by a factor of at least 100 before it
can be transferred to o✏ine storage. The TDAQ must also provide a timing and
control network for precise synchronization and control of the data sources and
readout, along with a Detector Control System (DCS) for operational control and
monitoring of all Mu2e subsystems. In figure 3.1 a full view is given with focus
to the interfaces connected to TDAQ: Tracker and Calorimeter ROCs, Detector
Hall, WH Control Room.

TDAQ requirements are based on the following experiment attributes:

• Environment: the TDAQ system will be located in the surface level elec-
tronics room and connected to the detector by optical fiber. There are no
radiation or temperature issues. The TDAQ will however be exposed to a

27

28 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

Figure 3.1: Full view of TDAQ and its interfaces with subsystems

magnetic fringe field from the detector solenoid at a level of about 20-30
Gauss.

• Beam Structure: supercycle is the temporal window between two proton
beams (1.4 s). Beam is delivered to the detector during the first 467 ms
of each supercycle. During this period there can be up to eight 54 ms
spills. Spills are proton pulses delivered to the target in the Production
Solenoid. Each spill contains approximately 32 000 “µBunches”, for a total
of 256 000 µBunches in a 1.4 second supercycle. A µBunch is 1695 ns.
Readout Controllers store data from the digitizers during the “live gate”.
The live gate width is programmable but is nominally the last 1000 ns of
each µBunch.

• Detectors: the TDAQ system receives data from the following subdetectors:

– Tracker – 20 736 straw tubes: 96 tubes per “panel”, 12 panels per
“station” and 18 stations. There are 216 Readout Controllers (one for
each panel) located inside the cryostat. Straw tubes are read from both
ends to determine hit location along the wire. The readout produces
two TDC values (16 bits each) and typically six ADC values (10 bits
each) per hit. The ADC values are the analog sum of both ends of the
straw.

– Calorimeter – 1610 crystals in 2 disks. There are 192 Readout Con-
trollers located inside the cryostat. Each crystal is connected to two
avalanche photodiodes (APDs). The readout produces approximately
25 ADC values (12 bits each) per hit.

– Cosmic Ray Veto system – 21 504 Silicon Photomultipliers (SiPMs).
There are 336 front-end boards (64 channels each), and 14 Readout

3.2. ARCHITECTURE 29

Figure 3.2: Supercycle temporal structure

Controllers (24 front-end boards each). The readout generates ap-
proximately 12 bytes for each hit. CRV data is used in the o✏ine
reconstruction, so readout is only necessary for timestamps that have
passed the Tracker and Calorimeter filters.

– Extinction and Target Monitors – monitors will be implemented as
standalone systems with local processing. A subset of information will
be forwarded to the TDAQ for inclusion in the run conditions database
and optionally in the event stream.

• Data rate: the detector will generate an estimated 150 Kbytes of zero-
suppressed data per µBunch, for an average data rate of about 90 Gbytes/s
when beam is present. To reduce TDAQ bandwidth requirements, this data
is bu↵ered in Readout Controller (ROC) memory during the spill period,
and transmitted to the TDAQ over the full supercycle for an average data
rate of about 28 Gbytes/s.

• Processing: the TDAQ system provides online processing to perform Tracker
and Calorimeter filters. The goal of these filters is to reduce the data rate
by a factor of at least 100, limiting the o✏ine data storage to less than
7 Petabytes/year. Based on preliminary estimates, the online processing
requirement is approximately 30 TeraFLOPS.

3.2 Architecture

Readout Controllers digitize and zero-suppress data at the detector. The data
is then transmitted over optical links to TDAQ Servers in the surface level
electronics room. Control information is sent from the TDAQ Servers to the
Readout Controllers over the same bidirectional optical links. Data is exchanged
between TDAQ Servers (via the Event Building Network) to form complete events.
The TDAQ Servers filter these events and forward a small subset of them to o✏ine
storage.

30 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

Figure 3.3: Basic system Mu2e TDAQ Architecture: on the left side, in violet, are
shown the Readout Controllers situated on the detectors and on the right side is
shown the actual TDAQ

3.2. ARCHITECTURE 31

The TDAQ interfaces to all other subprojects (table 3.1):

Subprojects Interfaces

Tracker, Calorimeter, CRV The TDAQ connects to detector readout con-
trollers via optical links which carry fast con-
trol, slow control and data. The Timing
system supplies an encoded System Clock to
each detector subsystem.

Solenoids, Beamline The TDAQ provides the infrastructure for
slow control and monitoring, and readout of
the stopping target monitor.

Accelerator The TDAQ receives beam timing and status
information from the accelerator for timing
system synchronization. The TDAQ also
provides the infrastructure for slow control
and readout of the extinction monitor.

Civil The civil construction subproject provides
the surface level electronics room, power, and
air conditioning for the TDAQ. It also sup-
plies cable chases for connecting the detector
hall electronics to the electronics room.

Table 3.1

3.2.1 Readout Controllers

Readout Controllers (ROCs) are not part of the TDAQ system, but rather
are included separately in each detector subsystem. The number of Readout
Controllers and the estimated data rate for each subdetector are listed in the
following table 3.2:

Detector Number of
ROCs

Average
Rate per
ROCs

Total
Data Rate

Number
Optical
Links

Number
TDAQ
Servers

MB/s GB/s

Tracker 216 83 18 108 18
Calorimeter 192 42 8 72 12
CRV 14 214 3 14 3

Table 3.2

Readout Controllers have the main purpose of data collection, bu↵er man-
agement and processing. They are based on an FPGA architecture. This FPGA
provides the high-speed serial transceivers (SERDES) for the optical links and
manages all kind of communications: both data transfer then Detector Control
System (DCS) “slow control” operations. ROC’s firmware is still in development:
one of the possible approach is to embed a microcontroller, which handles and

32 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

is responsible for initializing the FPGA. Because all communication is normally
routed to or through the FPGA, there must be a failsafe way to reload the FPGA
in the event of firmware corruption. A watchdog timer will restart the microcon-
troller on loss of System Clock, or if any of several FPGA and microcontroller
check signals are outside nominal timing windows. This will automatically reload
a “golden” version of the FPGA and microcontroller firmware from dedicated
SPI memory, providing a known-good DCS connection. DCS commands can then
be used to remotely load new software/firmware into the application program
memory. A DCS “run” command must be sent to the microcontroller to cause it
to switch from golden to application program memory. Readout Controllers in or
near the detector will be exposed to a high neutron flux. SRAM based FPGAs
are sensitive to radiation induced single-event upset (SEU) in the configuration
and application memory. Mu2e Readout Controllers in higher radiation areas
will use Microsemi PolarFire series FPGAs [Polarfire] which provide on-chip
microcontroller and SERDES and a number of features to mitigate SEU, including
flash based configuration and ECC protected memory and registers. Commercial
integrated circuits can typically tolerate total dose of at least 100 Gy without
significant degradation. In the region where the Tracker and Calorimeter ROCs
are located, total dose is estimated at 10 Gy/yr.

A block diagram for a digitizer/ROC is shown in figure 3.4. As a basic
description, ROCs receivee and phase aligns as necessary a “punched” or “encoded”
System Clock with frequency +/- 10% of 50 MHz. A clock generator multiplies
the recovered System Clock to drive the digitizer sample clocks (typically 50-100
MHz). The marker encoded on the System Clock is the time-zero reference for an
event window (i.e. 1695ns µBunch during beam ON). A local timestamp counter
(driven by the sample clock) measures the time o↵set within the event window
the timestamp data. The microcontroller and FPGA interface logic operates
from a local oscillator, independent of the System Clock. The ROC receives a
Heartbeat Request packet for each event window. This packet contains event
window readout control information, along with the System Timestamp.

Data from the digitizers is zero-suppressed, formatted and written to the ROC
Data Bu↵er during the beam spill. Data packets are read from the Data Bu↵er
and transmitted on the optical link during the full accelerator supercycle. The
bu↵er is large enough to hold at least 1 second of ROC output data, and uses
ECC memory for SEU mitigation.

3.2.2 Data Transfer Controller

The Mu2e Data Transfer Controller (DTC) [16] collects data from multiple
detector Readout Controllers, optionally performing event building and data pre-
processing. The DTC module provides an interface between the Mu2e Readout
Controller (ROC) modules, and the Trigger and Data Acquisition (TDAQ) servers
running the TDAQ online software framework. For Mu2e, the DTC (figure 3.5)
is implemented using a commercial PCIe (Peripheral Component Interconnect
Express) card located in the TDAQ Server. It is based on the HiTech Global
Kintex-7 (HTG-K700) PCI Express expansion card. This card features an eight
lane Gen 2 PCI Express interface, a DDR3 SODIMM socket, and a 400 pin FMC
connector, all wired to a Xilinx K325T Kintex-7 FPGA. The FMC connector
allows the installation of an FMC card with the optical fiber interface. This
provides for multi-gigabit serial links for up to six ROC Links, a port for data

3.2. ARCHITECTURE 33

Figure 3.4: Basic Digitizer/Readout Controller Architecture.

exchange for hardware event building, and a port for the Command Fan-Out
(CFO) interface. Firmware for the DTC’s FPGA is based on a modified reference
design provided by Xilinx.

The central component of the Mu2e TDAQ system is a commercial 3U server,
which manages data collection from the Readout Controllers, Event Building,
and Online processin. There are a total of 36 TDAQ servers, occupying four
racks in the electronics room. The servers used for pilot system development are
Supermicro X10DRD-iTP with dual E5-2680v3 processors and four 8GB ECC
DDR3 2133 memory modules.

High-speed serial ports are provided by an adapter module which plugs into
the FMC (FPGA Mezzanine Card) connector on the PCIe card. This adapter
has eight bidirectional SFP+ (enhanced Small Form-factor Pluggable) ports, and
can be used with optical or copper cabling. Six of the ports are used to connect
to Readout Controller rings optical links. One port can be used to connect to the
Event Building Network to exchange data between DTCs. The last port is used
to communicate with the Run Control Host computer.

The DTC receives Heartbeat packets from the Run Control Host. These
packets are forwarded on each attached ROC ring link. Data packets from the
Readout Controllers are returned on the same links. The DTC multiplexes data
from six links into one timeslice which is then transferred to the Server over PCIe,
or to other DTCs via the Event Building Network.

34 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

Figure 3.5: Data Transfer Controller (PCIe FPGA card and 8 port SFP+ FMC
adapter).

Figure 3.6: Optical cabling from Detector to TDAQ

3.2.3 DTC/ROC Interface

The detector Readout Controllers connect to the TDAQ Servers via redundant
optical links. Six bidirectional links are bundled in one 12-fiber MTP cable. For
Readout Controllers inside the detector vacuum, the fiber is brought out through
a sealed feedthrough at the end of the DS cryostat. The boundary between
the detector and TDAQ is defined as the optical connector outside the detector.
MTP-LC breakout cables run upstairs to the electronics room where the TDAQ
servers are located (figure 3.6). Each cable contains six bidirectional data links.
For the full Mu2e system, there are 36 of these cables (a total of 216 links). Each
link can support a data rate of 300 MBytes/sec, for an aggregate bandwidth of
approximately 60 GBytes/sec.

Eighteen cables (108 links) are used for the Tracker, with four Tracker Readout
Controllers sharing each pair of redundant links (figure 3.7). Twelve cables
(72 links) are used for the Calorimeter, with six or eight Calorimeter Readout

3.2. ARCHITECTURE 35

Figure 3.7: ROC Connections to TDAQ Servers (DTCs): redundant links are
used to increase system reliability.

Controllers sharing each pair of links. Three cable (18 links) is used for the CRV,
with one CRV Readout Controllers on each link. The Extinction and Target
Monitors use one cable each (12 links).

Redundant links are used to increase system reliability, since repair would
require warmup and removal of the entire detector. Each ROC has two ports
and either port can be used for control/readout. In normal operation, half of the
ROCs in a redundant loop will operate on one side of the loop and half on the
other. The data rate will average 160 MBytes/sec per link with two Tracker or
three Calorimeter Readout Controllers. If a link fails, the ROCs attached to that
link can be read from the other port.

Optical links carry both control and data packets. The link interface is
implemented in FPGA firmware. This means that the ROC FPGA must be
operational in order to download new microcontroller software or FPGA firmware
via the optical link DCS channel. To prevent loss of the DCS connection, the
ROC microcontroller boot program is located in protected memory. This program
contains the DCS software and basic FPGA firmware to operate the link interface.
An independent watchdog circuit will restart the ROC in failsafe mode if the
external System Clock is interrupted, or if any of several internal watchdog signals
are outside nominal timing windows.

The front-end component that will enable the connection is a bi-directional
module composed of both optical transmitter and receiver: the Versatile Transceiver
(VTRx) developed by CERN [24]. Components situated on the detectors at the
front-end must meet strict requirements imposed by the operational environment
for radiation and magnetic field tolerance. The VTRx development aims to mini-
mally customize a commercial form factor bidirectional transceiver module that
features a direct optical connector interface. The VTRx is to be based upon the
SFP+ module MSA. Figure 3.8 shows the block diagram comparison of the VTRx
with a standard SFP+. The VTRx is simplified versus the standard transceiver
because both the Limiting Amplifier and microcontroller are removed. The I2C
interface of the VTRx allows the user to set the operating point of the transmitter
by programming the LDD ASIC.

36 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

Figure 3.8: Block diagram comparison of a standard SFP+ transceiver (up) and the
VTRx (down) showing: Transmitter Optical Sub-Assembly (TOSA), Laser Diode
Driver (LDD), Microcontroller (µC), Limiting Amplifier (LA), TransImpedance
Amplifier (TIA), PIN photodiode.

3.2.4 Run Control Host

The Run Control Host receives beam status and timing information from the
Accelerator Controls network, and operator commands from the remote control
room. The Command Fanout (CFO) module in the Run Control Host is responsible
for generating and synchronizing Heartbeat packets. It sends a Heartbeat control
packet for each event window. The CFO contains a set of standard Heartbeat
packet templates (normal readout, calibration, no operation, etc.), and a default
list mapping these packets to each of the ⇠800,000 potential event window periods
in a 1.4 second supercycle. The CFO also maintains the System Timestamp which
it sends with each Heartbeat packet. The Run Control Host can instruct the CFO
to override the default packet on any clock or series of clocks.

The DTCs receive control and timing information from the Run Control Host
on the DTC Control rings as shown in figure 3.9. These rings operate at 2.5 Gbps
(3.125 Gbps 8b/10b encoded). The Command Fanout (CFO) card/optical link
adapter in the Run Control Host is physically identical to that used for the DTCs.

3.2.5 CFO - Command Fan-Out

The Command Fan-Out Module (CFO Module) [15] provides an interface between
the CFO Host and the DTCs. The CFO is based on the HiTech Global Kintex-7
(HTG-K700) PCI Express expansion card. This card features an eight lane Gen 2
PCI Express interface, a DDR3 SODIMM socket, and a 400 pin FMC connector,
all wired to a Xilinx K325T Kintex-7 FPGA. The FMC connector allows the
installation of an FMC card with eight SFP+ slots. This provides for multi-gigabit
serial links for up to eight DTC Links, and ports for the System Clock and Super
Cycle Start inputs. Firmware for the CFO’s FPGA is based on a modified version
of the DTC code.

The CFO module firmware is based on the Kintex-7 FPGA Targeted Reference
Design. This reference design is provided by Xilinx Corporation to allow designs
utilizing the high bandwidth capabilities of PCI Express, DDR3 memory, and

3.2. ARCHITECTURE 37

Figure 3.9: Control Hierarchy: the Command Fanout (CFO) module in the Run
Control Host is responsible for generating and synchronizing Heartbeat packets.
It sends a Heartbeat control packet for each event window and maintains the
System Timestamp for all the Data Transfer Controller. DTC forward timing
information to ROCs.

high-speed I/O to be implemented with significantly less design time required.
To do this, the reference design provides code that implements the PCI Express
Interface, the DDR3 memory interface, and a high bandwidth DMA engine. Two
high bandwidth ports are provided to allow user developed code to be connected
to the reference design. In the case of the CFO module firmware, the DTC link
controller code is connected to the two high bandwidth user ports. One port
is dedicated for DTC data, and the other is dedicated to DTC status and slow
controls.

A DMA channel provided by the Northwest Logic DMA Back-End Core
provides a DMA engine to transfer data between PCI Express and the DDR3
memory on the CFO card. DMA Channel 0 is used to write the clock cycle specific
Readout Request information to the Readout Request Information Table in CFO
memory.

Once configured, the CFO will issue a Heartbeat Packet for each System Clock
cycle (µBunch) of a Super Cycle. A System Clock period is 1695 ns. Four bytes
of cycle specific data are taken from the Heartbeat Information Table and output
along with the timestamp in the Heartbeat Packet. For loopback diagnostic
functionality, a given readout link’s SERDES can be put into loopback mode. All
packets queued for transmission on that link will then appear in the input bu↵er
of the associated readout link.

From a software point of view, all packets are 16 bytes in length. Note that
the hardware appends four bytes to the packet before transmitting it over a high
speed link. These four extra bytes are then stripped from the packet by the
hardware upon reception. The extra bytes are noted in the packet descriptions

38 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

0x00 No Operation
0x01 Heartbeat Packet
0x02 Data Request Packet
0x03 Set Event Tag
0x04 Increment Event Tag
0x05 Wait
0x06 Loop
0x07 Do Loop
0x08 Repeat
0x09 End
0x0a – 0x↵ Reserved

Table 3.3

below as a two byte 8b-10b K/D character header and two CRC bytes. The K/D
character header, and the CRC bytes are not included when generating the CRC
value. These characters will not appear in the input bu↵er with received packets
when in loopback mode.

The CFO Instruction Table is stored in memory on the CFO module. Popu-
lating the table is done via a DMA transfer to DMA port 0. Each table entry is
64 bits wide and corresponds to one CFO Instruction. The size of the table (cor-
responding to the number of instructions) is configurable via the CFO Instruction
Table Size Register. Table entries take the form as shown in 3.3:

The CFO module receives the timestamp preset value from the CFO Host.
The interface mirrors the DTC Link interfaces, in that it is an SFP+ socket
populated by a multi-mode optical fiber transceiver operating at either 2.0 Gbps
or 2.5 Gbps decoded (2.5 Gbps or 3.125 Gbps 8b10b encoded). Of the eight SFP+
channels on the CFO, all are available for connection to DTC links. The CFO
also connects to the System Clock and the Super Cycle Start signals. All Readout
Request Packets are queued by the CFO until the next positive System Clock
edge.

3.2.6 Event Building

Each Readout Controller collects data from a small subset of the detector. The
Event Building (EVB) function combines these subsets to form a complete detector
data set for analysis by an online processor. Event building is typically done in a
switching network.

