

Laser calibration system and lost muons correction in the g-2 experiment

Maria Domenica Galati

September 25th, 2019

Final Report

Supervisors: Anna Driutti, Marco Incagli

Maria Domenica Galati

Midterm Report

1. Laser Calibration System		
	000 000000 00000000	

The Muon g-2 experiment

The Muon g-2 experiment examines the precession of muons that are subjected to a magnetic field.

The main goal is to measure the muon anomalous magnetic moment, $a_{\mu} = (g - 2)/2$, to the unprecedented precision of 0.14 ppm.

1. Laser Calibration System		
	000 000000 00000000	

Experimental Technique

The experiment consists in filling a storage ring with polarized muons and measuring the anomalous precession via:

$$\omega_{a} = -\frac{e}{m_{\mu}}a_{\mu}B \tag{1}$$

This is achieved by measuring the modulation of

the rate of positrons produced by muon decays and the magnetic field inside the ring

1. Laser Calibration System		
•00000000	000 000000	

Calorimeters and laser calibration system

The positrons are detected by 24 calorimeter stations located along the storage ring.

Laser calibration system is used to:

- monitor the gain fluctuations
- ensure performance stability of the detectors throughout long data taking periods
- synchronize different detectors
- emulate the time distribution of the signals coming from muon decays

Laser calibration pulses are generated by 6 identical lasers, each one serving 4 calorimeters.

1. Laser Calibration System		
00000000	000 000000 00000000	

Laser operation modes: Standard

Laser calibration system can be used in:

• **Standard operation mode**: a regular pattern of laser pulses which are then used offline to calibrate the calorimeters.

1. Laser Calibration System		
00000000	000 000000 00000000	

Laser operation modes: Double-pulse

• **Double-pulse mode**: two consecutive laser pulses are sent to all crystals with a delay that can vary from 1 ns to several hundreds of μ s.

<u>Goal:</u> testing the calorimeter response to two or more consecutive particles and checking periodically the gain function for each of the 1296 crystals during data taking.

 \rightarrow Short Term Double Pulse: second pulse delayed by 0÷80 ns with respect to the first

1. Laser Calibration System		
00000000	000 000000 00000000	

Laser operation modes: Double-pulse

 \rightarrow Long Time Double Pulse: burst of pulses and test pulse with a delay in the 10÷20 $\mu {\rm s}$ range

2. Lost Muons 000000	3. MC analyses 000 000000 00000000		Backup 000
	2. Lost Muons 000000	2. Lost Muons 3. MC analyses 000000 000 000000 0000000000	2. Lost Muons 3. MC analyses References 000000 00000 0 0000000000000000000000

Asynchronous trigger

The Source Monitors purpose is to monitor the laser intensity event-by-event.

Each SM consists of:

- two PIN diodes, used to monitor the intensity of laser pulses (fast monitoring);
- one PMT to monitor PINs. Since the PMT response is not constant with HV and temperature variations, an Americium source is used as an absolute monitor (slow absolute monitoring).

Since Americium signals are asynchronous with respect to the fill, a dedicated trigger is needed.

	Laser	Calibration	System
0	2000	00000	

2. Lost Muons 000000 3. MC analyses 000 000000 00000000000 References O Backup 000

Reorganization of the trigger logic

Task: replacing the NIM logic of both the Americium and double pulse triggers with FPGA.

1. Laser Calibration System		
000000000	000 000000 00000000	

Installation of softwares:

- Microsoft .NET Framework
- Sci-Compiler
- Quartus Prime: necessary to compile the .vhdl file generated with Sci-Compiler
- CAENUpgrader: necessary to upgrade the FPGA firmware with the .rpd file generated with Sci-Compiler

1. Laser Calibration System 0000000€00	2. Lost Muons 000000	3. MC analyses 000 000000 000000000	Backup 000

Sci-Compiler was used to program the DT5495.

The input signals are from the PMTs of the SMs, the LCB and the DG.