The event building function can be performed by software in the Server or by
firmware in the DTC FPGA:

• Server option (“software” event building) - the event building network is
a commercial 10Gbase-T Ethernet or Infiniband switch (Ethernet is more
widely used, but Infiniband switches are less expensive with less software
overhead). Event fragments are copied from the DTC to the Server over
PCIe. EVB input and output bu↵ers are in Server memory, and the processor
handles all bu↵er management. The advantage of the Server option is that
the event building software is part of the existing artdaq framework and is
therefore easier to maintain. The disadvantage is the additional processing
load for event building and management of the network interface. Standard

3.2. ARCHITECTURE 39

Linux Ethernet or Infiniband drivers can be used, or the driver can be
replaced with a low-level frame bu↵er interface to eliminate much of the
overhead. Internal bu↵ering in the switch (with standard network flow
control) is used to automatically order packets. The software event building
option will be implemented first. If performance and scaling are satisfactory,
then this is the preferred method. Tests of artdaq on a small, four server
system with Infiniband networking have demonstrated a throughput of
approximately 900 Mbytes/sec per server. In the artdaq EventBuilder
process, the fragment receiver layer receives data from the Data Transfer
Controller, and is responsible for sending the data to the correct event
builder process, using standard Message Passing Interface (MPI) protocols.
The event-building layer receives data from the fragment receivers, collating
them into complete events. Complete events are then sent to another thread
in the same process for event processing. The event processing layer runs
the art event-processing framework, which performs the data filtering.

• DTC option (“hardware” event building) - the event building network is
a commercial 10G SFP+ Ethernet switch. A port on each DTC card is
connected to the switch via a direct-attach SFP+ copper cable. Input
and output bu↵ers are in DTC memory, and FPGA firmware handles the
bu↵er management. Complete events are then copied from the DTC to
the server over PCIe. No IP stack is necessary. The switch is programmed
with a static MAC address table (one entry for each TDAQ server). The
EVB network operates synchronously. Each server loops through its input
bu↵ers sending up to 2 KBytes packets. The servers are programmed to
start this rotation based on their switch position (server 0 starts with input
bu↵er 0, server 1 starts with input bu↵er 1, etc.). Synchronous operation
provides several advantages; 1) the synchronous network is inherently non-
blocking so no flow control is necessary, 2) the amount of bu↵ering needed
in the switch is minimized, and 3) it makes diagnostics easier since all
transfers are deterministic. The advantages of the DTC option are that
it o✏oads the processor in the TDAQ Server and allows use of the DTC
FPGA for pre-processing or triggering on fully assembled events if needed.
The disadvantage is that the FPGA firmware for event building is more
di�cult to develop and maintain than the artdaq event building software.

3.2.7 System Parameters

The TDAQ system is highly scalable. If necessary, it can be expanded by increasing
the number of TDAQ Servers. Parameters for the initial 36 server configuration
are listed in the following table 3.4:

3.2.8 Detector Control System (DCS)

The Detector Control System (DCS) [18] is the window, for experimenters and de-
tector experts, onto the status and health of the Mu2e detector. DCS must archive
and present graphical user interfaces of both detailed and high level displays of
power supplies, liquid and gas system’s operational data, environmental tempera-
tures and magnetic field strength, and status and run condition information for
the data acquisition of every portion of the detector. The goal is for the DCS to

40 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

Parameter Value

TDAQ Servers 36
Detector Optical Links 216
System Bandwidth 40 GBytes/sec
Online Processing 40 TFLOPS
Input Event Size (average) 150 KBytes
Input Event Rate 200 KHz
Input Data Rate  32 GBytes/sec
Rejection Factor � 100
Output Event Size (average) 150KBytes
Output Event Rate  2000 Hz
Output Data Rate 80% uptime � 280 MBytes/sec
O✏ine Storage ⇠7 PBytes/year

Table 3.4

not only encapsulate all of this information, but to present the information in a
meaningful way to facilitate running and debugging the experiment.

Referring to the Tracker, the TDAQ Server have access to the same Ethernet
network as the DCS, and so the TDAQ Server will be the DCS interface to the
ROCs. The TDAQ Servers will receive permits for ROC Configure operations and
firmware changes and will handle the details of configuring ROCs and downloading
TDAQ Server PCI board firmware. DCS will monitor values at the ROC level,
and send permit flags to the TDAQ Servers for various configuration options.

Per ROC, there are ⇠2 voltage/current pairs, ⇠10 temperature readings, and
⇠10 other registered parameters. Expected monitoring period is ⇠10 seconds.
The total expected Tracker ROC contribution to DCS then for 240 ROCs is 5,280
channels. 240 ROCs is not the e↵ective number of ROCs in the Tracker but an
estimate from above. There are also high voltage supplies associated with the
Tracker, a gas system for flow through the straw tubes, and a liquid cooling system
for front end and ROCs. The high voltage will be a voltage/current reading for
each of the 20 stations. The gas and liquid systems will likely require temperature
and pressure readings at the source, and then another reading pair at each of
the 20 stations. The high voltage, gas, and liquid systems then add another 124
channels to DCS. The total expected Tracker contribution to DCS is roughly
6,000 channels sampled every 10 seconds, which comes out to roughly 10 Kbps
assuming 2 byte channel samples. The calculation is here:

(2 Power + 10 Temperature + 10 Registers) * 240 ROCs = 5,280 Total ROC
Channels

20*2 HV + (21*2 + 21*2) Gas and Liquid Temp/Pressure = 124 Total Other
Channels

5,280 ROC Total + 124 Other Total = 5,404 Total Tracker Channels

⇠2 Bytes per Channel per 10 seconds * 5,944 Channels = ⇠1.1 KBps = ⇠10
Kbps

Referring to the Calorimeter, the TDAQ Server is expected to have access
to the same Ethernet network as the DCS, and so the TDAQ Server will be the
DCS interface to the ROCs as well as in the Tracker. There is a liquid cooling

3.3. TIMING SYSTEM 41

system and a laser calibration system for Calorimeter within the detector hall of
the building that may require a few monitored values.

Per ROC, there are ⇠2 voltage/current pairs, ⇠10 temperature readings, and
⇠10 other registered parameters. Expected monitoring period is ⇠10 seconds.
The total expected Calorimeter ROC contribution to DCS then for 240 ROCs is
5,280 channels. As well as for the Tracker, 240 ROCs is not the e↵ective number
of ROCs in the Calorimeter but an estimate from above. There are also a liquid
system and laser calibration system associated with the Calorimeter. The liquid
system will have 2 temperature/pressure readings along with ⇠10 other registered
parameters. The laser calibration system will have 2 voltage/current readings
along with ⇠10 other registered parameters. These two systems add another 28
channels to DCS. The total expected Calorimer contribution to DCS is roughly
4,000 channels sampled every 10 seconds, which comes out to roughly 10 Kbps
assuming 2 byte channel samples. The calculation is here:

(2 Power + 10 Temperature + 10 Registers) * 192 ROCs = 4,224 Total ROC
Channels

(2*2 + 10) Laser System + (2*2 + 10) Liquid System = 28 Total Other
Channels

4,224 ROC Total + 28 Other Total = 4,252 Total Tracker Channels

⇠2 Bytes per Channel per 10 seconds * 4,252 Channels = ⇠0.8 KBps = ⇠10
Kbps

EPICS has been chosen for DCS implementation. EPICS is open source origi-
nally developed at Argonne, and at Fermilab has most recently been implemented
in the NOVA experiment and MicroBooNE experiment. Control System Studio
was used for NOVA and MicroBoooNE to make the GUI on top of EPICS.

To account for channels unaccessible to ROCs and outside the scope of other
monitoring systems (e.g. detector hall magnetic field sensors), DCS will distribute
CAN bus and Ethernet endpoints within the detecor hall to provide a path to
DCS. The baseline implementation plan is to use EPICS and Control System
Studio.

3.3 Timing System

The TDAQ will generate a continuous Mu2e System Clock [17] with frequency
+/- 10 % of 50 MHz (e.g. 1/1695 ns = 589.97 KHz ... * 90 = 53.097 MHz clock)
at the Run Control Host Clock Fanout module (CFO). The CFO also receives the
RF-cavity 0-crossing marker from the Accelerator. Note that this marker signal
is synchronous with the arrival of proton pulses every 1695 ns to Mu2e and is
only active through a ⇠43 ms spill (Figure 3.10). There will be at least 100 µs
of markers without proton pulses to start each spill. The time between spills is
arbitrary, minimum is on order ⇠5 ms.

The CFO outputs a “punched” or “encoded” clock indicating the start of the
Mu2e event window, which is synchronous with the Accelerator marker during
beam ON to ⇠10 ns accuracy - the “punch” or “marker” is a change of the duty
cycle of two cycles of the clock to either 25%/75% duty cycle, or 75%/25% duty
cycle as shown in Figure 3.11. These two encodings are alternated so that a lost
marker can be identified by the ROCs.

42 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

Figure 3.10: Beam Structure: supercycle is the temporal window between two
proton beams (1.4 s). Beam is delivered to the detector during the first 467 ms of
each supercycle. During this period there can be up to eight 54 ms spills. Spills
are proton pulses delivered to the target in the Production Solenoid. Each spill
contains approximately 32 000 “µBunches”, for a total of 256 000 µBunches in a
1.4 second supercycle. A µBunch is 1695 ns.

Figure 3.11: Encoded clock fanned out by the CFO. It indicates the start of the
Mu2e event window. The “punch” or “marker” is a change of the duty cycle.

3.3. TIMING SYSTEM 43

Figure 3.12: Timing diagram for synchronization signals and control data.

Figure 3.13: Diagram of Accelerator delivery ring marker relative to spill to Mu2e.

This encoded clock will be fanned out and distributed to outside the cryostat
in the detector hall. Because of the grounding requirements, the TDAQ will
distribute the signal optically from the TDAQ room to the Detector Hall (i.e. 20
optical fibers). Then the optical can be converted to electrical co-ax (SMA) in
the detector hall on detector ground. The detector subsystems are responsible for
distribution inside the detector vacuum and further fanout stages as needed (i.e.
18 encoded clock signals to 216 Tracker ROCs and 192 Calorimeter ROCs).

The end of the marker on the encoded clock marks the start of the next event
window. Event windows are contiguous in time although detectors may have a
“live gate” within an event window. During beam ON, the event windows will
have duration 1695 ns, and during beam OFF, the event windows can be di↵erent
duration but a multiple of the System Clock period. Identifying beam ON versus
beam OFF can be done independently per 43.1 ms spill using two configurable
timeout parameters such as 100 µs leading into beam ON and 5 µs leading into
beam OFF (Figure 3.13).

The data links to the front ends will be used to send a 16 byte Heartbeat packet
describing the next event window before each event window begins. This packet
includes an 8 bit TDC value predicting the relative phase of the next event window
and the System Clock to better than 1 ns resolution. This packet also provides
“live gate” info and a 48 bit Mu2e System Timestamp (no wrap-around for 15
years) labeling the next event window. Heartbeat packets are not transmitted
during the period 50 ns before and after the event window marker. The front

44 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

System Clock Frequency 40 MHz
System Clock Jitter < 500 ps
ROC-to-ROC Synchronization 5 ns
Event Window Duration 1695 ns min
Optical Fiber Type 62.5/125 µm Multi-mode
Optical Fiber Light Wavelength 1310 nm
Optical Fiber Connector Type LC
Optical Module Type SFP
Acceptable Optical Transceiver Module Finisar FTLF1217P2xTL

Avago HFBR-57E5APZ

Table 3.5

ends can use the information distributed from the TDAQ however needed (i.e. if
10 ns resolution is enough, the front ends can ignore the 8 bit TDC value). There
are at least two ways to recover the System Clock at the front ends. Most FPGAs
can recover a clock to better than 200 ps jitter. External to FPGA clock recovery
and jitter cleaner circuits can recover the clock to better than 1 ps jitter.

The System Clock is not guaranteed to arrive to all detector ROCs phase
aligned. Phase alignment at individual ROCs is accomplished by an adjustable
delay at the ROC clock input. Additional alignment is provided by software or
firmware calibration and may result in internal timestamp synchronization o↵sets.
Each ROC generates its own internal high speed digitization clocks, phase locked
to the System Clock. A Clock Generator on the ROC is programmed via the
DCS connection to drive the digitizers at any N/M multiple of the System Clock.
Each ROC also generates an internal timestamp for timing data within the Event
window. This phase alignment and internal timestamp synchronization o↵set can
be calibrated across detectors using cosmic rays or proton pulses.

To accommodate the new point-to-point topology for the Tracker and Calorime-
ter, forced by the design decision to go to a single bi-directional VTRx at the
ROC, the System Clock and event marker will be transmitted over the serial link
running at 4.0 Gbps. The 40 MHz System Clock will be represented by a special
clock marker. Both the clock marker and the event marker will be represented
by two 8b-10b K-characters, that are only transmitted on a System Clock edge.
By only transmitting on System Clock edges, the System Clock can be extracted
and event markers can be extracted associated with a System Clock edge. The
markers must be received with fixed latency with respect to the source to maintain
ROC-to-ROC synchronization. Fixed latency over the serial links is achieved by
removing as much elastic bu↵ering as allowed in the SERDES throughout the data
path. Note that after extracting the 50 MHz System Clock at the timestamping
front-end ROC, the clock can be scaled up by integer multiples (e.g. 200 MHz)
to be used to timestamp data. Accounting for the variable latency of the serial
datapath from ROC to ROC is handled by coarse and fine granularity delay o↵sets
implemented at the timestamping front-end. Determining the o↵set to apply is
achieved by loopback to determine the latency of the datapath.

3.4. TDAQ SOFTWARE: ARTDAQ 45

3.3.1 Timestamps

Each Readout Controller generates its own internal timestamp for data within
an event window. This internal timestamp counter is driven by the digitization
clock and is reset at the beginning of an event window. It may be 1 or 2 bytes,
depending on the resolution of the detector. The digitization clock frequency
is determined by the ROC and can be di↵erent across di↵erent detectors. In
addition to the internal timestamp generated by each ROC, there is a System
Timestamp generated by the Command Fanout Module in the Run Control Host.
This is a six byte value which increments for each event window. It has a range
of at least 15 years. It can be stopped and restarted at any value as long as the
new start value is higher than the previous stop value. The System Timestamp
can be correlated with actual calendar time, or the high bytes can represent a
Run Number, supercycle, etc. The System Timestamp is sent by the CFO to the
DTCs at each System Clock. The DTCs broadcast the timestamp to all attached
ROCs in a Heartbeat packet. The DTCs also send a System Timestamp as part
of Data Request packets, and the ROCs return the System Timestamp in the
Data Header packet. Sending the System Timestamp directly to the ROCs for
each event window (instead of relying on a timestamp generated from the ROC
itself) avoids loss of ROC event synchronization with the rest of the system as
a result of missing or extra decoded event windows. The System Timestamp
counter increments for every event window. The event windows are contiguous
during a run, whether or not there is beam. This allows readout (e.g., acquisition
of calibration or pedestal data) at any time in the accelerator supercycle. The
System Timestamp is the only value used for event identification in the TDAQ
system. Events are not renumbered following various stages of filtering.

3.4 TDAQ Software: artdaq

The software architecture is based on artdaq [5]. This software runs on TDAQ
servers and on dedicated control and monitoring computers. artdaq is a toolkit of
C++ 2011 libraries and programs for use in the construction of TDAQ systems.
It provides functionality that includes the following:

• management of the readout and configuration of the TDAQ hardware. This
makes use of experiment-supplied software components.

• routing of data between threads within a process, between di↵erent processes,
and between di↵erent machines, and for assembling complete events from
these data.

• encapsulation of the data being routed, and support for experiment-specific
raw data formats to provide type-safe data access.

• event analysis and filtering using the art event-processing framework.

• basic control and monitoring applications.

• infrastructure for distributing configuration data to TDAQ processes.

The artdaq data acquisition toolkit is used to build the Mu2e TDAQ software
system. artdaq provides software applications for managing the data flow as well

46 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

Figure 3.14: artdaq Architecture: core components are shown with a blue back-
ground, while experiment-supplied components are shown with a white back-
ground.

as libraries and applications for encapsulating the data, analyzing the data, and
performing other basic data acquisition functions. The core data-flow applications
in artdaq consist of the following:

• BoardReaders that configure and read out hardware modules, and send data
fragments to EventBuilders,

• EventBuilders that assemble full events and pass the events to instances of
the art analysis framework for reconstruction and filtering,

• Aggregators that organize events in time order, write them to disk, and
analyze them to monitor the quality of the data.

These applications are shown in Figure 3.15 along with additional components
that are part of artdaq. The additional components include infrastructure for
sending and receiving control messages, managing the state of individual processes
and the full system, logging messages to central loggers and viewers, and the
sending and parsing of configuration parameters.

The toolkit is designed to provide core functionality while allowing experiments
to customize the hardware readout and event analysis as needed.

Key term are of the TDAQ Software are: online DAQ software, artdaq, art
and otsdaq [19].

The term “online DAQ (data acquisition) software” refers to the software used
to monitor, select, and validate physics and calibration data for the experiment. It
is easy to creep the scope beyond above. For example, the above often involves the
need for some control of the front-end electronics, so the extreme would be for all
control of the front-end electronics to go through the online DAQ software. Other
scope creeping features might include configuration parameters, configuration
change tracking, user access permissions, user preferences, etc.

Acronym for “art data acquisition” artdaq is a data acquisition toolkit which
provides functionality for data transfer, event building, event reconstruction and

3.4. TDAQ SOFTWARE: ARTDAQ 47

Figure 3.15: artdaq components. Applications and infrastructure components
that are shown in green are part of the core artdaq toolkit. Components shown in
orange are modules that experiments provide to read out their specific hardware
and perform their specific analyses and monitoring.

analysis (using the art analysis framework), process management, system and
process state behavior, control messaging, local message logging (status and error
messages), DAQ process and art module configuration, and the writing of event
data to disk in ROOT format. In general, the artdaq toolkit includes one or many
ways to do things, and it is left to the experiment to choose the tools from the
toolkit and provide the glue for a complete system.

art is not an acronym, it is an event-processing framework for particle physics
experiments, like Mu2e. Experiments use the art framework to build programs
that process data in a variety of contexts: high-level software filters, online data
monitoring, calibration, reconstruction, simulation, and analysis. Mu2e o✏ine
uses art, Mu2e online uses artdaq and thus art as well. For example, the Mu2e
online trigger decision is made by a set of art modules running in the online
environment (but primarily developed in the o✏ine environment).

otsdaq is an acronym for “o↵-the-shelf data acquisition.” ots for short. It
is the online DAQ software framework that Mu2e has chosen. otsdaq uses the
artdaq DAQ framework under-the-hood to provide data handling flexibility and
scalability. In addition, otsdaq provides a web interface to configure, control, and
monitor the online DAQ software entities. In general, otsdaq has chosen the tools
from the artdaq toolkit for the experiment, and provided the glue for a coherent
experience for all users (shifters, experts, etc.) from Chrome or Firefox.

otsdaq and artdaq are developed by the Fermilab Scientific Computing Division
and developments are in two directions: server side and web side.

About the online DAQ software development, server side is C++. User code
is added through plugins (C++ classes inheriting from the appropriate class).
Types of Mu2e online DAQ software plugins are:

• Front-end interfaces - code to communicate with an external device, e.g.
there’s a plugin for the DTC, and for each type of ROC

48 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

• art modules - e.g. trigger modules, online monitor modules

• artdaq Fragment Generators - code to decode data and transmit to artdaq
event builders

• Data processors - code for custom data handling, e.g. datastream-to-ROOT
for Visualizer

• Configuration table handlers - code for custom handling of configuration
data, e.g. to output FHiCL, or provide helper-abstraction functions like
getVolume() of object with size specified in configuration parameters.

Web side is HTML and JavaScript. User code is added in the form of web-apps
through .html files (including the appropriate .js and .css files). Any custom
user web-apps for Mu2e is not been generated yet, but the facility is present.
For example, overlaying Calorimeter ROC temperature color-coded on a 3-D
representation of the detector with slider controls to set thresholds, this would be
a custom user web-app.

All data filtering and triggering in the Mu2e TDAQ architecture is done in
firmware or software. The production TDAQ will use 36 dual-CPU servers. The
online processing system must handle a total rate of 200,000 events per second,
an average of 5,600 events per second per server. The art analysis framework
will be used as the environment in which the online processing algorithms are
executed. It provides the infrastructure for running software modules that are
provided by experimenters and managing the data that is analyzed and produced
by the analysis modules. It has been developed at Fermilab for use in current and
future intensity frontier and cosmic frontier experiments, and it is currently used
in the o✏ine environments of the Mu2e, NOvA, LBNE, and other experiments. It
is also currently used in the TDAQ system of the DarkSide-50 experiment, which
is also artdaq-based. The use of the same analysis framework online and o✏ine
has substantial advantages, most notably the ability for physicists to develop
algorithms independently of the full TDAQ system and move them to the online
environment when they are ready. Within the TDAQ system, EventBuilder
processes handle the starting of art threads and the transfer of full events to
art for analysis. It also handles the configuration of the art framework and the
analysis modules using the configuration parameters that it receives from Run
Control. The same configuration language is used to configure artdaq processes
as is used to configure art.

As part of the software interface to the DTC, a Linux device driver for
communicating over the server PCIe bus is being developed. The driver will
be responsible for managing the bu↵ers into which the data is written when it
is received from the ROC, responding to the interrupts when DMA transfers
complete, notifying the user code that data is available, and delivering the data
to the user code.

3.4.1 otsdaq

otsdaq is the Ready-to-Use data-acquisition (DAQ) solution aimed at test-beam,
detector development, and other rapid-deployment scenarios. As stated earlier,
otsdaq uses the artdaq DAQ framework under-the-hood, providing flexibility
and scalability to meet evolving DAQ needs and provides a library of supported

3.4. TDAQ SOFTWARE: ARTDAQ 49

front-end boards and firmware modules which implement a custom UDP protocol.
Additionally, an integrated Run Control GUI and readout software are provided,
preconfigured to communicate with otsdaq firmware.

otsdaq comes as a web page. The ots web desktop environment is your portal
to all of the possibilities of otsdaq. Briefly, desktop features are: same user on
multiple browser tabs, monitors and computers, configurable desktop window
icons and folders with access permissions, window layout presets (Global and per
user) and window manipulations (Tile, resize, move, minimize, maximize, refresh,
close).

Front-end interfaces are plugins that are considered to be the specifics for
how (i.e. C++ to write and read) to interface to a device external to otsdaq. In
particular, otsdaq is used to control the DTCs. The DTC Client library is the
low level interface code to the TDAQ Data Transfer Controllers. It provides the
PCIe interface functionality, and implements handling the packet protocol that
the DTCs and readout controllers use in Mu2e. The otsdaq front-end interface
plugin for the DTC is a wrapper around the DTC Client library and the DTC
Board Reader. otsdaq presents a State Machine, visible in figure 3.16, that allows
to easily configure and run DTCs. Macro Maker is a tool that allows the user to
execute front-end interface writes and reads, and build sequences of writes and
reads, i.e. macros. Macros can be saved per user or made public for all users.
Macro Maker is useful for low level debugging of front-end interfaces, and early
development. Macros can be exported to C++ or directly to a target plugin as a
FE Macro. FE Macros are C++ member functions of a front-end interface plugin
class. The primary utility is that, with no user e↵ort, FE Macros are available
through the web-interface - through the FE Macro Test web-app or custom user
web-apps. FE Macros have strings or numbers as input and output arguments.
The FE Macro Test web app also runs generic private and public macros from
Macro Maker. The concept of Macro Maker mode is that anyone (e.g. a firmware
developer) who just wants to use front-end interface plugins with FE Macros, or
generic macros, could use this simplified mode without tracking configuration
changes or using the state machine. A FHiCL parameter file is used to import
the configuration. When Macro Maker mode is launched, the state machine is
automatically transitioned through to the Configured state.

Another feature is the configuration tree. The configuration tree defines the
hierarchical relationship between all entities in the online DAQ system, and all of
their parameters. When otsdaq is launched, the executables that start are the
ones enabled in the configuration tree for that node. Then later, when the state
machine transitions to the Configured state, the children of the executables are
instantiated based on the parameters defined by the chosen configuration alias.
Configuration alias maps to a configuration tree which fully defines the online
DAQ configuration (likely, the configuration alias string and the translation to
group name and group key gets recorded in the run conditions database). A
configuration tree can have multiple roots and multiple branches (as shown on the
bottom-right). At the lowest level, otsdaq stores configuration data in tables and
tracks table changes as versions. The configuration tree is an abstraction extracted
from groups of tables. Any entity that needs configuration parameters can have
read-only access to the configuration tree API - with calls like getChildren(),
getNode(), and getValue() - and access to the table plugins and their helper
abstraction functionality.

50 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

Other features are the console and the code editor. The console web-app
help users exist remotely and remove the need to access the linux terminal. The
console core functionality is built on artdaq message facility. Messages have
labels, line numbers, and severity; they can be filtered, and user preferences are
saved per user. Printouts to the terminal, log files, or the web console can be
generated from any user plugin code by using the ots output macros. The code
editor web-app is a tool that allows for editing and viewing of source code and
text files. Configurable permission levels give write access or not. The code
editor has vertical and horizontal view split, and can spawn multiple browser tabs
and windows. The code editor might help developers standardize code format,
encourage collaboration, and allow for remote development.

ots uses artdaq database as its external database interface. artdaq database
is a JSON document based database which can be persisted on the filesystem or
by mongodb. When a new table version is created by ots, a new JSON document
is created in artdaq database. For redundancy and high availability, mongodb is
used. The approach is to have replica sets which each maintain the same data set,
and then a cron job that automates daily backups to a directory tracked by TiBS
(Fermilab Core Computing backup/restore service).

Data processing is the primary responsibility of the online DAQ. Mu2e’s event
window data will be processed through artdaq modules. However ots allows for
data processor plugins in general (i.e. interfacing to artdaq makes use of particular
data processor plugins provided by otsdaq core functionality). Data processor
plugins inherit generic data handler functionality, and can add custom handling
beyond that. For example, an aspect of the ots visualization tools make use of
specialized data processor plugins that generate ROOT objects that can then be
viewed in the web desktop. Users can make ots data processor plugins for any
purpose they dream up. When the artdaq data processor plugin is used in otsdaq,
users have access to the flexibility and scalability of artdaq. The artdaq data
processor plugin instantiates an artdaq Board Reader with a Fragment Generator
plugin. Based on the configuration of the online DAQ system, the user can also
instantiate artdaq Event Builders, Dispatchers, and Data Loggers. For Mu2e,
there will be a Board Reader for each DTC, one Tracker/Calorimeter Event
Builder per server, (each running the trigger algorithm with as many art analyzer
processes as fit on the server, around 20), a second-level Event Builder which will
integrate CRV data, several Data Loggers on dedicated nodes for writing data to
online storage, and several Dispatchers to provide online data quality monitoring.
artdaq tracks a large number of metrics covering pretty much everything about
event rate and dataflow, which can be enabled at the metric plugin level; the user
can send a subset of metrics to EPICS, everything to Ganglia, and only the most
important ones to a file, all at the same time.

3.4. TDAQ SOFTWARE: ARTDAQ 51

Figure 3.16: otsdaq web desktop environment: open windows are the State
Machine and the Macro Maker app.

52 CHAPTER 3. TDAQ – TRIGGER AND DATA ACQUISITON

Chapter 4

DRAC - Digital Readout
Assembler & Controller

The DRAC board is the Mu2e Tracker digitizer and readout controller board
(figure 4.1) [14]. It sits on the outer edge of each Mu2e Tracker panel and services
the entire panel via 12 bit 50 Mbps ADCs (MAX19527) digitizing the hit energy
from each of the 96 straws. The time of the hits from the two ends of the
straws is digitized inside two Microsemi PolarFire FPGAs (MPF300TS-1FG1152),
called DIGI HV and DIGI CAL. A third Microsemi PolarFire FPGA, called
ROC (Readout Controller), is connected to each DIGI via four 5 Gbps SERDES
lanes and to the TDAQ via a two 2.5 Gbps fibers connected to a Data Transfer
Controller. The DRAC acts as a mezzanine board of the Digital Mezzanine Board
(DMB) which is glued on the panel itself. The DMB is mostly an analog board
providing power to the DRAC and the two Analog Mezzanine Boards (AMB)
which house the preamplifiers receiving signals from the two end of the straws
(figure 4.2).

Microsemi o↵ers the Microsemi Libero System-on-Chip (SoC) design suite
comprehensive of development tools for designing with flash FPGAs, SoC FPGAs,
and Rad-Tolerant FPGAs [13]. The suite integrates industry standard Synop-
sys Synplify Pro synthesis [7] and Mentor Graphics ModelSim simulation with
constraints management, debug capabilities, and secure production programming
support. The Libero SoC v12.0 release supports SmartFusion2, IGLOO2, RTG4,
and PolarFire devices.

Figure 4.1: DRAC Board

53

54CHAPTER 4. DRAC - DIGITAL READOUTASSEMBLER& CONTROLLER

Figure 4.2: Tracker panel: in green are shown the ADCs (MAX19527) digitizing
the hit energy from each of the 96 straws while in light blue is shown the DRAC
board.

4.1 Data Transfer between the Digitizer and ROC

One Read Out Controller (ROC) receives data from digitizers which are connected
to a panel of 96 Tracker straw detectors [14]. A “Digitizer” describes a front-end
consisting in part of ASICS or FPGAs, preamplifiers, communication protocols,
and interface ICs. However the ROC/Digitizer interface described below is
assumed transparent to the front-end architecture. One ROC controls data flow
from, and sets Digitizer parameters for, a panel. It receives output and status
data from the Digitizers and sends this information to the TDAQ. It receives
slow control parameters and action requests from the TDAQ, and communicates
pertinent information to the Digitizers. Depending on the number of planes,
the Mu2e Tracker has a nominal 216 ROCs. The Digitizer receives signals from
both ends of 4 (or 8) straws and multiplexes 4 of these into one output bu↵er
before sending a packet of data to the ROC on 1 (or 2) LVDS lines (Low Voltage
Di↵erential Signal lines). Digitized data transmission from the output bu↵er to
the ROC is clocked at 200 MHz. A block diagram of the ROC electronics is shown
in figure 4.3.

Every 1695 ns during a super-cycle, each ROC sends to its Digitizers a signal
indicating the start of a µspill and a 200 MHz clock. These are used by the
digitizer to synchronize event time with respect to the µspill start (table 4.1).
The ROC also sends to the Digitizer the lowest 4 bits of the µspill number and
a programmable gate which starts and ends data digitization during a µspill.
Both the µspill number and the gate follow the µspill start on the same LVDS
line. Nominally a µspill start occurs every 1695 ns for 54 ms (table 4.1) and the
data gate follows after a nominal latency of 670 ns. Thus hit data is digitized
for a period of some 1025 ns. This data is stored in a local FIFO output bu↵er
at the digitizer before being sent to the ROC. Transfer from the output bu↵er
begins as soon as data appears in the bu↵er and continues until all data collected
during a µspill has been transferred. Data transmission is then latent for at least
one clock pulse before data transfer from the next µspill begins. After inserting
the data collected for a µspill in the bu↵er, the digitizer inserts an end-of-µspill

4.1. DATA TRANSFER BETWEEN THE DIGITIZER AND ROC 55

Figure 4.3: A block diagram of the ROC electronics.

Parameter Value Units

Duty Factor (Total Spill Time ÷ MI Cycle Lenght) 32 %
Duration of each spill 54 ms
Spill On Time per MI cycle 497 ms
Spill O↵ Time per MI cycle 836 ms
Time Gap between 1st set of 4 and 2nd set of 4 spills 36 ms
Time Gap between spills 5 ms
Pulse-to-pulse intensity variation ± %

Table 4.1: A block diagram of the ROC electronics.

data packet. This allows data transfer from the FIFO bu↵er to be transferred
without loss of synchronization even if the transfer continues beyond a µspill. The
amount of data collected during a µspill is determined by the single event rates
of the straws, and the output bu↵er must have su�cient depth to provide an
average data transfer from the 4 multiplexed straws during a super-cycle. Digitizer
performance and status are communicated to and from the ROC through status
words in the header and appended end-of-µspill data packets. Table 4.2 gives the
total number of required LVDS lines.

A timing diagram describing the synchronization between the Digitizer, output
bu↵er, and data-transfer to the ROC is shown in figure 4.4. It is assumed that
digitized data is collected and stored without pileup in a local bu↵er. The TDCs
record an event time with respect to the µspill start using a 16 bit word. This bit
size is su�cient to provide a 30 ps time resolution over a µspill read time. Each
recorded event requires a TDC signal above threshold from at least one straw end.
Nominally, timing from both straw ends is recorded, and the Digitizer decides
which signals are processed based on stored parameters. The shaping time of

56CHAPTER 4. DRAC - DIGITAL READOUTASSEMBLER& CONTROLLER

Number of

Channel/ASIC

LVDS per

Channel

Purpose Total Number

4 1 Data Transfer 24
8 1 Data Frame 12
8 1 Clock 12
4 96 µspills 1
4 96 Acquisition Gate 1

Table 4.2: The number of LVDS lines required for communication between a ROC
and a Digitizer.

the straw anode signal is approximately 120 ns, and the summed analog output
from both straw ends is digitized at 50 MHz (20 ns) by an ADC with 8 ENOB.
Threshold, gain, and the length of the dead-time after a straw signal are sent by
the ROC to the digitizer between super-cycles. This information along with other
slow control and status data, are sent over a 3-wire SPI bus.

Figure 4.4: A timing diagram for the ROC to digitizer signal transfer. The
architecture shows the 200 MHz clock aligned with the µspill and the µspill ID
with the data capture gate. The lowest 4 bits of the µspill are transferred on this
LVDS line.

4.1. DATA TRANSFER BETWEEN THE DIGITIZER AND ROC 57

4.1.1 Packet Definition

Each event (hit) is composed of a data packet having a fixed length of 128 bits.
The Digitizer organizes the data packet and puts it into an output FIFO bu↵er.
The packet has the following structure:

a. 16 bit header - The header contains information to uniquely specify this is a
packet header, a channel identifier to specify the channel so the ROC can
assign the hit to a wire number, and a packet checksum

b. 16 bit -TDC left straw end

c. 16 bit -TDC right straw end

d. 10 bit ADC

e-j. repeated as d above 7 times with zeros added if the ADC does not contain
eight 10 bit words. Data is cut at eight 10 bit ADC words.

At the end of all the data packets of a specific µspill, a final, a 32 bit “end-of-file”
packet containing end of µspill information including digitizer status, errors, and
the parameters used by the Digitizer to process the signal is inserted, as shown in
figure 4.5. If the digitizer has no events during a µspill, only the end-of-file packet
is bu↵ered and transmitted to the ROC. This allows the ROC to synchronize
and count µspills. The ROC compares the 4 digit µspill number returned by the
digitizer in the data packet header with that assigned by the ROC to µspill. This
data is re-bundled, including a header, the ROC ID, and status, and transmitted
to the TDAQ via an optical data link. The ROC always reports to the TDAQ,
adding a “no-data” data packet for each digitizer when “no-data” is present. The
global µspill number is received by the ROC from the TDAQ which is locally
stored. The ROC extracts the lowest 4 bits of this number, and transmits these
to the digitizers. The digitizers in term transmit these bits back to the ROC at
the end of the µspill data packet as a synchronization check.

Figure 4.5: timing diagram for the digitizer to ROC data transfer. The architecture
allows transfer across a µspill. The example shows 2 bu↵ered µspills, and an
end-of- µspill data transfer.

58CHAPTER 4. DRAC - DIGITAL READOUTASSEMBLER& CONTROLLER

Figure 4.6: Timing tree: in this point-to-point topology, timing is merged with
data and the clock is fanned out by the CFO.

4.1.2 Data Rate

At 200 MHz, a packet of 128 bits can be transferred every 640 ns. An additional 32
bits must be added as an end-of-file marker after the data µspill hit data is bu↵ered.
Thus on average 2.4 data packets plus an end-of-file ([1695ns�160ns]/640ns = 2.4)
can be transferred to the ROC during a µspill. Single rates in the straws are
balanced in front of the Digitizer to obtain an average singles rate of 150-200 kHz
per straw for a panel.

4.2 Clock

The TDAQ will generate a continuous Mu2e System Clock at 40 Mhz at the
Run Control Host Clock Fanout module (CFO). The CFO receives the RF-cavity
0-crossing marker from the Accelerator, which is synchronous with the arrival of
proton pulses every 1695 ns and it is always at a fixed phase. The CFO outputs an
encoded clock indicating the start of the Mu2e event window, which is synchronous
with the Accelerator marker. This encoded clock will be fanned out and distributed
to outside the cryostat in the detector hall. Figure 4.6 shows the timing tree.
This System Clock is not guaranteed to arrive to all detector ROCs phase aligned.
Phase alignment at individual ROCs is accomplished by an adjustable delay at
the ROC clock input. The CFO outputs also the start-of-event-window marker
and an Heartbeat packet to specify the Event Window.

Tracker and Calorimeter are accessed by a single bi-directional VTRx at the
ROC, so the System Clock and event marker will be transmitted over the serial
link. All timestamping frontends extract a System Clock and start of Event
Window marker. The trick is synchronizing the resulting Event Windows, i.e.
synchronizing the timestamp reset to T=0, across all timestamping front ends.
T=0 defines the start of a Mu2e Event Window and occurs in response to each
start-of-event-window marker. Event Window is define at CFO. Signals travel to
di↵erent boards and through fibers and cables of di↵erent lengths and they must

4.2. CLOCK 59

line up the Event Window at timestamping front ends. To line up Event Windows
the approach is to delay each front end to match front end with longest latency.
Delay is determined calculating the Loopback signal. It consists in determine the
round trip time by sending a marker and returning it many times and taking
the average time. Once the timing path latency is known for each front end,
it is possible to calculate each front end’s delay o↵set define as “longest timing
path latency” minus “individual timing path”. At the start of each run,the front
ends can be configured to apply their own delta delay. The idea is a two register
approach: a Delay Event Window Start register, which uses units of timestamping
clocks for coarse adjustment to delay the start of the Event Window, i.e. when
the timestamp is reset to T=0, and a Clock Phase O↵set register, which uses
units of “ticks” for fine phase adjustment of timestamping clock. Usually a “tick”
represents ⇠ 200ps.

All timestamping front ends label their digitized data with a timestamp to
indicate when that data was sampled. Data sampled at the same moment in time,
in two di↵erent timestamping frontends of the same subsystem, must be labeled
with identical timestamps. Each subsystem’s front ends may have a di↵erent
sampling frequency, i.e. di↵erent timestamp granularity which involves di↵erent
timestamp incrementing frequency. Tracker run at 200 MHz and Calorimeter at
280 MHz, so the timestamp frequency need to be an integer multiple of the Mu2e
S ystem Clock at 40 MHz, otherwise T=0 may not exactly lineup.