The output signals are the triggers for the six lasers and a Logic OR to acquire the signals from SMs.

1. Laser Calibration System ○○○○○○○○●○	2. Lost Muons 000000	3. MC analyses 000 000000 000000000	Backup 000

What was done next:

- Test of the output signals amplitude and check the triggers signals with the oscilloscope.
- A change in the position of the inside jumpers of the FPGA was made: there was no documentation about the fact that impedences were not terminated at 50Ω .

1. Laser Calibration System

2. Lost Muons 000000 3. MC analyses 000 000000 0000000000 References O Backup 000

before ~1.8 V

after ~3 V

1. Laser Calibration System 0000000000	2. Lost Muons ●00000	3. MC analyses 000 000000 000000000	Backup 000

Lost Muons

Some of the muons are lost mainly because they hit the collimators or other materials after injection, curving inward and eventually being lost from the ring.

Lost muons can produce a systematic effect in the measurement of ω_a .

1. Laser Calibration System 0000000000	2. Lost Muons 0●0000	3. MC analyses 000 000000 0000000	Backup 000
		00000000	

Lost muons have to be measured and taken into account in the final ω_a fit (3). This correction can be parametrized with the multiplicative factor $\Lambda(t)$:

$$\Lambda(t) = 1 - K_{LM} \int_0^t L(t') \, e^{t'/\tau} dt'$$
(2)

$$N(t) = N_0 e^{-t/\tau} \left[1 - A\cos(\omega t + \varphi) \right] \longrightarrow N(t) = N_0 e^{-t/\tau} \Lambda(t) \left[1 - A\cos(\omega t + \varphi) \right]$$
(3)

The goal of lost muons analysis is the determination of the lost muon spectrum L(t) and of its exponentially weighted integral:

$$J(t) = \int_{0}^{t} L(t') e^{t'/\tau} dt'$$
(4)

1. Laser Calibration System 0000000000	2. Lost Muons 0●0000	3. MC analyses 000 000000 0000000	Backup 000
		00000000	

Lost muons have to be measured and taken into account in the final ω_a fit (3). This correction can be parametrized with the multiplicative factor $\Lambda(t)$:

$$\Lambda(t) = 1 - K_{LM} \int_0^t L(t') \, e^{t'/\tau} dt'$$
(2)

$$N(t) = N_0 e^{-t/\tau} \left[1 - A\cos(\omega t + \varphi) \right] \longrightarrow N(t) = N_0 e^{-t/\tau} \Lambda(t) \left[1 - A\cos(\omega t + \varphi) \right] \quad (3)$$

The goal of lost muons analysis is the determination of the lost muon spectrum L(t) and of its exponentially weighted integral:

$$J(t) = \int_{0}^{t} L(t') e^{t'/\tau} dt'$$
(4)

1. Laser Calibration System 0000000000	2. Lost Muons O●OOOO	3. MC analyses 000 000000 0000000	Backup 000
		000000000	

Lost muons have to be measured and taken into account in the final ω_a fit (3). This correction can be parametrized with the multiplicative factor $\Lambda(t)$:

$$\Lambda(t) = 1 - K_{LM} \int_0^t L(t') \, e^{t'/\tau} dt'$$
(2)

$$N(t) = N_0 e^{-t/\tau} \left[1 - A\cos(\omega t + \varphi) \right] \longrightarrow N(t) = N_0 e^{-t/\tau} \Lambda(t) \left[1 - A\cos(\omega t + \varphi) \right] \quad (3)$$

The goal of lost muons analysis is the determination of the lost muon spectrum L(t) and of its exponentially weighted integral:

$$J(t) = \int_0^t L(t') e^{t'/\tau} dt'$$
 (4)

1. Laser Calibration System	2. Lost Muons		
	00000	000 000000 00000000	

Lost muons preselection

Muons exiting the orbit curl inside the ring and can cross two or more calorimeters without stopping or losing a significant fraction of their energy: to identify lost muons, multiple coincidences between adjacent calorimeters can be used.