A clock receiver/driver/conditioner IC on the ROC PCB receives a 200 MHz
System Clock with a 590 kHz µspill identifier from the TDAQ. The conditioner
aligns the 200 MHz signal edge with the µspill ID and distributes both signals to
the ROC and the digitizers. The TDAQ clock is presented to each receiver over
two dedicated di↵erential lines with optical isolation. The dual transfer is used
for redundancy. The clock signals to the ROCs come from a clock distribution
system external to the Tracker. The nominal clock jitter specification is 200 ps.
The clock interface consists of the following:

a) Two dedicated di↵erential clock pairs are input to the ROC at 200 MHz, with
optical isolation upstream in the clock distribution network. The second
clock pair is included for fault tolerance.

b) A dedicated jitter cleaner PLL device, with at least 13 di↵erential output pairs.
Jitter on each pair must be less than 200 ps RMS. Absolute clock skew
across channels is not critical, because the e↵ect can be calibrated, but clock
skew over time should be stable and consistent across power cycling events.
The proposed clock conditioning IC is Texas Instruments LMK04800. It
has jitter specifications of 150 fs RMS from 100 Hz to 20 MHz and has
programmable delay on each of the 14 output channels.

Timing between di↵erent ROCs must be phase aligned. Input phase align-
ment can be obtained by matching the PCB trace lengths between all output
lengths as closely as possible, by compensating for the mismatched delays using
programmable delays in the ROC inputs, and/or programmed delay in the clock
driver. The Smart Fusion2 input delay is programmable in 0.1 ns steps up to 6.3
ns. At a propagation velocity of 6 inches/ns, the maximum skew between digitizer
data lines must be  2 ns.

Each digitizer re-generates its own TDC, ADC, and data-transfer clock from
the 200 MHz sent by the ROC. Only the µspill identifier must be common and

60CHAPTER 4. DRAC - DIGITAL READOUTASSEMBLER& CONTROLLER

phase aligned (compensated) between all ROCs. Other internal clocks from
various digitizers do not have to be aligned. Data transfer is gated by a framing
window tied to the transfer clock as described above. The gate closes when all
the data associated with a µspill is transferred. Global phase alignment between
di↵erent ROCs may be obtained by calibration of the arrival times of the µspill
at the di↵erent ROC.

4.3 DDR3 Memory

The Mu2e Tracker readout board, DRAC, has a 6 Gb DDR3 memory (3x2 Gb
IS46TR16128A DDR3 external memories) serving as a bu↵er for the Tracker hits
information until the TDAQ comes to retrieve the data. The DDR3 memory is
serviced by the ROC PolarFire FPGA. These memories have JEDEC speed grade
DDR3-1333H, i.e. able to work with 6 ns clock: DDR3 allows to transfer 8 bits of
data on every edge of a clock running at 4x the clock speed.

4.3.1 Tracker Hit Data

Each Tracker hit comprises some geographical information to uniquely identify
the straw, the time of the pulses of the two end of the straw from the start of the
µspill, the time over threshold (TOT) for the two pulses and a variable number
of 12 bit ADC samples for the sum of the two pulses. This data is passed via 4
SERDES lanes using 10 to 8 bit encoding, hence the natural width of the incoming
data is 32 bits. We assume that only 16 of the 32 bits are used in the following
and refer to this as DIGI word. The proposed definition of data received from the
DIGI FPGAs is in table 4.4.

The length of the hit is required to be in multiples of 64-bit DDR3 words,
which is the natural width of R/W to DDR3 memory. DIGI words 0 to 3 will be
mapped to bit [15:0], [31:16], [47:32] and [63:48] of DDR3 words 0, respectively.
Up to 1020 ADC samples are allowed but in normal running operations, we expect
to save a fixed “standard” number of 12 ADC samples, for a total of 20xDIGI
words and 5xDDR3 words per hit. The µspill number coming with the DTC Data
Packet Request is used to allocate the starting address of 1 KB blocks of DDR3
memory space. Only the 4 LBS of the µspill number are stored in DIGI word 4.
The number of ADC samples saved for the hit can be between 12 and 1020 in
steps of 4, so that the end-of-hit word is at the boundaries of a DDR3 word. The
actual ADC count for a given sample fills bit[11:0] of the DIGI word while the 4
MSB contain a rotating counter to help in the detection of missed words. The
hit trailer starts with the 0xEFEF end-of-hit word, followed by the end-of-spill
padding word, set to be 0xD01E for a typical hit and 0xD0FE for the last hit of
the spill. The very last DIGI word repeats the µspill number for redundancy and
contain info on the status of the digitizer and an error code. The digitizer status
is envisioned to contain info on the kind of data being passed (physics vs TRK
vs TDAQ diagnostic, on spill vs o↵ spill, etc). A summary of the error codes for
a given spill will be passed to the DTC. The ROC memory manager firmware
will take care of calculating the total number of hits for a given spill, as well as
removing the number of ADC sample words and the hit trailer, e↵ectively writing
to memory 4xDDR3 words per standard hit. The ROC DTC interface firmware
will further compact the ADC samples bits to fit the 16x16-bit DTC Tracker data

4.3. DDR3 MEMORY 61

DDR3 word DTC word Content

0[63:48] 0 [15]=1/0 for not-last/last packet of the hit;
[14:0] = straw index (0 thru 23039)

0[47:32] 1 [15:0] HV-end TDC sample

0[31:16] 2 [15:0] CAL-end TDC sample

0[15:0] 3 [15:8] CAL-end TOT; [7:0] HV-end TOT

1[63:48] 4 [15:12] ADC Sample 1; [11:0] ADC sample 0

1[47:32] 5 [15:8] ADC Sample 2; [7:0] ADC Sample 1

1[31:16] 6 [15:4] ADC Sample 3; [3:0] ADC Sample 2

1[15:0] 7 [15:12] ADC Sample 5; [11:0] ADC sample 4

2[63:48] 8 [15:8] ADC Sample 6; [7:0] ADC Sample 5

2[47:32] 9 [15:4] ADC Sample 7; [3:0] ADC Sample 6

2[31:16] 10 [15:12] ADC Sample 9; [11:0] ADC sample 8

2[15:0] 11 [15:8] ADC Sample 10; [7:0] ADC Sample 9

3[63:48] 12 [15:4] ADC Sample 11; [3:0] ADC Sample 10

3[47:32] 13 [15:12] ADC Sample 13; [11:0] ADC sample 12

3[31:16] 14 [15:8] ADC Sample 14; [7:0] ADC Sample 13

3[15:0] 15 [15:8] Preprocessing(8 bits); [7:4] Reserved; [3:0]
ADC Sample 14

Table 4.3: Tracker data packet definition

packet reported in table 4.3. If more than 15 ADC samples are used, bit [15] of
DTC word 0 will be set high as long as the last DTC packet for that hit is being
sent. The remaining DTC words 0 to 3 will be copied for each data packet, and
the unused ADC sample words will be passed as zeros.

4.3.2 Memory Protocol

The PolarFire FPGA DDR subsystem [9] is made up of the following soft and
hard blocks:

• DDR controller (soft)

• Training logic (soft)

• I/O lane (hard)

• Phase-locked loop (PLL) (hard)

The DDR subsystem accepts read and write commands using the AMBA
Advanced Extensible Interface 4 (AXI3/4) or using a native interface. The DDR
subsystem translates the AXI/native interface requests into command sequences
required by SDRAM devices. The DDR controller module then issues these
commands to the PHY module, which sends and receives data to and from the

62CHAPTER 4. DRAC - DIGITAL READOUTASSEMBLER& CONTROLLER

DDR3 word DIGI word DIGI Word Content

0 0 [15]=1/0 for non/standard (i.e. 12) number of
ADC samples
[14:0] = straw index (0 thru 23039)

1 HV-end TDC sample [15:0]

2 CAL-end TDC sample [15:0]

3 [15:8] CAL-end TOT; [7:0] HV-end TOT

1 4 [15:12] µspill number; [11:0] Number of ADC
samples (S)

5 [15:12] 0x0; [11:0] ADC sample 0

6 [15:12] 0x1; [11:0] ADC sample 1

7 [15:12] 0x2; [11:0] ADC sample 2

2 8 [15:12] 0x3; [11:0] ADC sample 3

9 [15:12] 0x4; [11:0] ADC sample 4

10 [15:12] 0x5; [11:0] ADC sample 5

11 [15:12] 0x6; [11:0] ADC sample 6

3 12 [15:12] 0x7; [11:0] ADC sample 7

13 [15:12] 0x8; [11:0] ADC sample 8

14 [15:12] 0x9; [11:0] ADC sample 9

15 [15:12] 0xA; [11:0] ADC sample 10

4 16 [15:12] 0xB; [11:0] ADC sample 11

...

M 4*M [15:12] 0x(4M%16); [11:0] ADC sample 4*M

4*M+1 0xEFEF End of hit word

4*M+2 [15:8] = 0xD0; [7:0] = 0xFE/0x1E for last/not
last hit in spill

4*M+3 [15:12] = 0xD; [11:8] = µspill number; [7:4]
Digitizer Status; [3:0] Error Code

Table 4.4: Proposed definition of the Tracker hit data: M-1 is the number of 64-bit
words to be written to DDR3 memory, equal to the number of ADC samples plus
the 4 header and TDC words, divided by 4.

4.3. DDR3 MEMORY 63

DDR SDRAM. It can also automatically perform DDR initialization, refresh, and
ZQ calibration functions.

The DDR controller is a soft IP core that consists of the following blocks:

• Control and timing block — contains the main controller logic.

• Initialization control block — performs the initialization sequence after
system reset (RESET N) is deactivated or when dynamic reinitialization
control (CTRLR INIT) is pulsed.

• Bank management block — keeps track of the last opened row and bank to
minimize command overhead.

• Refresh/ZQ calibration control block — performs automatic refresh/ZQ
calibration commands to maintain data integrity.

• Queue control block — allows new requests to be accepted on every clock
cycle as long as the queue is not full.

• Data control block — handles multiplexing and de-multiplexing of data
flowing to and from the DDR SDRAM devices.

• Multi-burst block — allows requests longer than the programmed memory
burst length. Also handles requests with starting addresses not aligned on
a burst boundary, breaking the requests up as necessary to prevent data
wrapping. The queue-based implementation of the core’s interface enables
the DDR controller to optimize throughput and e�ciency by looking ahead
into the queue to perform precharges before the read and write commands
are issued.

The DDR subsystem requires a dedicated PLL to generate the clocks, which are
then distributed throughout the subsystem using HS IO CLK routes, dedicated
pads, and fabric clock routing. This PLL generates aligned clocks for all sub-blocks
for smooth operation and synchronous communication with the user logic. The
PLL generates the following required clocks:

• REF CLK — This clock is routed to the PHY for clocking the DDR memory
device.

• HS IO CLK — This clock routed to I/O lanes and the training logic.

• HS IO CLK 270 — HS IO CLK phase shifted by 270. This clock is also
routed to I/O lanes and the training logic.

• YS CLK— This clock is routed to the DDR controller, training logic, and
user logic in the fabric .

The HS IO CLK and REF CLK clocks are generated with the same frequency
and phase. The REF CLK to SYS CLK ratio is 4:1.

Block diagram in figure 4.7 shows the DDR Interface on the DRAC. It is
composed by the AXI Interface and the DDR Controller and it is served by a
FIFO. Focusing on this part of the firmware, data are provided by DIGI FIFO
and are converted from 32 to 64 bit, that is the DDR3 word length, and stored
in the TEMP FIFO. MEM FIFO CNTRL handles the AXI interface providing

64CHAPTER 4. DRAC - DIGITAL READOUTASSEMBLER& CONTROLLER

Figure 4.7: Block diagram of DDR Interface. This part of the firmware handles
the DDR3 memory both for writing and reading and for the management of the
DDR3 itself. It uses an AXI protocol.

addresses and data. Data are taken from TEMP FIFO and written to the DDR3,
and in the opposite way, data are read from the DDR3 and stored to the MEM
FIFO. Pages are 1 KByte long.

Figure 4.8 shows how DDR Interface is embedded inside the DRAC Firmware.
TOP SERDES manages communication between the Trigger and Data Acquisition
(TDAQ) and the Mu2e detector subsystem Readout Controllers (ROCs). When
Data Transfer Controller (DTC) asks for Data Packet, TOP SERDES handles the
request and set controls for memory reading. DIGI Interface receives digitized
time of the hits stored inside the two PolarFire FPGAs DIGI HV and DIGI CAL.
They are connected to the Readout Controller via four 5 Gbps SERDES lanes. In
the firmware of DIGI Interface, two SerDes blocks handles the 5 Gbps SERDES
standard and data are stored in two di↵erent FIFO: DIGI FIFO and DAQ FIFO.
The first one handles data in 32 bit and is connected to the DDR switch, the
second one in 16 bit and is connected to TOP SERDES. This duplicity needs
as debug mode: create multiple paths allows to test functionality of the several
blocks bypassing some of them. DDR Switch select which between data from
DIGI FIFO or from MEM FIFO send to the DDR Interface to be written in
memory. Also this is a debug path.

Figure 4.9 shows a block diagram of the firmware inside the Tracker ROC to
read data from the DDR3 memory when the DTC sends a data request packet.
The bottom part of the diagram deals with the logic needed to pass the µspill
and timestamp to the data being recorded during a live window. These signals
are generated on a 200 MHz clock. The top part of the diagram deals with the
logic needed to service a DTC Packet Request and run on a 40 MHz clock.

At the beginning of each spill, the Timestamping Interface sends the µspill
number, or event window tag, to the Store Interface which generates the DDR3
memory address where the Tracker hits received during that spill will be stored.
The hits from the DIGI FPGAs are stored in the DIGI FIFO. Based on the
FIFO EMPTY signal, the number of 64 bit words available to be read and the
detection of the end-of-spill signal, the DDR3 Interface will start the write to
memory.

The idea is writing all of the hits observed in one spill using a single 1 KByte
memory block write. For standard hits with 12 ADC samples corresponding to
4x64 bit per hit to the DDR3, 1 KByte block will fit 32 hits. In 6 Gb memory, we

4.3. DDR3 MEMORY 65

Figure 4.8: Top view of the DRAC Firmware. It shows main blocks and their
connection.

will be able to fit ⇠0.75M spill, allowing for almost 1.3 s latency for the TDAQ
before the memory will fill up, assuming continuous hit collections every 1.7 µs
even during o↵-spill time.

66CHAPTER 4. DRAC - DIGITAL READOUTASSEMBLER& CONTROLLER

Figure 4.9

Chapter 5

DIRAC - DIgitizer ReAdout
Controller

The DIRAC board is the Mu2e Tracker digitizer and readout controller board
(figure 4.1). It sits on the outer edge of each Mu2e Tracker panel and services
the entire panel via 12 bit 50 Mbps ADCs (MAX19527) digitizing the hit energy
from each of the 96 straws. The time of the hits from the two ends of the
straws is digitized inside two Microsemi PolarFire FPGAs (MPF300TS-1FG1152),
called DIGI HV and DIGI CAL. A third Microsemi PolarFire FPGA, called
ROC (Readout Controller), is connected to each DIGI via four 5 Gbps SERDES
lanes and to the TDAQ via a two 2.5 Gbps fibers connected to a Data Transfer
Controller. The DRAC acts as a mezzanine board of the Digital Mezzanine Board
(DMB) which is glued on the panel itself. The DMB is mostly an analog board
providing power to the DRAC and the two Analog Mezzanine Boards (AMB)
which house the preamplifiers receiving signals from the two end of the straws
(figure 4.2).

Microsemi o↵ers the Microsemi Libero System-on-Chip (SoC) design suite
comprehensive of development tools for designing with flash FPGAs, SoC FPGAs,
and Rad-Tolerant FPGAs. The suite integrates industry standard Synopsys
Synplify Pro synthesis [7] and Mentor Graphics ModelSim simulation with con-
straints management, debug capabilities, and secure production programming
support. The Libero SoC v12.0 release supports SmartFusion2, IGLOO2, RTG4,
and PolarFire devices.

5.1 Test Stand

The Calorimeter has been designed and will be constructed by the collaboration
among the Italian National Institute of Nuclear Physics (INFN), the California
Institute of Technology (Caltech) and the Fermi National Accelerator Laboratory
(FNAL or Fermilab). Part of the work was rebuilding the Test Stand situated
at the FNAL Feynman Computing Center (FCC) in the INFN Laboratory. Test
Stand is the environment which reproduce the TDAQ system.

First, the TDAQ Server has been arranged. A single TDAQ Server can be
used as a complete standalone data acquisition/processing system or multiple
TDAQ Servers can be connected together to form a highly scalable system. In the
reproduction of the system, all environmental requirements are not tightening.
The Server is based on a ASUS Z97 - K motherboard with 1 TB Hard Disk

67

68 CHAPTER 5. DIRAC - DIGITIZER READOUT CONTROLLER

Figure 5.1: FireFly Micro Flyover System by Samtec with the MPO end.

(WD10EZRX-00L4HB0) and 120 GB SSD Disk (Samsung SSD 840 EVO). On
the Server is installed Scientific Linux 7.7.

Scientific Linux is an Enterprise Linux rebuild sponsored by Fermi National
Accelerator Laboratory. It provides a stable, scalable, and extensible operating
system for scientific computing and supports scientific research by providing
methods and procedures for enabling the integration of scientific applications with
the operating environment. Scientific Linux is a rebuild of Red Hat Enterprise
Linux (property of Red Hat Inc NYSE:RHT).

On Scientific Linux are installed all packages and repository to start artdaq.
artdaq is a toolkit of C++ 2011 libraries and programs for use in the construction
of TDAQ systems; it provides software applications for managing the data flow as
well as libraries and applications for encapsulating the data, analyzing the data,
and performing other basic data acquisition functions. On artdaq runs otsdaq.
otsdaq uses the artdaq DAQ framework under-the-hood to provide data handling
exibility and scalability. It is the online DAQ software framework and provides a
web interface to configure, control, and monitor the online DAQ software entities.
otsdaq and artdaq are developed by the Fermilab Scientific Computing Division.

otsdaq interfaces to the Data Transfer Controller (DTC).The DTC module
provides an interface between the Mu2e Readout Controller (ROC) modules, and
the Trigger and Data Acquisition (TDAQ) servers running the TDAQ online soft-
ware framework. The DTC is implemented using a commercial PCIe (Peripheral
Component Interconnect Express) card located on the motherboard of the TDAQ
Server. It is based on the HiTech Global Kintex-7 (HTG-K700) PCI Express
expansion card. This card features an eight lane Gen 2 PCI Express interface,
a DDR3 SODIMM socket, and a 400 pin FMC connector, all wired to a Xilinx
K325T Kintex-7 FPGA. The FMC connector allows the installation of an FMC
card with the optical fiber interface. This card is called the Timing Card and
mounts the FireFly Micro Flyover System by Samtec [21] (figure 5.1).

FireFly is the an interconnect system that allows the flexibility of using micro
footprint high-performance optical interconnects with the same connector system
of low-cost copper. FireFly optical cable systems provide the flexibility to achieve
higher data rates to 28 Gbps and/or greater distances, simplifying board design
and enhancing performance. On the timing card the ECUO Series is mounted. It
allows up to 28 Gbps per channel via optical cable for greater reach. It is been
chosen because the footprint allows for higher density close to the data source and

5.1. TEST STAND 69

Figure 5.2: Fiber cassette: it is the optical splitter from 12(x2) MTP Male to 24
LC/UPC Female.

because of the simple use system with easy insertion/removal and trace routing, no
through-holes, and surface mount connector system. Fibers are OM3 multi-mode
with 12 fibers. The end of the cable is a MPO (MTP) high-density connector
for panel applications and minimal keep-out areas on the board. Timing card
with the Firefly modules provides for multi-gigabit serial links for up to six ROC
Links, a port for data exchange for hardware event building, and a port for the
Command Fan-Out (CFO) interface.

The optical fibers are OM3 multimode. “OM” stands for the minimum Modal
Bandwidth (MBW) requirement. OM1, OM2, and OM3 are determined by the
ISO 11801 standard, which is based on the modal bandwidth of the multi-mode
fiber. OM3 has a suggested jacket color of aqua, its core size is 50 µm. It supports
10 Gigabit Ethernet at lengths up to 300 meters. OM3 fiber specifies an 850-nm
laser-optimized 50-micron fiber with an e↵ective modal bandwidth (EMB) of 2000
MHz/km. It can support 100-Gbps link distances up to 100 meters.

From the Firefly module gets out two MTP cables (one for transmission and
one for reception) of 24 optical fibers (12 for transmission and 12 for reception)
which needs to be split in 24 LC/UPC cable. Splitting is finalized by the optical
divider in figure 5.2. Channel numbers on the fiber cassette are not mapped 1 to
1 with the DTC channels. The mapping is reported in table 5.1. As looking at
the front of the cassette, TX connections are on the left and RX connections are
on the right. Cassette channels are numbered 1 to 12 (not 0 to 11), with cassette
channel number 1 on the top for both TX and the RX cassette connections.

Optical fibers are connected to the ROCs. In this Test Stand ROC is linked
on channel 0, so the connection is TX (side DTC) on 9 and RX on 12.

For the first test of this Test Stand, the ROC on the DIRAC is simulated on
the AVMPF300TS-20-NA Evaluation Board from Microsemi [11]. It supports the
same Microsemi PolarFire FPGA (MPF300TS-1FG1152) that is on the DIRAC. In
the operational mode, the front-end component that enable the fibers connection
to the ROC is a bi-directional module composed of both optical transmitter and
receiver: the Versatile Transceiver (VTRx) [24] developed by CERN. In this Test
Stand, the VTRx is not available, so it is replaced by a Finisar FTLX8574D3BCV
(50 nm VCSEL 1G/10G Dual-Rate) in figure 5.3. The Finisar connector has an

70 CHAPTER 5. DIRAC - DIGITIZER READOUT CONTROLLER

Cassette Channel TX RX

1 Unused CFO Downstream
2 CFO Upstream Unused
3 ROC 5 ROC 5
4 ROC 3 Unused
5 CFO Downstream CFO Upstream
6 ROC 2 ROC 1
7 ROC 4 ROC 4
8 Unused EVB
9 ROC 0 ROC 3
10 ROC 1 Unused
11 EVB ROC 2
12 Unused ROC 0

Table 5.1: Mapping of channel numbers on the fiber cassette.

hot-pluggable SFP+ footprint compatible with the AVMPF300TS-20-NA. The
external power supply is set to 3.3 Volts to power the SFP+, and not 2.5 Volts
like the VTRx requires.

DTC Firmware

To enable communication between DTC and ROC, DTC needs to pe programmed.
It has Xilinx K325T Kintex-7 FPGA on board, so it uses Xilinx tools for develop-
ment, programming, test and debug. Program and debug is performed via Vivado
Design Suite. In particular it uses the Integrated Logic Analyzer (ILA) included
in the Vivado Suite. A Xilinx programmer with a JTAG connection is necessary:
in this Test Stand it has been used a HW-USB-II-G as shown in figure 5.3.

Programming is performed by configuring the memory device and using it to
load firmware on the FPGA. Every time the DTC is powered o↵, firmware is not
lost because it is retrieved by memory. Device part number ismt28gu01gaax1e�
bpi� x16 and the firmware is an .mcs file. A power cycle of the Server loads the
FPGA and allows the BIOS to configure the PCI connection.

The customizable Integrated Logic Analyzer (ILA) IP core provided by Vivado
[26] is a logic analyzer core that can be used to monitor the internal signals of a
design. The ILA core includes many advanced features of modern logic analyzers,
including Boolean trigger equations, and edge transition triggers. Because the ILA
core is synchronous to the design being monitored, all design clock constraints
that are applied to your design are also applied to the components inside the ILA
core.

Signals in the FPGA design are connected to ILA core clock and probe inputs.
These signals, attached to the probe inputs, are sampled at design speeds and
stored using on-chip block RAM (BRAM). The core parameters specify the number
of probes, trace sample depth, and the width for each probe input. Communication
with the ILA core is conducted using an auto-instantiated debug core hub that
connects to the JTAG interface of the FPGA. After the design is loaded into
the FPGA, use the Vivado logic analyzer software to set up a trigger event for
the ILA measurement. After the trigger occurs, the sample bu↵er is filled and
uploaded into the Vivado logic analyzer. This data can be displayed using the

5.1. TEST STAND 71

Figure 5.3: On the left: the HW-USB-II-G Xilinx programmer with JTAG
connection. On the right: the Finisar FTLX8574D3BCV (50 nm VCSEL 1G/10G
Dual-Rate) used as bi-directional communication module between DTC and ROC.

waveform window. Regular FPGA logic is used to implement the probe sample
and trigger functionality. On-chip block RAM memory stores the data until it is
uploaded by the software. No user input or output is required to trigger events,
capture data, or to communicate with the ILA core.

72 CHAPTER 5. DIRAC - DIGITIZER READOUT CONTROLLER

Chapter 6

SERDES

DRAC and DIRAC firmware are conceptually divided into three blocks. The first
one is responsible to collect data from Digitizer for DRAC and ADCs for DIRAC.
This is peculiar for the two boards because it depends on detector’s feature. The
middle block is the one which handles memory and is similar for both firmware.
Some di↵erences are in memory management because of the data format. Data
format is detector dependent but concept under memory addressing is the same.
Last block handles communication between the Trigger and Data Acquisition
(TDAQ) and the Mu2e detector subsystem Readout Controllers (ROCs). This
block is identical for both boards because the interface is shared.

The three blocks were developed in parallel defining the interfaces between
them, then joined together to form what is the DRAC and DIRAC firmware.
To develop the block that handles interface with the TDAQ, the AVMPF300TS-
20-NA Evaluation Board [11] from Microsemi was used. It supports the same
Microsemi PolarFire FPGA (MPF300TS-1FG1152) that is on the DRAC and
DIRAC. In figure 6.1 is shown the board and in figure 6.2 the features on the
board.

The main purpose of the firmware developed on the evaluation board is to
manage communication between the Trigger and Data Acquisition (TDAQ) and
the Mu2e detector subsystem Readout Controllers (ROCs). This is an high speed
communication, so it uses a Serializer/Deserializer (SerDes) block. Because of
this feature, all firmware on the AVMPF300TS-20-NA Evaluation Board takes
the name of SERDES. In this chapter are illustrated the main feature of SERDES
firmware: optical links management, commands interpretation and experiment
synchronization.

6.1 XCVR - Optical Links Management

First feature of SERDES is implementation of optical fibers infrastructure. ROCs
interface to the Trigger and Data Acquisition (TDAQ) via optical links and at
firmware level it translates as a transceiver module: the XCVR [10].

The PolarFire FPGA family includes multiple embedded low-power, performance-
optimized transceivers. Each transceiver has both the physical medium attachment
(PMA), protocol physical coding sub-layer (PCS) logic, and interfaces to the FPGA
fabric. The transceiver has a multi-lane architecture with each lane natively sup-
porting serial data transmission rates from 250 Mbps to 12.7 Gbps. The transceiver
includes all required analog functions for high-speed data transmission between

73

74 CHAPTER 6. SERDES

Figure 6.1: Microsemi AVMPF300TS-20-NA. This evaluation board is the one
used to develop SERDES firmware.

devices over printed circuit boards (PCB) and high-quality cables.
The PolarFire AVMPF300TS-20-NA device has sixteen transceiver lanes,

which can be accessed through a PCB loopback and the SPF+ connector on the
board. In this project, the SPF+ connector is used to mount the VTRx, the
Versatile Transceiver developed by CERN. It is a bi-directional module composed
of both optical transmitter and receiver. A 125 MHz clock oscillator with an
accuracy of ±50 ppm is available on the board. This clock oscillator is connected
to the FPGA fabric to provide transceiver reference clock.

Figure 6.3 shows the XCVR0 and the XCVR1 interface of the Avalanche
Board.

The XCVR0 interface has two lanes: Lanes 0 and 1 are directly routed together
to form a loopback. The XCVR0 reference clock is routed directly from the 125
MHz di↵erential clock oscillator to the PolarFire device. The XCVR0 TXD pairs
are capacitive coupled to the PolarFire device. Serial AC-coupling capacitors are
used to provide common-mode voltage independence.

The XCVR1 interface has one lane that is connected to the SFP+ connector.
Lanes 0 is directly routed to the SFP+ connector. The XCVR0 reference clock
can be used with the XCVR1 interface.

The PolarFire transceiver is divided into four distinct transmit (Tx) and
receive (Rx) blocks: PMA, PCS interface block (including a dedicated PCIe PCS),
transmit PLL (Tx PLL) and a reference clock inputs.

The high-speed PMA blocks connect to the FPGA fabric through the PCS
block. The PMA generates the required clocks and converts the transmit data
from parallel to serial, and receive data from serial to parallel. Each PMA block
includes a connection to a PCS block and associated interface to the FPGA
fabric making up a transceiver lane. The PCS interface block provides several
industry-standard interfaces for use in protocol-specific designs. A group of four
transceiver lanes is called a quad. Each quad has a local transmit PLL used
exclusively within the four transceiver lanes. Additional transmit PLLs are shared

6.1. XCVR - OPTICAL LINKS MANAGEMENT 75

between quads.

The transceiver lanes include PMA receiver and transmitter sub-modules.
These PMA sub-modules include the input and output bu↵ers, signal conditioning
circuits, CDRs, and transceiver.

The receiver deserializes high-speed serial data received through the input
bu↵er by creating a parallel data stream for the FPGA fabric and recovering
the clock information from the received data. The receiver portion of the PMA
includes the receiver bu↵er, the clock and data recovery (CDR) unit, and the
deserializer. The deserializer within the receive PMA passes deserialized data to
the PCS block across a data bus up to 40-bits wide of the PMA-PCS interface,
which provides the data path to the gearing logic before the data is passed to the
FPGA fabric.

The receive Clock and Data Recovery (CDR) PLL can lock onto the input
reference clock or the incoming data stream to be able to re-time the incoming
data. The deserializer is closely coupled with the CDR, and translates the data
from a serial to a parallel stream.

The deserializer has a bit-slip feature for word alignment. In this mode, the
CDR slips to the next bit from the deserializer. This feature helps with building
word-alignment logic in the fabric and adjusts the alignment of the deserialized
word by 1-bit in either direction when the bit-slip feature is active, reducing the
uncertainty by ensuring deterministic latency. This feature is supported by the
transceiver configurator.

6.1.1 8b/10b Encoding

The communication uses a 8b/10b encoding. In telecommunications, 8b/10b is
a line code that maps 8 bit words to 10-bit symbols to achieve DC-balance and
bounded disparity, and yet provide enough state changes to allow reasonable clock
recovery. This means that the di↵erence between the counts of ones and zeros
in a string of at least 20 bits is no more than two, and that there are not more
than five ones or zeros in a row. This helps to reduce the demand for the lower
bandwidth limit of the channel necessary to transfer the signal [25].

As the scheme name suggests, eight bits of data are transmitted as a 10 bit
entity called a symbol, or character. The low five bits of data are encoded into a
6 bit group (the 5b/6b portion) and the top three bits are encoded into a 4 bit
group (the 3b/4b portion). These code groups are concatenated together to form
the 10 bit symbol that is transmitted on the wire. The data symbols are often
referred to as D.x.y where x ranges over 0–31 and y over 0–7. Standards using the
8b/10b encoding also define up to 12 special symbols (or control characters) that
can be sent in place of a data symbol. They are used to indicate start-of-frame,
end-of-frame, link idle, skip and similar link-level conditions. At least one of them
(i.e. a “comma” symbol) needs to be used to define the alignment of the 10 bit
symbols. They are referred to as K.x.y and have di↵erent encodings from any of
the D.x.y symbols.

The 8b10b trans-coder is protocol independent, in other words, it does not
include a protocol-specific word aligner or word alignment state machine. Comma-
detection is supported in the transceiver module in this firmware. The serial data
must be aligned to comma-alignment boundaries before being used as parallel data.
Without proper alignment, the incoming 8b10b data does not decode correctly.

76 CHAPTER 6. SERDES

The comma character (K28.5) is used for alignment purposes as its 10-bit code is
guaranteed not to occur elsewhere in the encoded bit stream.

In this case idle character is 3CBC.

The 8b10b PCS block performs the comma code-word detection and alignment
operation. The comma character is used by the receive logic to align the incoming
data stream into 10-bit words. The alignment comma descriptions (K28.1, K28.5,
and K28.7) are defined in section 36.2.4.9 of the IEEE 802.3.2002. A comma
is identified when there is a match across any 8 consecutive bits to 00111110
or 11000001 patterns. The only legal 10b characters, which contain series of
bits are K28.1, K28.5, and K28.7. In 802.3 specification definition, there is no
occurrence of two legal 10b characters sent in a sequence containing the comma
pattern, which drastically reduces the chance that a symbol aligner can falsely
lock. Alignment status per lane is indicated by the LANE RX VAL output pin
going to high only after the PMA CDR locks onto an incoming data stream.
Word Aligner can lock onto an incorrect alignment causing disparity errors and/or
code violations from the 8b10b decoder. In this case, the word aligner needs to
be reset to find a new alignment. This can be done by using the PCS ARST N
reset. The fabric logic needs to monitor the LANE RX CODE VIOLATION and
LANE RX DISPERROR to determine when to issue a PCS ARST N and find a
new alignment.

6.1.2 Implementation

High-speed serial protocols are supported using multiple transceiver building
blocks in the transceiver configurators in the Libero design software. The Libero
configurator allows the user to set the reference clock and data rates for particular
protocols. This information is then used to properly generate the configuration
settings for the PMA, and the associated interface logic.

Transceiver Reference Clock Configurator

The Transceiver Reference Clock Configurator is used to build the correct reference
clock input to the transceiver and to the Tx PLL. In the project the Reference
Clock is set in a di↵erential mode, with fabric clock output enabled but not
connected: when enabled, a port is exposed for fabric routing.

Transmit PLL Configurator

The Transceiver Transmit PLL Configurator is used to build the correct transmit
PLL to the transceiver. In the project, the Reference Clock Source comes from
the Transceiver Reference Clock Configurator at 125 MHz with a Desired Output
Bit Clock of 4000.000 Mbps (2000.000 MHz).

Transceiver Interface Configurator

The Transceiver Interface Configurator is used to build the transceiver based
on protocol requirements. Lanes can be up to 4; in the project is 1. Enhanced
Receiver Management is enabled without Receiver Calibration. About PMA
Settings, the data rate is set to 4000 Mbps with a clock division factor on TX
of 1: the computed PLL base data rate is 4000 Mbps and the computed bit lock
frequency is 2000 Mhz. CDR locks on data with a dedicated reference clock
source of 125 MHz. About PCS Settings, PCS-fabric interface width is 20, so the
computed FPGA interface frequency is 200 MHz. On the PMA mode, the CDR
bit-slip port is enable.

6.1. XCVR - OPTICAL LINKS MANAGEMENT 77

Core Reset

CoreReset will allow synchronization of the resets to the user-specified clock domain
into which each reset is feeding, so that while assertion is asynchronous, negation is
synchronous to the clock. It generates a reset which is asserted asynchronously by
one of multiple potential sources and which negates scynchronously to a specified
clock. This ensures that recovery time of downstream logic is met and that all
flip flops come out of reset in the same clock period. Output of this block is
FABRIC RESET N, which may be used to reset user logic in the fabric. It is
an active low reset, which asserts asynchronously, but negates synchronously to
CLK.

Core PCS

Core PCS provides the 8b10b function for the physical coding sublayer for Gigabit
Ethernet as defined in the IEEE 802.3z specification. The 8b10b is a marriage
of two sub-blocks, the 5b6b and the 3b4b encoder/decoders. The purpose of
the encoder/decoders is to convert 8 bit data into a 10 bit code that contains
an equal number of 0’s and 1’s. In addition, the code is built so that no more
than five consecutive 0’s or 1’s is ever transmitted. Core PCS is designed to work
directly with a variety of standard transceiver devices. A set of generic signals
provides a data and command interface to system logic. Core PCS provides a user
interface and a transceiver interface. The user interface consists of transmit data,
receive data, and several control and status signals used to qualify the data. The
transceiver is responsible for serializing transmit data and deserializing receive
data. In addition, the transceiver is designed to resynchronize the serial stream
whenever it detects illegal coding errors.

CorePCS consists of three major blocks, as described below. All signals on the
Tx Interface are clocked using EPCS TxCLK and all signals on the Rx interface are
clocked using EPCS RxCLK. EPCS stands for external physical coding sublayer.