Data from the 60h Dataset have been analyzed.

	Name	Date acquired	Quad n	Kicker [kV]	Positrons	
<	60 hour			128-132	1.0B	\geq
	High Kick	26/4 - 2/5	0.120	136-138		
	End Game		0.108			

To start, this set of loose cuts has been applied:

- Number of cluster hits: *nHits* = 1 (Isolation cut)
- Cluster time difference: 4.2 ns $< \Delta t <$ 8.2 ns (Expected value: $\Delta t \simeq$ 6.2 ns)
- Cluster energy: E < 300 MeV (Expected value: $E \simeq 170$ MeV)

An exclusive definition of coincidence has been used.

1. Laser Calibration System	2. Lost Muons		
	00000	000 000000 00000000	

Lost muons preselection

Muons exiting the orbit curl inside the ring and can cross two or more calorimeters without stopping or losing a significant fraction of their energy: to identify lost muons, multiple coincidences between adjacent calorimeters can be used.

Data from the 60h Dataset have been analyzed.

	Name	Date acquired	Quad n	Kicker [kV]	Positrons	
<	60 hour			128-132	1.0B	\geq
	High Kick	26/4 - 2/5	0.120	136-138		
	End Game		0.108			

To start, this set of loose cuts has been applied:

- Number of cluster hits: nHits = 1 (Isolation cut)
- Cluster time difference: 4.2 ns $< \Delta t <$ 8.2 ns (Expected value: $\Delta t \simeq$ 6.2 ns)
- Cluster energy: E < 300 MeV (Expected value: $E \simeq 170$ MeV)

An exclusive definition of coincidence has been used.

1. Laser Calibration System 0000000000 2. Lost Muons 000000 3. MC analyses 000 000000 0000000000 References

Backup

1. Laser Calibration System 0000000000	2. Lost Muons 0000●0	3. MC analyses 000 000000 00000000	Backup 000

1. Laser Calibration System 0000000000 2. Lost Muons 000000

References O Backup 000

Energy deposit in calo 1

1. Laser Calibration System	3. MC analyses	
	• 00 000000 00000000	

MonteCarlo simulations analyses

Aim

See the behaviour of a muon that hits a collimator and so it is lost from the storage region.

1. Laser Calibration System 0000000000 . Lost Muons

3. MC analyses ○●○ ○○○○○○ ○○○○○○○

References

Backup 000

The muon is "lost" as soon as it exits from the storage region.

 $\begin{array}{l} r_{Magic} = 7112 \mbox{ mm} \mbox{ (corresponding to} \\ p_{Magic} = 3.094 \mbox{ GeV}/c) \\ r_{storage} = 45 \mbox{ mm} \mbox{ (radius of the storage} \\ \mbox{ region)} \end{array}$

y vs r of lost muon birth

Defining

$$R = \sqrt{x^2 + z^2} - r_{Magin}$$

a muon is lost if:

$$\sqrt{R^2 + y^2} > r_{storage}$$

Backup 000

In particular we are interested in:

- the momentum of the muons that hit a collimator;
- where a collimator is hit;
- if the lost muon hits a calorimeter and how much energy it deposits in it.

and also:

• when we analyze real data, how can we improve the recognition of lost muons?

1. Laser Calibration System 0000000000	2. Lost Muons 000000	3. MC analyses ○○○ ●○○○○○ ○○○○○○○○	Backup 000
beam gun with collimator MC			

An ad hoc simulation was first used:

a single muon beam is simulated and sent on purpose on a collimator.

 \rightarrow generation of 1000 events

y vs r of 1st collimator hit (col8)

1. Laser Calibration System	3. MC analyses	
	000 000000 00000000	

beam_gun_with_collimator MC

After the muon hits a collimator it can either decay or it can continue its path hitting other material.