When generic/parameter EPCS DWIDTH is set to 20 bit or greater, the
8b10b transmitter is a pipe-lined structure that converts parallel command or
data information into parallel encoded values. Command and data information
are qualified by the TX K CHAR[IO SIZE-1:0] bus. TX K CHAR[IO SIZE-
1] corresponds to the upper data byte on TX DATA[ENDEC DWIDTH-1:0]
and TX K CHAR[0] is for the lower byte. The data on the TX DATA bus is
continuously registered into the transmitter. The transmitter will encode and send
the upper byte first followed by the lower bytes. Because of the pipe-lined nature
of the transmitter, the first encoded data will be driven on the TX DATA bus
several cycles after it is registered into the transmitter. All data input information
is valid; however, command possibilities are limited. If the transmitter detects
a bad command, then it will assert the INVALID K signal. The core of the
transmitter consists of a data encoder, a command encoder, and a disparity
calculator. Each encoder calculates a 4B and 6B code for the input data. The
correct code, command or data, is then selected based on the original input
value of TX K CHAR. The disparity calculator determines whether the encoded
value needs to be inverted to maintain the correct running disparity. The input
FORCE DISP[IO SIZE-1:0] can be used to forced the data being registered into
the transmitter to a selected running disparity. The input DISP SEL[IO SIZE-1:0]
is used to select the running disparity. FORCE DISP [IO SIZE-1] and DISP SEL
[IO SIZE-1] corresponds to the upper data byte on TX DATA [ENDEC DWIDTH-
1:0] while FORCE DISP [0] and DISP SEL [0] is for the lower byte. Finally, the

78 CHAPTER 6. SERDES

code is registered and sent to the transceiver on the TX DATA bus.
When generic/parameter EPCS DWIDTH is set to 20-bit or greater, the 8b10b

receiver is a pipe-lined structure that converts parallel 10 bit encoded values and
converts them to parallel command or data information. Command information
is indicated by the RX K CHAR [IO SIZE-1:0] bus signals asserted high. The
data on the upper byte of the RX DATA bus is the first decoded value in the
sequence.Receive data is first registered into parallel registers. The codes are
decoded in parallel moving from stage to stage. Several signals qualify the validity
of the information on RX DATA. RX DATA contains good information whenever
both the CODE ERR N is inactive (high) and ALIGNED is active (high). If
ALIGNED is low or CODE ERR N is low, then some problem exists in the
transmission. Whenever the receiver loses sync (ALIGNED is low) the transceiver
will resynchronize the data on subsequent COMMA commands (K28.5). When
sync is re-established, the ALIGNED will again be driven high after the pipeline has
been flushed of potentially bad data. The error check block monitors the incoming
codes and checks for illegal codes and bad running disparity. Whenever an error
in the 8b10b code is detected, the CODE ERR N is asserted. If several codes in
a row are received with errors, then the 8b10b will assume that synchronization
with the transceiver has been lost and will deactivate ALIGNED and assert the
COMMA DET EN signal. The number of consecutive errors required to force a
resynchronization is fixed to 4. The transceiver will then resynchronize the data
using COMMA codes. The 8b10b responds by asserting ALIGNED indicating
that the transceiver has reacquired sync. The Core PCS supports word alignment
for COMMA characters K28.5. Word alignment must be performed in the receiver
before the data can make it through the core. Word alignment is achieved by
transmitting a burst of consecutive COMMA characters before transmitting the
data, however the number of consecutive COMMA characters is configurable when
PROG COMMA EN is enabled.

Word alignment shift is controlled by the parameter/generic SHIFT EN. It is
required that word alignment shift is enabled when Core PCS is configured for a
20 bit or greater EPCS received channel and it is handling data from protocols
with a continuous stream of COMMA characters for word alignment followed by
a stream of data which required the 16 bit data received to be in the upper and
lower bytes after the last COMMA characters is received.

6.1.3 Clock Distribution

Transceiver uses a reference clock to lock and be able to re-time the incoming
data. This is a 125 MHz reference clock provided by a clock oscillator available on
the board and connected to the FPGA fabric. It takes name of REF CLK PAD
and it is di↵erential. Reference clock is handled by the Configurator to be useful
by the PLL. PLL multiplies the reference clock to provide a 2 GHz clock to the
transceiver logic (CLKS TO XCVR). The transceiver recovers the clock from
data stream and outputs two clocks: LANE0 RX CLK and LANE0 TX CLK.
LANE0 TX CLK takes name of EPCS TXCLK and drives the response logic at
200 MHz, LANE0 RX CLK takes name of EPCS RXCLK and drives the receiving
logic at 200 MHz. These clocks are manipulated to obtain Clk 40MHz at 40 MHz
with a duty cycle of 60% and ALGO CLK at 40 MHz.

Bitslip Function

6.2. COMMUNICATION PROTOCOL 79

REF CLK PAD 125 MHz

CLKS TO XCVR 2000 MHz

LANE0 RX CLK 200 MHz

LANE0 TX CLK 200 MHz

EPCS TXCLK 200 MHz

Clk 40Mhz 40 MHz

ALGO CLK 40 MHz

RESET CLK 160 MHz

SLOW CLK 40 MHz

Table 6.1: Clocks used in the design.

6.2 Communication Protocol

The Mu2e Trigger and Data Acquisition (TDAQ) system is responsible for data
processing, detector synchronization, control, monitoring, and operator interfaces.
All these functions are implemented in ROCs firmware and access via DTC. DTC
interfaces to ROCs via a defined packet protocol to accommodate TDAQ request,
so ROCs firmware has the main function of command interpreter.

6.2.1 Packet Protocol

This section defines the data packet protocol used to exchange data between
the ROCs and the TDAQ firmware and software [23]. The DTC modules are
the immediate interfacing hardware to the ROCs. All communication between
the TDAQ software framework and the ROCs must go through the DTCs. This
implies that the DTC must be aware of the packet format templates, but not
necessarily the packet detail.

The core functionality includes data stream packets (Data Header and Data
Payload packets) and Detector Control System (DCS) packets (DCS Read and
Write packets). The DCS is responsible for providing information about the status
and health of the Mu2e detector. The DTC modules each have two Direct Memory
Access (DMA) ports to provide high bandwidth data transfer between the PCI
express and the DTC module’s onboard memory. DMA channel 0 is reserved for
Readout Request, Data Request, Data Header, and Data packets. DMA channel
1 is used for Detector Control System (DCS) Request and Reply packets.

Packets follow the 8b10b encoding. Eight bits of data are transmitted as a 10
bit character. The data symbols are referred to as D.x.y where x ranges over 0–31
and y over 0–7. Control characters, called comma characters, are used to indicate
start-of-frame, end-of-frame, link idle, skip and similar link-level conditions. One
of them needs to be used to define the alignment of the 10 bit symbols. They are
referred to as K.x.y and have di↵erent encodings from any of the D.x.y symbols.
The control symbols within 8b/10b are 10 bit symbols that are valid sequences of
bits (no more than six 1s or 0s) but do not have a corresponding 8 bit data byte.
They are used for low-level control functions.

Each packet has a Packet Type value. The Packet Type is a 4-bit field which

80 CHAPTER 6. SERDES

maps as follows (table 6.2):

0 DCS Request

1 Heartbeat (broadcast)

2 Data Request

3 Reserved

4 DCS Reply

5 Data Header

6 Data Payload

7 DCS Additional Block Write Payload

8 DCS Reply Additional Block Read Payload

9-15 Reserved

Table 6.2: Packet Type values.

Detector Control System Packets

DCS Request packets are queued for transmission to the ROCs on DMA channel 1.
The DCS Reply packets generated by the ROCs in response to the DCS Request
packets are then transferred from the DTC to the TDAQ server via DMA channel
1. The DCS Request packet format is specified as follows (table 6.3):

DCS Request Packet

K28.0 D0.y

Valid Reserved ROC Link ID [10:8] Packet Type (0x0) Hop Count [3:0]

Block Op Packet Count [15:6] Reserved [5:4] Op Code [3:0]

Op1 Address [15:0]

Op1 Write Data [15:0] or Block Op Word Count [15:0]

Op2 Address [15:0] or Block Write Data0 [15:0]

Op2 Write Data [15:0] or Block Write Data1 [15:0]

Reserved or Block Write Data2 [15:0]

CRC high CRC low

Table 6.3: DCS Request Packet

The Op Code in the DCS Request Packet is defined as follows (table 6.4):

DCS Reply Packet

6.2. COMMUNICATION PROTOCOL 81

Bit Position Definition

1:0 0 := Read(s), 1:= Write(s), 2:= Block Read, 3:= Block Write

2 Double Operation

3 Request Acknowledgement

Table 6.4: Op Code in the DCS Request Packet

K28.0 D0.y

DMA Byte Count High DMA Byte Count Low

Valid Reserved ROC Link ID [10:8] Packet Type (0x4) Hop Count [3:0]

Block Op Packet Count [15:6] Status [5:4] Op Code [3:0]

Op1 Address [15:0]

Op1 Read Data [15:0] or Block Op Word Count [15:0]

Op2 Address [15:0] or Block Read Data0 [15:0]

Op2 Read Data [15:0] or Block Read Data1 [15:0]

Reserved or Block Read Data2 [15:0]

CRC high CRC low

Table 6.5: DCS Reply Packet

82 CHAPTER 6. SERDES

Data Stream Packets

Data stream packets are queued for transmission to the ROCs on DMA channel 0.
The Data Reply packets generated by the ROCs in response to the Data Request
packets are then transferred from the DTC to the TDAQ server via DMA channel
0.

Heartbeat Packet

K28.0 D0.y

Transfer Byte Count High Transfer Byte Count Low

Valid Reserved ROC Link ID [10:8] Packet Type (0x1) Hop Count [3:0]

Event Window Tag byte 1 Event Window Tag byte 0

Event Window Tag byte 3 Event Window Tag byte 2

Event Window Tag byte 5 Event Window Tag byte 4

Event Mode Byte 1 Event Mode Byte 0

Event Mode Byte 3 Event Mode Byte 2

Delivery Ring RF Marker TDC [15:8] Event Mode Byte 4

CRC high CRC low

Table 6.6: Heartbeat Packet (broadcast)

The Heartbeat Packet format is similar to the DCS Request Packet, but it
is a broadcast packet. As such, all ROC modules accept the packet as well as
decrement the Hop Count and transmit the packet to the next ROC unless the
Hop Count is zero. The DTC should always populate the Hop Count field with
the max Hop Count for the link. This is to keep the last ROC in the link from
transmitting the Heartbeat Packet back to the DTC module. Referring to the
example above, in a link with six ROCs, the maximum number of hops is five. The
DTC should populate the Hop Count field with the number five in this case. The
packet contains ROC Readout Request information specific to the Event Window.
During on-spill, the Delivery Ring RF Marker TDC 8 bit field is an unsigned value
time prediction (in units of 800 MHz - 1.25ns periods) of the o↵set position of the
Delivery Ring Marker with respect to the start of the Event Window, which is
specified by the rising edge of 40 MHz - 25 ns System Clock and the Event Window
Marker. During o↵-spill, the TDC value will be 0. The Heartbeat Packet source
is the CFO and contains Event Window specific data that varies from one Event
Window to the next. Data for each Event Window is stored in the CFO Heartbeat
Information Table in CFO memory. This Table may be static during a run or may
be configured over the PCIe on a per Super Cycle basis. The Heartbeat Packet
contains the Event Window Tag, along with partition information, in the form
of the Event Window Mode, needed to configure the ROCs for the next Event
Window, which is specified to begin on the next Event Window Marker. This
information is used to control event reconstruction/filtering, ROC data taking,
and ROC settings that must be synchronized to a specific µBunch (synchronous
resets, digitization enable/disable, zero-suppression enable/disable, calibration

6.2. COMMUNICATION PROTOCOL 83

signal injection, live gate expansion, etc.). Heartbeat packets can also be used
to synchronize commands to precise times within a µBunch, by specifying the
ROC internal timestamp (time o↵set from the start of the µBunch). This would
be used, for example, to request calibration signal injection at a particular data
sample time. In this case, the partition number in the Readout Request packet
indicates that it is a calibration event and another field in the packet dynamically
selects the internal timestamp.

Data Request Packet

K28.0 D0.y

Transfer Byte Count High Transfer Byte Count Low

Valid Reserved ROC Link ID [10:8] Packet Type (0x2) Hop Count [3:0]

Event Window Tag byte 1 Event Window Tag byte 0

Event Window Tag byte 3 Event Window Tag byte 2

Event Window Tag byte 5 Event Window Tag byte 4

Reserved Reserved

Reserved [15:8] Debug Type [7:4] Reserved [3:1] Debug[0]

Reserved [15:11] Debug Packet Count [10:0]

CRC high CRC low

Table 6.7: Data Request Packet

The Data Request Packet format is similar to the Heartbeat Packet format,
but it is not a broadcast packet. The Debug field is a single bit field, with ‘1’
indicating to ROCs that this is a data request for debugging purposes. If the
Debug bit is high, then the Debug Packet Count field indicates the number of
debug data packets requested from the specified ROC. The Debug Type field
indicates the debug packet type desired.

Data Header Packet

The 8 bit Data Packet Format Version number is intended to be a persistent
mapping to a particular packet type for the duration of the experiment, so that
data can be decoded even if packet definitions change in the future. The Packet
Count 11 bit field is a count, 0 to 2047, indicating the number of Data Payload
packets to follow the Data Header packet. The Subsystem ID 3 bit field is defined
for each detector subsystem (0 = Tracker, 1 = Calorimeter, 2 = CRV, 4 = STM,
5 = ExtMon).

84 CHAPTER 6. SERDES

K28.0 D0.y

Data Block Byte Count High Data Block Byte Count Low

Valid Reserved Subsystem ID [10:8] Packet Type (0x5) ROC Link ID [3:0]

0b00000 Packet Count [10:0]

Event Window Tag byte 1 Event Window Tag byte 0

Event Window Tag byte 3 Event Window Tag byte 2

Event Window Tag byte 5 Event Window Tag byte 4

Data Packet Format Version [15:8] Status [7:0]

Event Window Mode [15:8] DTC ID [7:0]

CRC high CRC low

Table 6.8: Data Header Packet

6.2.2 Firmware Structure

The simple idea behind communication is to interpret packets sent by the DTC
and set the controls for the data flow. As seen, XCVR decodes data and recover
the 200 MHz clock distributed to all the logic.

The block diagram in figure 6.7 shows an overview of the firmware. The
concept behind the system is “dividi et impera”: each block takes care of a
task in the command interpretation and accomplishing of DTC request and it
is accessible by a standard interface on a bidirectional bus. Main blocks are
Forward Detector, Command Handler, Roc Monitor and Packet Sender, while
other blocks are used as storage of data and management of controls (e. g.
FIFOs). Forward Detector, Command Handler and Packet Sender interfaces to
Roc Monitor, which implements the slow protocol which allows the register access.
Each main component of the ROC handles data requests and makes decisions
using state machines. Below are described the state machines and the role of the
main components.

Forward Detector

Forward detector (figure 6.8) is the first block that receive packets, so it is the one
responsible for routing and forwarding. It uses two clocks: EPCS RXCLK, that
is the RX Serdes Clock at 200 MHz, and ALGO CLK, the Roc Monitor Slow
Control Clock at 40 MHz. It interfaces with Receive FIFO and Forward FIFO,
with Roc Monitor, with 8b10b CorePCS and with a CRC calculation block. It
is also responsible for detection of markers and for retransmission. First task of
Forward Detector is to check if XCVR is locked; once it is locked, it sets all latches
and clear all register and variables. After this general reset, Forward Detector
is ready to receive request packet as RX DATA. First of all, it distinguishes
markers from actual data packets. Another more in-depth section will be devoted
to the markers later in this chapter.

Focusing on the packets and following block diagram in figure 6.8, from a
Reset state, the machine goes to an Idle state if no signals or variables are in

6.2. COMMUNICATION PROTOCOL 85

K28.0-D0.y Packet Type

0x1C00 DCS Request Packet

0x1C01 Readout Request Packet

0x1C02 Data Request Packet

0x1C10 Event Marker

0x1C11 Clock Marker

Table 6.9: Packet Type values.

Packet Type Value

DCSRequest 0

Heartbeat 1

DataRequest 2

DCSReply 4

DataHeader 5

DataPayload 6

DCSWritePayload 7

DCSReadPayload 8

Table 6.10: Packet Type values.

an inappropriate status. The Idle state identifies the start of a valid packet
and retrieve information about the packetType as shown in table 6.9. Data are
forwarded to the Receive FIFO and to the Forwad FIFO and machine goes to
Start state.

Start state is necessary to ask for the CRC calculation. About CRC a more
in-depth section will be devoted later in this chapter. Once the CRC is enabled,
next state is the Header state.

In the Header state the body Packet Type and the Hopcount of the packet
are retreived. Packet types with they correspondent value are described in 6.10:

For certain packets, like DCS Request, Heartbeat and Data Request, the
Hopcount is decremented. For packet which should be forwarded, so the one
with Hopcount zero and for DCS Reply, DCS Read Payload, Data Header and
Data Payload, the Write Enable of the Forward FIFO is set to one and the state
changes to Body. In state Header, destination of the packet is also checked and
there is a double check between the body Packet Type and the header Packet
Type. From this state on, packets are written inside the FIFOs, ready to be read
by other blocks like Command Handler and Packet Sender.

The last state is the CRC, where the last two byte of the packet are matched
with the calculated CRC. If they match the packet is not corrupted, otherwise
Forward Detector asks for a retransmission. About CRC and Retrasmission, a
section is dedicated later.

As all other blocks in the firmware, Forward Detector manages error detection

86 CHAPTER 6. SERDES

Marker Reversed Type

0x1C10 0x1CEF Clock Detected

0x1C11 0x1CEE Event Detected

0x1C12 0x1CED Loopback Mode Detected

0x1C13 0x1CEC DTC Error

0x1C14 0x1CEB DTC Error

0x1C15 0x1CEA Retransmission Request

Table 6.11: Markers code and value.

and is supplied by an interface to Roc Monitor. It provides use of registers; about
how the interface is built, Roc Monitor is the reference section. Important registers
in Forward Detector are: writing 1 at address 1, start a reset pulse, writing at
address 3 fill a dummy register which can be read at address 26; register 0 returns
the status of Forward Detector, register 1 returns errors, register 2 returns the
Packet Type; registers from 5 to 13 return information about marker o↵sets and
registers from 20 to 25 return counters.

Markers

Communication protocol provides both Packet and Markers. Markers are special
character used to accomplish specific task. In this firmware are defined 6 di↵erent
markers as specified in the following table (6.11): Markers are necessary because
they set the environment in which the Packet Protocol works. Each of them is
in-depth explained in other section of this document, but the operation is common.

DTC sends Markers to the ROCs and ROCs can send them back. To enhance
robustness, DTC sends double markers this way: first word is the Marker and
second word is the 8 LSB of Marker reversed. On the receiving side, ROC is
able to detected both double Markers and one Marker. If only one of the double
Markers is detected, an error flag is raised (figure 6.9). K-characters enable
Markers identification. An important feature is the ability to recognize both
normal than flipped data, also if Markers.

Once a Marker has been identified, the Forward Detector remains in the Idle
state: Markers are meant to be used like flags, for example aRetransmissionRequest
marker enable a signal forwarded to Packet Sender.

Command Handler

Command Handler (figure 6.11) handles DCS Request and Data Packet Request.
This means that is responsible for the decoding of the DCS packets and for the
communication with the DDR interface.

It is clocked by the 40 MHz ALGO CLK. It interfaces with the Receive FIFO,
the DCS Response FIFO, the Response FIFO, the DCS Receive FIFO and with
Roc Monitor.

Referring to the state machine in figure 6.10, after a fabric reset the state is
Reset and goes immediately to Idle. The Idle state, if the FIFO is not empty,
start reading commands. Commands are read from Receive FIFO where Forward
Detector writes packets. If there are commands to be read, the state changes from
Idle to Rcv, in which decisions are taken by the Packet Type: if the Packet Type

6.2. COMMUNICATION PROTOCOL 87

is zero then it is a DCS Request, if the Packet Type is one then it is a Readout
Request and it is necessary to acquire the timestamp to read, if the Packet Type
is two it is a Data Request and it is necessary to acquire the timestamp to return
data. From Rcv there are three possible state changes corresponding to the Packet
Type: DcsReq, ReadReq and DataReq. From each state there is the possibility
to change to a Drain state when error occurs.

A Data Request can be handled in a debug mode or not. SERDES does
not draw on memory to retrieve actual data collected from the detector. It only
provides the interface to the DDR3 Interface module for the DRAC and DRAC
firmware. Data are simulated and Command Handler manages how to pack up
them. When not in debug mode, next state from DataReq is DataReqHeader.
Here the header packet is generated and written in Response FIFO. Next State is
DataReqDataRead, where fake data are sent. In case of debug mode, as shown
in figure 6.12, next state from DataReq is DbgData and then DbgDataHdrGen,
where is generated a debug Data Header, and at the end DbgDataGen. This
mode is necessary to test the SEU SRAM and the SEU DDR3.

A DCS Request is handled entering in the DcsReq state. First the Op Code
(table 6.8) and the address are identified to know the type of DCS request once it
is captured. Depending on the code the request can be a read, a write, a block
read or a block write and the operation can be single or double. Interpreting
request is done scanning bytes of the DCS Request packet. Some information can
be retrieve from the first byte, other from the following. For example the first
byte distinguish reading and writing, but only the third one inform if it is a single
or a double operation. Scanning bytes allows to define variables which drives the
behavior of the state machine. Without going into too much detail, in figure 6.10,
each change of state can be follow. Both reading and writing rely on DCS Receive
FIFO. DCS Receive FIFO has an interface to Roc Monitor which is responsible for
access to register and store replies in DCS Response FIFO. From DCS Response
FIFO, Command Handler retrieves replies and sends them to Response FIFO.
The Ack state is necessary to handle the DCS Reply Ack Packet.

Command Handler submits the same interface to Roc Monitor as Forward
Detector. Reading corresponding register is possible to acquire information about
the timestamp on packets.

As all other blocks in the firmware, Command Handler manages error detection.
In vector errors are coded: undefined packet type received error, invalid data
readout timestamp error, been to drain state error, invalid packet format error
and read timeout error.

Roc Monitor

Roc Monitor (figure 6.13) gives an APB Advanced Peripheral Bus interface for
all blocks in the firmware and handles user space addressing. It is clocked by the
40 MHz ALGO CLK to provide the Slow Control Network. Slow Control consists
in all these signals which allow status information retrieving. At Packet level it
manages the DCS Request, so it accomplish registers reading and writing. There
are two di↵erent register access: one directly on the Roc Monitor registers and
one in other block’s registers. The second one is called Block Reading and Block
Writing and is performed by defining a user space.

Forward Detector, Command Handler and Packet Sender connects to Roc
Monitor via the following 16 bit signals:

88 CHAPTER 6. SERDES

ALGO CLK : in std logic;
ALGO RESET : in std logic;
ALGO ADDR : in std logic vector(gAPB DWIDTH-1 downto 0);
ALGO WDATA : in std logic vector(gAPB DWIDTH-1 downto 0);
ALGO RDATA : inout std logic vector(gAPB DWIDTH-1 downto 0);

Table 6.12

signal locAddr : unsigned(ALGO LOCADDR DWIDTH-1 downto 0);
signal wAddr : unsigned(ALGO WADDR DWIDTH-1 downto 0);
signal rAddr : unsigned(ALGO RADDR DWIDTH-1 downto 0);
signal wData : std logic vector(ALGO WADDR DWIDTH-1 downto 0);
signal algo rdata sig : std logic vector(gAPB DWIDTH-1 downto 0);
signal we : std logic;

Table 6.13

ALGO ADDR defines both user space and register address this way: ALGO ADDR[7:0]
identifies the block, ALGO ADDR[15:8] identifies resister address.This way is
possible to defines 256 block each with 256 di↵erent registers. ALGO WDATA
and ALGO RDATA are 16 bit data bus.

Each block submits the template interface to Roc Monitor defined as follow:
locAddr is extracted by ALGO ADDR as the 8 LSB bits and is the block

identifier. It is compared to ALGO LOC ADDR to address the block. Each block
has a di↵erent ALGO LOC ADDR, so it is a unique identifier.

wAddr also is extracted by ALGO ADDR as the 8 MSB bits. It represents
the write address. wAddr is used to setup the read address rAddr. rAddr is
defined writing it at wAddr zero. Data are wData that is ALGO WDATA[14:0]
while the MSB of ALGO WDATA is the write enable. algo rdata sig is simply
data read in registers and is ALGO RDATA.

Packet Sender

Packet Sender (figure 6.15) is responsible for the transmission and retransmission
of packets.

It is clocked by the 200 MHz EPCS TXCLK and use the 40 MHz ALGO CLK
to interface with Roc Monitor. It interfaces with the Response FIFO and the
Forward FIFO and with a CRC calculation block.

Referring to figure 6.14, from a Reset state, Packet Sender goes to an Idle
state. If Forward FIFO is not empty, it can forward the packet, so it enters in
the Fwd state, otherwise it checks if a retransmission request occurs and enters
in the WaitForRetransmitData state. Retransmission feature is discussed below.
If there are packets to send, so if Response FIFO in not empty, it changes state
to WaitForRespData. There is also a Dbg state which handles debug packet
generation. State WaitForRespData needs to decide if grab or not the header
depending on the packet to forward. In one clock cycle, the new state is Resp,
which handles sending packet from Response FIFO. The first word of the sent
packet contains its index and a value distinguishing the Packet Type. Depending
on the Packet Type, in state Resp is assembled the packet to be sent.

Packet Sender submits the same interface to Roc Monitor as Forward Detector.

6.2. COMMUNICATION PROTOCOL 89

Reading corresponding register is possible to acquire information about packets
like the index, the type and the source.

6.2.3 Packet Managing

As already described, DTC can perform DCS Request and Data Packet Request.
Data Request deals with data coming from event detection. When an event occurs,
data about the event are collected and stored inside memory and retrieved when
the TDAQ is ready to process them. DCS Request deals with monitoring and
control of boards. DCS Requests translates as reads and writes of ROC’s internal
registers.

Following is described how firmware handles these Requests and how Retrans-
mission is implemented.

Read and Write Request

There are several types of Read and Write Request: single, multiple and Block.
They are all based on the single, that is following described. Multiple ones are
simply request with incremental adressing while Block Request deals with the
user space and the Block firmware adressing.

A Read request is a DCS request: the packet is described in figure 6.3 and is
composed by 10 words of 16 bits. The Op Code distinguishes the Read request
and the Operation Address defines the address to be read. The request is handled
by Forward Detector, which forward the packet to the Receive FIFO. On the
Receive FIFO the first two words (K28.0 and D0.y and DMA count) and the last
one (CRC) are discarded. Once the entire packet is written inside the FIFO, it
results not empty and Command Handler changes his state from Idle to Received.
On the Received state it interprets the Op Code and enters in the DCS Request
state. On the DCS Reveice FIFO is written the address to be read. DCS Request
are handled by Roc Monitor. It extracts the address as roc mon addr and return
the read data as apb read data. Data and address are stored inside DCS Response
FIFO and read by Command Handler. Command Handler packs up the reply
with the read data and send that to the Response FIFO where data are read and
sent out by Packet Sender.

A Write request is similar to a Read request because it is still a DCS request:
the packet is described in figure 6.3 and is composed by 10 words of 16 bits. The
Op Code distinguishes the Write request and the Operation Address and the
Operation Data define the address and the data to be written. The request is
handled by Forward Detector, which forward the packet to the Receive FIFO.
On the Receive FIFO the first two words (K28.0 and D0.y and DMA count) and
the last one (CRC) are discarded. Once the entire packet is written inside the
FIFO, it results not empty and Command Handler changes his state from Idle
to Received. On the Received state it interprets the Op Code and enters in the
DCS Request state. On the DCS Reveice FIFO is written the address and the
data. DCS Request are handled by Roc Monitor. It extracts the address as
roc mon addr and data as roc mon data.

Block Read and Block Write Request

“Block” refers to VHDL Block inside the firmware and a Block Request allows to
read and write registers only defined inside that parts of the firmware. In particular

90 CHAPTER 6. SERDES

are defined as Block Forward Detector, Packet Sender and Command Handler.
They divide the user space. User space is addressed by ALGO LOC ADDR,
a constant vector of 8 bit that gives space to 256 blocks. A Block Request is
performed relying on single Read and Write Request, so the path through the
di↵erent Blocks and FIFO is the same, the di↵erence is the sequence of them that
allows to perform the Block Request. Performing a Block Write Request relies on
a Double Write. Operations are:

1. Writing on address 12 of Roc Monitor that corresponds to write inside
algo adress sig. algo adress sig is the ALGO ADRR[15:0] routed to all
Blocks in the firmware. ALGO ADRR[7:0] addresses Blocks and ALGO ADRR[15:8]
addresses registres inside that Block. For example, writing 0308 at address
12 means addressing register 3 in Block 8, that is Forward Detector.

2. Writing on address 13 of Roc Monitor, that contains algo wdata, data to be
written inside the address specified in the previous step.

algo wdata is routed to ALGO WDATA. ALGO WDATA is both data as
ALGO WDATA[14:0] and write enable as ALGO WDATA[15]. So actual data
written inside Block register are 15 bit long.

Performing a Block Read Request relies on a Double Write and a Read.
Operations are:

1. Writing on address 12 of Roc Monitor that corresponds to write inside
algo adress sig. ALGO ADRR[7:0] addresses Blocks and ALGO ADRR[15:8]
addresses registres inside that Block. It is necessary because it allows to
specify rAdress, that is the register to be read. Access to rAdress is allowed
writing inside register 0 of the desired Block. So the right sequence is write
inside 12 algo adress sig = Block to be read. For example, for Forward
Detector it is algo adress sig = 0008. This is because the register to write
inside Block ALGO ADRR[15:8] is 0.

2. Writing on address 13 of Roc Monitor, that contains algo wdata, register
to be read inside the Block specified before. For example, to read address
26 decimal in Forward Detector, it is necessary write 1A hexadecimal on
address 13 of Roc Monitor.

3. Read from address 22 of Roc Monitor, that contains ALGO RDATA.

Heartbeat and Data Request

A Data Request occurs when the TDAQ is ready to process the event. Each Data
Request is preceded by an Heartbeat. The Heartbeat Packet source is the CFO
and contains Event Window specific data that varies from one Event Window to
the next. It contains the Event Window Tag, along with partition information, in
the form of the Event Window Mode, needed to configure the ROCs for the next
Event Window, which is specified to begin on the next Event Window Marker.
The packet is described in figure 6.6: it is composed by 10 words of 16 bits. The
request is handled by Forward Detector, which forward the packet to the Receive
FIFO. On the Receive FIFO the first two words (K28.0 and D0.y and DMA count)
and the last one (CRC) are discarded. Once the entire packet is written inside
the FIFO, it results not empty and Command Handler changes his state from Idle

6.2. COMMUNICATION PROTOCOL 91

to Received. On the Received state it interprets the Packet Type and enters in
the Read Request state. In this state the Event Window Tag is acquired and the
state is Done.

The packet is described in figure 6.7: it is composed by 10 words of 16 bits.
The request is handled by Forward Detector, which forward the packet to the
Receive FIFO. On the Receive FIFO the first two words (K28.0 and D0.y and
DMA count) and the last one (CRC) are discarded. Once the entire packet is
written inside the FIFO, it results not empty and Command Handler changes his
state from Idle to Received. On the Received state it interprets the Packet Type
and enters in the Data Request state. Data Request state acquires the Event
Window Tag. Next state is Data Request Header; here are set signal to ask data
from the DDR3 Memory and is generated the packet header to be sent back to the
DTC. The header requires how many data are in the requested Event Window,
the Event Window Tag and the status. The header is passed to Response FIFO
and then sent out by Packet Sender. Command Handler manages the forward of
data from the DDR3 Memory to the DTC stacking packet of 10 words of 16 bit
of data.

Data Retransmission

The goal of data retransmission is to enhance robustness of the DTC-ROC protocol
in both directions and provides transmission of data packets if a packet error is
detected. ROCs handle requests from the TDAQ by identifying type, forwarding
to the right path and correctly replying. These tasks are managed by the three
main blocks: Forward Detector, Command Handler e Packet Sender. Forward
Detector analyzes and decides the type of request and forwards it to Command
Handler. Command Handler interprets the request and decides which reply, DCS
or data packet, to send to the DTC and Packet Sender sends it. In this path finds
place the Data Retransmission block. Before transmission, each reply is stored in
a dual-port RAM by counts of 8. When ROC receives a retransmission request,
stored data are read and sent to DTC.

CRC - Cyclic Redundancy Check

Both DTC and ROC are able to detect packet errors. Each packet includes
a 16 bit trailing Cyclic Redundancy Check word. CRC is an error-detecting
code commonly used in digital networks and storage devices to detect accidental
changes to raw data. Blocks of data entering these systems get a short check
value attached, based on the remainder of a polynomial division of their contents.
CRCs are so called because the check (data verification) value is a redundancy
(it expands the message without adding information) and the algorithm is based
on cyclic codes. A CRC is used because it is simple to implement in binary
hardware, easy to analyze mathematically, and particularly good at detecting
common errors caused by noise in transmission channels. The CRC polynomial
used is: crc[15 : 0] = 1 + x3 + z7 + x12 + x14 + x16 and it is calculated on the
entire packet except of the K/D character header.

DTC calculates and includes CRC in each generated request. ROC receives the
packet, calculates the CRC on that packet and compares it to the CRC received
from the DTC. If the two CRCs do not match, the packet is corrupted. The same
is performed in the opposite direction.

In ROC firmware there are two CRC calculation blocks, as shown in figure
6.16. The first one, RX ForwardDetector, calculates CRC on the packet received

92 CHAPTER 6. SERDES

from the DTC. Inputs of the block are the CRC enable (CRC EN) and the
packet from the DTC (DATA IN[15:0]) and the output is the calculated CRC
(CRC OUT[5:0]). The enable and the CRC OUT are sent and received by Forward
Detector. Forward Detector compares the calculated CRC and the received one
and decides whether or not for a retransmission. The other CRC calculation block,
TX PacketSender, calculates CRC on packets sent by Packet Sender, which also
enables the calculation (CRC EN). The calculated CRC is merged to the packet
and sent to the DTC which will evaluate the need or not for a retransmission.

Error Detection

From the perspective of ROC firmware, when the sent CRC and the calculated
by DTC CRC do not match, a retransmission request comes. A retransmission
request is interpreted by the Forward Detector as a marker. Marker are always
at least 2 words of 16 bit packet. While the first word is the actual marker,
the second word is used to enhance robustness: it is composed by the 8 least
significant bit of the first word reversed. In the case of retransmission request the
packet is 3 words long with the first word 1C15 hexadecimal, the second one 1CEA
hexadecimal and the third one is the RETRANSMIT SEQUENCE REQ, which
numerates the last uncorrupted packet received. When the DTC sends to the
ROC this marker, Forward Detector raises a flag of RETRANSMIT DETECTED
with the corresponding RETRANSMIT SEQUENCE REQ number and forwards
this information to Packet Sender.

RAM Storage

Each transmitted packet is stored in a dual-port RAM of 128 bits of depth
and 16 bit of width. Packet Sender has the task of managing the RAM and the
retransmission itself. In the first place it is responsible for the storage of data: it
addresses the RAM and enables writing and reading.

RAM is 128 rows depth, so it can hold up to 8 packets. The addressing provides
that the 3 most significant bits of the address are the index of the packet and the
4 least significant bits scans the words of the packet. As for the writing, this task
is carried out by the signals resp packet count and retransmit word count latch :

RAM WADDR <= resp packet count(2downto0)&retransmit word count latch

Signal resp packet count is the counter of how many packets are sent. It
increases both for block sent packets that for multiple sent packets. For example,
if DTC asks for a block read, it will increase of how many packet was asked as
block number; if DTC sends two di↵erent register read request, it will increase
of two. It always increases and is set to zero only when a reset occurs. Signal
retransmit word count latch is also a counter which scans the words in the packet.
It is only used to address RAM.

As for the reading, the same strategy of addressing is used: the 3 most
significant bits of the address are the index of the packet and the 4 least significant
bits scans the words of the packet. In this case the responsible signals are
retransmit packet req unsignedandretransmit read count:

RAM RADDR <= retransmit packet req unsigned&retransmit read count

Signal retransmit packet req unsigned stores the index of the packet DTC is asking
for. ROC retransmits packet from that index on, indeed Retransmit packet req unsigned
increases each retransmitted packet until it reaches the value of the last sent

6.2. COMMUNICATION PROTOCOL 93

packet before the retransmission request. Signal retransmit read count is also a
counter which scans the words in the packet. It is only used to address RAM.

Packet Sender enables RAM writing whenever a packet is sent and disables it
during retransmission.

Each packet has an index (referred as TX DATA num in the waveform 6.19):
this index is in the header of each packet and it is used by the DTC to know
which number of packet require in case of retransmission request. Without retrans-
missions, that index match with resp packet count, while when a retransmission
occurs, that index matches with the index of the last sent packets before retrans-
mission. In case of retransmission, resp packet count will always be greater of the
index on packet because the actual number of the total sent packets is the sum of
transmitted and retransmitted packet.

State Machine

Each main component of the ROC handles data requests and makes decisions
using state machines. Retransmission is a sequence in the Packet Sender state
machine. The main signals involved are:

retransmit det sig : std logic;
retransmit packet req : std logic vector(2 downto 0);
retransmit packet req unsigned : unsigned(2 downto 0);
sendCnt : unsigned(4 downto 0);
retransmit read count : unsigned(3 downto 0);
retransmit word count : unsigned(3 downto 0);
retransmit word count latch : unsigned(3 downto 0);
retransmitCnt : unsigned(7 downto 0);
rsp packet for retransmit : unsigned(2 downto 0);
retransmit txdata reg : std logic vector(15 downto 0);

First of all, retransmit det sig and retransmit packet req are the latch that
sample RETRANSMIT DETECTED and RETRANSMIT SEQUENCE REQ
from Forward Detector. When a retransmission request occurs, retransmit det sig
is set to 1 and retransmit packet req stores the index of packet DTC is asking for.
Retransmit txdata reg are data replies for DTC and are send to the RAM too.

As shown in the state diagram 6.20, starting from an Idle state, Packet Sender
enters in a state of WaitForRetransmitData when retransmit det sig is set to 1, so
when a retransmission request occurs. SendCnt is set to 1 and retransmitCnt is set
to hexadecimal “FF”. It will be the counter that will manage the retransmission.
In WaitForRetransmitData, retransmitCnt starts to decrease and gives timing to
the following operation: retransmit packet req unsigned takes index of the packet
to retransmit, the manual reset is handled, retransmit read count is cleared and
the transaction signal is updated to allow the state change to packetRetrasmit.
In PacketRetransmit RAM is addressed and read, so that data can come out;
if the retransmission asks for multiple packets, next state is PostRetransmit
and then back to PacketRetransmit in an iterative way, otherwise, next state is
DoneRetransmit. Signal retransmit read count handles access to the RAM during
the reading. When the retransmission is done, the last state is Idle.

Timing

An important requirement is the speed of retransmission. In a block read,
a reply is sent every 1275 ns. During the retransmission, retransmitted replies
maintain almost the same rate: 1270 ns. Read data waiting for the end of the

94 CHAPTER 6. SERDES

retransmission are considered pendent. So, when the retransmission is done,
pending data are transmitted every 90 ns. When all pending data are transmitted,
replies start again with a rate of 1275 ns. The worst case in timing constraint
is a retransmission request of 8 packets; retransmission request cannot be for
more than 8 packets because of the depth of the RAM. Sending 8 packets requires
8 ⇤ 50ns+7 ⇤ 1225ns = 8975ns, where, as shown in figure 6.22, 50 ns is the length
of a packet of 10 words and 1225 ns is the time between two packets. Retransmit 8
packets and send the 8 pending data requires 8⇤1270ns+7⇤90ns+50ns = 10480ns.
So, in the worst case, retransmission will take 10480ns� 8975ns = 1505ns extra
time.