Collimators can be hit more than one time before the muon exits from the storage ring.

1. Laser Calibration System	MC analyses	
	000 000000 00000000	
beam gun with collimator MC		

muon momentum when it hits a collimator for the 1st and 2nd time (normalized)

In both cases, the muon loses \sim 1% of its momentum.

1. Laser Calibration System	2. Lost Muons 000000	3. MC analyses ○○○ ○○○○●○ ○○○○○○○○○	Backup 000
beam_gun_with_collimator MC			

After muons exit from the storage region they will act as MIPs and they can hit more than one calorimeter.

1. Laser Calibration System 0000000000	2. Lost Muons 000000	3. MC analyses ○○○ ○○○○○○ ○○○○○○○○○	Backup 000
beam_gun_with_collimator MC			

REAL+SIG data

One way of selecting lost muons using real data was to looking at special triples coincidences:

we define REAL+SIG muons in MC simulations as those muons that hit three adjacent calorimeters in a row.

Just as a first example, we can see how many collimators the REAL+SIG muons hit before making a triple coincidence, and also many other informations with more statistics.

#collimators vs time (REAL+SIGNAL)

1. Laser Calibration System 0000000000	2. Lost Muons 000000	3. MC analyses 000 000000 ●00000000	Backup 000
Run1 MC			

Run1 simulation

The same code used for the *beam_gun_with_collimator* is used with the MonteCarlo simulation of the *Run1* that simulates typical events we would see in real data.

1. Laser Calibration System 0000000000	2. Lost Muons 000000	3. MC analyses 000 000000 0●0000000	Backup 000
Run1 MC			

The second time a muon hits a collimator it does it more uniformly.

1. Laser Calibration System	3. MC analyses	
	000 000000 00000000	
Pupt MC		

Run1 MC

muon momentum when it hits a collimator for the 1st and 1nd time (normalized)

Low energy tail \rightarrow future study!

Laser Calibration	

Lost Muons 00000 3. MC analyses 000 000000 000●00000 References O Backup 000

Run1 MC

When a muon hits two collimators, how much time passes between the two hits?

deltaT vs second coll hit

1. Laser Calibration System 0000000000	2. Lost Muons 000000	3. MC analyses ○○○ ○○○○○○ ○○○○●○○○○	
Run1 MC			

How many collimators a muon hits before it makes a triple coincidence?

We need more statistics to study lost muons with time $\gtrsim \mu$ s.

1. Laser Calibration System		3. MC analyses	
000000000	000000	000 000000 00000000	000
Pup1 MC			

After how long a muon that hit a collimator makes a triple calorimeter coincidence?

 $\Delta t =$ time a first calorimeter of a triple coincidence is hit - time the muon hits a collimator for the first time

∆t to be lost (REAL+SIGNAL)

	Calibration	
0000		

3. MC analyses 000 000000 0000000000

Run1 MC

#calo hits per event (normalized)

September 25th, 2019 35/41

1. Laser Calibration System 0000000000	2. Lost Muons 000000	3. MC analyses 000 000000 0000000000	Backup 000
Run1 MC			

1. Laser Calibration System 0000000000	2. Lost Muons 000000	3. MC analyses ○○○ ○○○○○○ ○○○○○○○●	Backup 000
Run1 MC			
Conclusions			

- Hardware activity: programmation of an FPGA that is already in function.
- Data Analysis: implementation of a code that preselects lost muons (triples and quadruples coincidences) in real data, and energy and time analysis of the events.
- Studied with MC simulations: behaviour of a muon that hits a collimator and then spirals into a calorimeter (energy deposition in the collimators and calorimeters, time difference distribution between the collimator and the calorimeter, ...)
 - using a specific "collimator" MC simulation
 - using the official g-2 Run1 MC simulation
- Future: more accurate comparison between data and MC.