Managment of the Reset

When a reset occurs, all signals are set to 0. This implies that the writing
address starts again from 1 and data are overwritten. Counters of transmitted
packet are cleared and the index in the header of TX DATA starts from 1. There
are two possible reset: FRABRIC RESET and a soft reset. The first one set
all signals and clear everything in the first interaction with the firmware after
the download on the FPGA. It only happens once. The second one is the one
capable to clear signals and registers when needed. It can be access by writing in
a dedicated register.

Referring to the soft reset there are 2 tricky scenarios: a retransmission request
right after a read request and a retransmission request after some read requests.
In the first scenario this is what happens: with the reset everything is set to
0, so the reply to the following read request is stored at address 1 of the RAM.
Before the reset, the writing address of the RAM could be any between 0 and
7, so the last sent reply before the reset could have any index between 0 and
7. For example a possible sequence would be: DTC asks for data, ROC replies
with packet number 4, a reset occurs, DTC asks for new data, ROC replies with
packet number 1. If DTC asks for a retransmission on packet number 1, it will
send as RETRANSMIT SEQUENCE REQ the last uncorrupted data it received,
that is 4. ROC then starts to retransmit packet from address 5 to address 1 of
the RAM, while in the correct behavior DTC should receive only packet number
1. First step to handle this event is to detect a condition which identify the
sequence “retransmission request after read request after soft request”. Soft reset
and FRABRIC RESET show the same e↵ects on signal, so it is not easy to isolate
the sequence. Signal rsp packet for retransmit stores the index of sent data and
it always increase unless is set to zero because of a reset. Monitoring this signal
gives a condition on the reset. Another condition is necessary to distinguish the
soft reset from the FRABRIC RESET. This condition is met using a latch on
rsp packet for retransmit which indicates an undefined value before a fabric reset
and the previous value of rsp packet for retransmit before a soft reset; with this
discrepancy is possible to build a conditional statement. When the sequence is
detected, a flag reset is raised. In WaitForRetransmitData flag reset is checked
and if it is high, retransmit packet req unsigned is forced to 1. This means that,
whenever RETRANSMIT SEQUENCE REQ is, ROC will always send data stored
in address 1 of the RAM.

The other tricky scenario is when, after a soft reset, there is a retransmission
request after some read requests. When the soft reset occurs, flag reset is high and
forces retransmit packet req unsigned to 1. This is a wrong behavior when the re-
transmission request actually asks for a correct RETRANSMIT SEQUENCE REQ.

6.3. ROCS SYNCHRONIZATION 95

It is necessary to set flag reset back to 0 when there is more than one read request.
The condition is met with a check on rsp packet count. When there is more than
one sent packet, so more than one read, flag reset is set to 0.

6.3 ROCs Synchronization

6.3.1 Loopback

All timestamping frontends extract a System Clock and start of Event Window
marker. Event Windows need to be synchronized: T=0 defines the start of a
Mu2e Event Window and occurs in response to each start-of-event-window marker.
Signals travel to di↵erent boards and through fibers and cables of di↵erent lengths
and they must line up the Event Window at timestamping front ends. To line
up Event Windows the approach is to delay each front end to match front end
with longest latency. Delay is determined calculating the Loopback signal. It
consists in determine the round trip time by sending a marker and returning it
many times and taking the average time. Once the timing path latency is known
for each front end, it is possible to calculate each front end’s delay o↵set define
as “longest timing path latency” minus “individual timing path”. At the start of
each run,the front ends can be configured to apply their own delta delay.

ROCs will extract a 200 MHz clock from the clock encoded data bitstream,
which will be used by the ROCs as the Reference Clock for timestamping data.
Scheme must accommodate links of di↵erent length and address phase di↵erences
between ROC FPGAs. Scheme must handle loss of lock on the links and need an
intrinsic precision of the Reference Clock at the ROCs better than 500 ps.

The ROC synchronization procedure provides measurement of the signal
propagation time through fibers and electronics by using the loopback technique
and, based on the loopback measurement, set coarse (5 ns) plus fine (250 ps)
delays at ROC to match the longest path. At the end of this procedure, T=0 (i.e.,
the beginning of the Event Window) will be synchronized across all ROCs with
an expectation of ± 250 ps.

6.3.2 Timestamping

To be completed.

96 CHAPTER 6. SERDES

Figure 6.2: Microsemi AVMPF300TS-20-NA. The board has an MPF300TS-
FCG484EES FPGA, a 1GbE interface w/PHY (VSC8531), a WiFi Module
(PAN9320), a Serdes SFP Cage, a DDR3 SDRAM (256Mx16), 64Mbit SPI Flash.

6.3. ROCS SYNCHRONIZATION 97

Figure 6.3: XCVR0 Interface and XCVR1 Interface.

Figure 6.4: Core PCS block diagram and I/O Signal Diagram.

Figure 6.5: Reference Clock, Transmit PLL and Transceiver Interface blocks in
SERDES Firmware.

98 CHAPTER 6. SERDES

Figure 6.6

Figure 6.7: Block diagram of the firmware which handles communication between
ROCs and DTC on the TDAQ.

6.3. ROCS SYNCHRONIZATION 99

Figure 6.8: State Machine inside Forward Detector and Libero block

Figure 6.9: Detection of markers: ROC is able to detect both double and single
markers, but when a single marker comes, ROC set an error flag.

100 CHAPTER 6. SERDES

Figure 6.10: State Machine inside Command Handler

6.3. ROCS SYNCHRONIZATION 101

Figure 6.11: Libero Block of Command Handler

Figure 6.12: State Machine of the Debug Mode in Data Request inside Command
Handler

102 CHAPTER 6. SERDES

Figure 6.13: Libero Block of Roc Monitor

6.3. ROCS SYNCHRONIZATION 103

Figure 6.14: State Machine inside Packet Sender

Figure 6.15: Libero Block of Packet Sender

104 CHAPTER 6. SERDES

Figure 6.16: Blocks in the firmware that handle CRC calculation.

Figure 6.17: Marker in Forward Detector which identify a retransmission request.
In this case, RETRANSMIT SEQUENCE REQ is 2.

Figure 6.18: Block diagram of the fimware involved in the retransmission.

Figure 6.19: RAM addressing: as RAM WADDR and RAM RADDR are shown
only the 3 MSB of the address that indexes the packet number

6.3. ROCS SYNCHRONIZATION 105

Figure 6.20: State diagram of retransmission

Figure 6.21: State changes: when a retransmission request is detected, state
goes from Idle to WaitForRetransmitData and the counter retransmitCnt starts
giving time. When each signal is set, state changes to postRetransmit where the
actual retransmission happens.

Figure 6.22: Timing specification in TX DATA

Figure 6.23: Waveform and timing of signals which handle the soft reset

106 CHAPTER 6. SERDES

Chapter 7

Appendix

7.1 Identify Instrumentor

Once created the HDL, the instrumentor [8] is used to define the specific signals
to be monitored. Saving the instrumented design generates an instrumentation
design constraints (idc) file and adds constraint files to the HDL source for the
instrumented signals and break points. The design is synthesized and then run
through the remainder of the process. After the device is programmed with
the debuggable design, the debugger is launched to debug the design while it is
running in the target system. The information required to instrument a design
includes references to the HDL design source, the user-selected instrumentation,
the settings used to create the Intelligent In-Circuit Emulator (IICE), and other
system settings.

The IICE parameters determine the implementation of one or more IICE units
and configure the units so that proper communication can be established with
the debugger. Multiple IICE units allow triggering and sampling of signals from
di↵erent clock domains within a design. Each IICE unit is independent and can
have unique IICE parameter settings including sample depth, sampling/triggering
options, and sample clock and clock edge. During the subsequent debugging phase,
individual or multiple IICE units can be armed.

The IICE parameters common to all IICE units defined for an instrumentation
include the IICE device family as defined by the synthesis tool, the communication
port and if optional skew-resistant hardware is to be used. All IICE units in a
multi-IICE configuration share these same parameter values. In this case the
device family is PolarFire. The Communication port parameter specifies the type
of connection to be used to communicate with the on-chip IICE. The connection
types used is builtin: indicates that the IICE is connected to the JTAG Tap
controller available on the target device.

The IICE type parameter is a read-only field that specifies the type of IICE
unit currently selected – regular (the default) or rtd (real-time debugging). The
Bu↵er type parameter specifies the type of RAM to be used to capture the on-chip
signal data. In this instrumentation is set to FPGA Memory. The Sample depth
parameter specifies the amount of data captured for each sampled signal. Sample
depth is limited by the capacity of the FPGAs implementing the design, but must
be at least 8 due to the pipelined architecture of the IICE. Sample depth can be
maximized by taking into account the amount of RAM available on the FPGA.
As an example, if only a small amount of block RAM is used in the design, then

107

108 CHAPTER 7. APPENDIX

a large amount of signal data can be captured into block RAM. If most of the
block RAM is used for the design, then only a small amount is available to be
used for signal data. In this case, it may be more advantageous to use logic RAM.
In this instrumentation sample depth is 128.

The Sample clock parameter determines when signal data is captured by
the IICE. The sample clock can be any signal in the design that is a single-bit
scalar type. Care must be taken when selecting a sample clock because signals
are sampled on an edge of the clock. For the sample values to be valid, the
signals being sampled must be stable when the specified edge of the sample clock
occurs. Usually, the sample clock is either the same clock that the sampled
signals are synchronous with or a multiple of that clock. The sample clock must
use a scalar, global clock resource of the chip and should be the highest clock
frequency available in the design. The source of the clock must be the output
from a BUFG/IBUFG device. The Clock edge radio buttons determine if samples
are taken on the rising (positive) or falling (negative) edge of the sample clock.
The default is the positive edge.

The IICE Controller tab selects the IICE controller’s triggering mode. All of
these instrumentation choices have a corresponding e↵ect on the area cost of the
IICE.

7.2 Libero

Microsemi’s Libero SoC v12.1

Microsemi Libero System-on-Chip (SoC) [13]design suite is being used to
develop the firmware. The suite integrates industry standard Synopsys Syn-
plify Pro synthesis and Mentor Graphics ModelSim simulation with constraints
management, debug capabilities, and secure production programming support.

The Design Flow includes the following design steps:

• Create

• Constrain

• Implement

• Configure Hardware

• Program Design

• Debug Design

• Hando↵

First step consist in the project creation. Project specifications are listed in
the report 7.1.

The Design Report Tab lists all the reports available for the design, and
displays the selected report. Reports for the following steps are available for
viewing here:

• Project Summary

• Synthesize

7.2. LIBERO 109

Figure 7.1: Libero SoC Design Flow

• Place and Route

• Verify Timing

• Verify Power

• Programming (Generate FPGA Array Data, Generate Bitstream)

• Export (Pin Report, BSDL File)

Constraint Manager

Defined project specifications, next step is the detection of timing constraints [12].
Constraint files are as important as design source files; they are used throughout
the FPGA design process to guide FPGA tools to achieve the timing and power
requirements of the design. For the synthesis step, SDC timing constraints set the
performance goals whereas non-timing FDC constraints guide the synthesis tool
for optimization. For the Place-and-Route step, SDC timing constraints guide
the tool to achieve the timing requirements whereas Physical Design Constraints
(PDC) guide the tool for optimized placement and routing (Floorplanning). For
Static Timing Analysis, SDC timing constraints set the timing requirements and

110 CHAPTER 7. APPENDIX

Family PolarFire
Device MPF300TS ES
Package FCG484
Speed Grade STD
Core Voltage 1.0V
Part Range EXT
Default I/O technology LVCMOS 1.8V
Restrict Probe Pins Yes

Table 7.1: Project specification.

design-specific timing exceptions for static timing analysis. Libero SoC provides
the Constraint Manager as the cockpit to manage the design constraint needs.
This is a single centralized graphical interface to create, import, link, check,
delete, edit design constraints and associate the constraint files to design tools
in the Libero SoC environment. The Constraint Manager allows to manage
constraints for SynplifyPro synthesis, Libero SoC Place-and- Route and the
SmartTime Timing Analysis throughout the design process. About Synthesis
Constraints, the Constraint Manager manages these synthesis constraints and
passes them to SynplifyPro: Synplify Netlist Constraint File (*.fdc), Compile
Netlist Constraint File (*.ndc), SDC Timing Constraints (*.sdc), Derived Timing
Constraints (*.sdc). About Place and Route Constraints, the Constraint Manager
manages these constraints for the Place-and-Route step: I/O PDC Constraints
(*io.pdc), Floorplanning PDC Constraints (*fp.pdc), Timing SDC constraint file
(*.sdc). The Constraint Manager manages the SDC timing constraints for Libero
SoC’s SmartTime, which is a Timing Verifications/Static Timing analysis tool.
SDC timing constraints provide the timing requirements (e.g. create clock and
create generated clock) and design-specific timing exceptions (e.g. set false path
and set multicycle path) for Timing Analysis.

Libero SoC manages four di↵erent types of constraints:

• I/O Attributes Constraints – Used to constrain placed I/Os in the design.
Examples include setting I/O standards, I/O banks, and assignment to
Package Pins, output drive, and so on. These constraints are used by Place
and Route.

• Timing Constraints – Specific to the design set to meet the timing require-
ments of the design, such as clock constraints, timing exception constraints,
and disabling certain timing arcs. These constraints are passed to Synthesis,
Place and Route, and Timing Verification.

• Floor Planner Constraints – Non-timing floorplanning constraints created
by the user or Chip Planner and passed to Place and Route to improve
Quality of Routing.

• Netlist Attributes - Microsemi-specific attributes that direct the Synthesis
tool to synthesize/optimize the, leveraging the architectural features of the
Microsemi devices. Examples include setting the fanout limits, specifying
the implementation of a RAM, and so on. These constraints are passed to
the Synthesis tool only.

7.2. LIBERO 111

Figure 7.2: Block diagram of the firmware on the DRAC. The main component
are the DDR Interface and TOP SERDES. One handles the memory and the
other manages commands. DIGI Interface handles data throughput from two
PolarFire FPGAs DIGI HV and DIGI CAL and the CORTEX MicroProcessor
provide user access and control.

Synthesize

Double-clicking Synthesize runs synthesis on the design with the default settings
specified in the synthesis tool. Opening the tool interactively, synthesis must be
completed from within the synthesis tool. The default synthesis tool included
with Libero SoC is Synplify Pro ME.

Synplify Pro ME is the default synthesis tool for Libero SoC. Synplify compiles
and synthesizes the design into an HDL netlist. The resulting *.vm files are visible
in the Files list, under Synthesis Files.

Should any errors appear after you click the Run button, you can edit the
file using the Synplify editor. Double-click the file name in the Synplify window
showing the loaded design files. Any changes you make are saved to your original
design file in your project.

112 CHAPTER 7. APPENDIX

Bibliography

[1] For the United States Department of Energy Fermi Research Alliance FRA,
ed. M2e Technical Design Report. 2014 (cit. on pp. 6, 13, 27).

[2] United States Department of Energy Fermilab. Accelerators. 2020. url:
https://fnal.gov/pub/science/particle-accelerators/index.html

(cit. on p. 5).

[3] United States Department of Energy Fermilab. Fermilab History. 2020. url:
https://history.fnal.gov/index.html (cit. on pp. 1, 5).

[4] United States Department of Energy Fermilab. Mu2e Experiment. 2020.
url: https://mu2e.fnal.gov/ (cit. on p. 4).

[5] Rick Kwarciany Glenn Horton-Smith Eric Flumerfelt. Trigger and DAQ
Architecture and Status. Mu2e Collaboration Meeting, Fermilab, United
States Department of Energy. 2019 (cit. on p. 45).

[6] INFN, ed. The Mu2e Calorimeter Final Technical Design Report. 2014
(cit. on p. 19).

[7] Microsemi. Synopsys Synplify Pro for Microsemi Edition - User Guide. 2016
(cit. on pp. 53, 67).

[8] Microsemi. TU0780 - Using Identfy ME with Libero SoC. 2019 (cit. on
p. 107).

[9] Microsemi. UG0676 User Guide PolarFire FPGA Memory Controller. 2019
(cit. on p. 61).

[10] Microsemi. UG0677 User Guide PolarFire FPGA Transceiver 5.0. 2019
(cit. on p. 73).

[11] Future Electronics - Microsemi. Avalanche Development Board User’s Guide.
2019 (cit. on pp. 69, 73).

[12] Future Electronics - Microsemi. UG0679 - User Guide: Timing Constraints
Editor Libero SoC v12.0. 2019 (cit. on p. 109).

[13] Future Electronics - Microsemi. UG0758 - User Guide: PolarFire FPGA
Design Flow Libero SoC v12.1. 2018 (cit. on pp. 53, 108).

[14] Vadim Rusu Monica Tecchio. The Tracker Readout Controller Specifications.
Fermilab, United States Department of Energy. 2018 (cit. on pp. 53, 54).

[15] Ryan Rivera Richard Kwarciany. Mu2e Command Fan-Out Module Hard-
ware User Guide, Mu2e-doc-5619. Fermilab, United States Department of
Energy. 2018 (cit. on p. 36).

[16] Ryan Rivera Richard Kwarciany. Mu2e Data Transfer Controller Module
Hardware User Guide - Mu2e-doc-4097. Fermilab, United States Department
of Energy. 2018 (cit. on p. 32).

113

114 BIBLIOGRAPHY

[17] Ryan Rivera Richard Kwarciany. TDAQ Timing Distribution Specification -
Mu2e-doc-7048. Fermilab, United States Department of Energy. 2018 (cit. on
p. 41).

[18] Ryan A. Rivera. Mu2e Detector Control System (DCS) Design and Specifi-
cation. Fermilab, United States Department of Energy. 2016 (cit. on p. 39).

[19] Ryan A. Rivera. Mu2e Online DAQ Software Status. Mu2e Collaboration
Meeting, Fermilab, United States Department of Energy. 2019 (cit. on p. 46).

[20] Vadim Rusu. Tracker Electronics. Fermilab, United States Department of
Energy. 2018 (cit. on p. 16).

[21] Samtec. Firefly Modules. 2020. url: https://www.samtec.com/optics/
optical-cable/mid-board/firefly# (cit. on p. 68).

[22] Monica Tecchio. Requirements for the mu2e Tracker Front End Electronics.
Michigan University. 2014 (cit. on p. 15).

[23] Ryan Rivera Tomonari Scott Miyashita. Mu2e Readout Controller Packet
Protocol - Mu2e-doc-4914. Fermilab, United States Department of Energy.
2019 (cit. on p. 79).

[24] J. Troska. Versatile Link Technical Specification - EDMS Document No.
1140665. CERN, Geneva, Switzerland. 2012 (cit. on pp. 35, 69).

[25] Wikipedia. 8b/10b. 2020. url: https://en.wikipedia.org/wiki/8b/
10b_encoding (cit. on p. 75).

[26] Xilinx. Integrated Logic Analyzer v6.2 - Vivado Design Suite: LogiCORE
IP Product Guide PG172. 2016 (cit. on p. 70).