References:

- Anastasi et al., The laser calibration system of the Muon g-2 experiment at Fermilab
- Chris C. Polly, A measurement of the anomalous magnetic moment of the negative muon to 0.7 ppm
- S. Di Falco, A. Driutti, A. Gioiosa, M. Sorbara, Lost Muons Correction
- S. Ganguly, *Muon g-2: Measuring the Muon Magnetic Anomaly to High Precision*, 52nd Annual Fermilab Users Meeting

1. Laser Calibration System 0000000000	2. Lost Muons 000000	3. MC analyses 000 000000 000000000	Backup ●00

Backup: Experimental Technique

Inside the ring the muons are subject to both the spin precession frequency ω_s and the cyclotron frequency ω_c : the difference between them is called anomalous precession frequency ω_a .

These approximations are used:

- the muon velocity is perpendicular to the magnetic field $(\vec{\beta} \cdot \vec{B} = 0)$
- the magnetic field is perfectly uniform
- betatron oscillations of the beam are neglected

$$\vec{\omega}_{a} = \vec{\omega}_{s} - \vec{\omega}_{c} = -\frac{e}{m_{\mu}} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$
(5)

The muon beam enters the storage ring with a forward momentum of \simeq 3.094 GeV/c ($\gamma \simeq$ 29.4), hence $a_{\mu} - 1/(\gamma^2 - 1) \simeq 0$ and Eq. 5 simplifies to:

$$\omega_a = -\frac{e}{m_\mu} a_\mu B \tag{6}$$

		Calibration	System			

2. Lost Muons 000000 3. MC analyses 000 000000 000000000 References O Backup 000

Backup: Incorporating muon losses into the fitting function (1/2)

 $k_{LM}L(t)$: number of lost muons at a time t.

Adding the additional loss mechanism to the original differential equation of the exponential decay of muons:

$$\frac{dN_{\mu}}{dt} = -\left(\frac{N_{\mu}}{\tau} + k_{LM}L(t)\right) \tag{7}$$

We can recognize this equation as a simple first-order linear differential equation of the form:

$$\frac{dN_{\mu}}{dt} + P(t) \cdot N_{\mu}(t) = Q(t)$$
(8)

which has a solution:

$$N_{\mu}(t) = e^{-\int P(t')dt'} \cdot \int Q(t')e^{-\int P(t')dt'}dt' + ae^{-\int P(t')dt'}$$
(9)

where: P(t)=1/ au, $Q(t)=-k_{LM}L(t)$

1. Laser Calibration System		Backup
	000 000000 00000000	000

Backup: Incorporating muon losses into the fitting function (2/2)

Making the substitutions, integrating from t_0 to t and applying the boundary condition that $N_{\mu 0}$ muons are stored at time t_0 (i.e. $a = N_{\mu 0}$):

$$N_{\mu}(t) = N_{\mu 0} e^{-(t'-t_0)/\tau} \left[1 - \frac{k_{LM}}{N_{\mu 0}} \int_{t_0}^t L(t') e^{(t'-t_0)/\tau} dt' \right]$$
(10)

The number of decay electrons becomes:

$$N(t) = A_e N_{\mu 0} e^{-(t'-t_0)/\tau} \left[1 - \frac{k_{LM}}{N_{\mu 0}} \int_{t_0}^t L(t') e^{(t'-t_0)/\tau} dt' \right] [1 - A\cos(\omega t + \varphi)]$$
(11)

where A_e is the overall geometrical acceptance of the calorimeters. We choose $t_0 = 0$. Defining $K_{LM} = k_{LM}/N_{\mu 0}$, and noticing that the number of decay electrons at the beginning is $N_0 = A_e N_{\mu 0}$ we have:

$$N(t) = N_0 \Lambda(t) e^{-t/\tau} \left[1 - A \cos(\omega t + \varphi) \right]$$
(12)

where:

$$\Lambda(t) = 1 - K_{LM} \int_0^t L(t') e^{t'/\tau} dt'$$
(13)