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Abstract

The Muon g-2 experiment at Fermilab has the main goal to measure the muon
anomalous magnetic moment aµ = (g− 2)/2 to a precision of 0.14 parts per

million (ppm), which means 4 times improvement in precision with respect to the
final result from BNL:

aµ (expt. BNL) = 11659208.0(6.3)× 10−10 (0.54 ppm)

In this report I summarize the work done at the g-2 experiment during my
summer internship at Fermilab. In the first two weeks my first task has been to
replace the NIM logic used in the Laser Calibration System with a new FPGA.
Then, I was involved in the Lost Muons analysis studying both real data and

MonteCarlo simulations.
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1. Overview and principles of g-2 measurements

1.1. Lepton Magnetic Moments

According to the Dirac theory, an electron or a muon is a pointlike particle that pos-
sesses a magnetic moment equal to:

µ =
e}

2mc
(1)

where m is the lepton mass. Generally, the magnetic moment µ is related to the spin
vector s by

µ = gµs (2)

where g is the so-called Landé g-factor. The Dirac theory predicts for particles of
spin- 1

2 :
g = 2 (3)

but small deviations from this value arise from riadiative corrections to the Dirac mo-
ment (contributions from quantum electrodynamics, electroweak theory, QCD) [1].
This additional contribute is normally written in terms of the anomalous magnetic mo-

ment a =
g− 2

2
as:

µ = (1 + a)
e}
2m

(4)

The anomaly a was first predicted to be a =
α

2π
for all leptons by Schwinger in

1948. Higher order terms are different for electrons, muons and taus because of their
different masses.

Figure 1: Momentum and spin direction if g=2 and if g>2.

1.2. The experiment

The currently most precise measurement of the muon anomaly aµ was performed by
the Brookhaven experiment E821. It shows a 3.6 standard deviation discrepancy from
the Standard Model. The new g-2 experiment at Fermilab will measure aµ with a factor
of 4 improved precision by collecting ' 20 times the BNL statistics and improving the
systematic uncertainty, thus with the possibility of increasing the discrepancy between
the measured and theoretical values to 7.5σ, if the central value remains unchanged [2].
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1.2. Experimental Technique

Polarized muons, produced naturally from pion decay, are injected into a 15 m di-
ameter superconductive magnetic storage ring, that produces a magnetic dipole field
|~B| ' 1.45 T.

Assuming a perfect vertical magnetic field, with a muon on the ideal orbit, the anoma-
lous precession frequency ~ωa is defined as the difference between the spin frequency
~ωs and the cyclotron frequency ~ωc (Eq. 5).

~ωs =
e ~B
mγ

(1 + γaµ) ~ωc =
e ~B
mγ

(5)

In absence of any other external field:

~ωa =
e
m

aµ~B (6)

Electrostatic quadrupoles are used to confine the muon beam in the storage region and
to provide vertical focusing. The application of an electric field introduces a new term
to Equation 6, where relativistic particles feel a motional magnetic field proportional
to ~β× ~E. Here, ~β denotes the muon velocity and ~E is the electric field.
In full, the equation for ~ωa is

~ωa =
e

mc

[
aµ~B−

(
aµ −

1
γ2 − 1

)
~β× ~E− aµ

(
γ

γ + 1

)
(~β · ~B)~β

]
(7)

where the third term additionally accounts for those muons whose motion is not per-
pendicular to the magnetic field.
The ωa measurement is performed at a "magic momentum“ of γ = 29.3, so that the sec-
ond term in Eq. 7 vanishes. The majority of off-momentum muons are removed using
collimators. However, a small momentum spread of remaining muons away from the
magic momentum persists and some also experience a small amount of vertical pitch-
ing. These effects correspond to the second and third terms of equation 7 respectively.
The magnitudes of these effects are determined using data, allowing for well-known,
sub-parts-per-million systematic corrections and corresponding uncertainties to be ap-
plied to the measured ωa [3].

A muon having the magic momentum will decay with a mean life-time γτ0 ' 64 µs
via a three body weak decay: µ+ → e+νeν̄µ.
Since the decay proceeds through the weak force, it is parity violating. As a conse-
quence, a left-handed neutrino νeL and a right-handed anti-neutrino ν̄µR are produced.
The positron will be right-handed like the muon, thus preferably emitted in the same
direction of the muon spin. Therefore, the ωa can be measured fitting the rate of the
more energetic positrons with the following 5 parameters formula:

N(t) = N0e−t/τ [1− A cos(ωat + ϕ)] (8)

where the energy and the decay time of the positrons are measured using 24 calorime-
ter stations located along the ring.

Finally, to have a measurement of aµ, it is sufficient to precisely measure ωa and ~B.
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1.3. Laser Calibration System

To precisely measure the energy and time of the positrons, all the 24 calorimeters
need to be calibrated. Calibration is achieved using a laser system, which monitors
the gain fluctuations, ensures performance stability of the detectors throughout long
data taking periods, time-synchronizes all detectors and can also emulate the signals
coming from muon decays. The laser calibration pulses are generated by 6 identical
lasers, each one serving 4 calorimeters.
The Laser Control Board (LCB) manages the interface between the beam cycle and
the calibration system itself. It takes care of the generation of the laser pulses and
distributes the time reference signals to the monitoring electronics [6].

The laser calibration system is used in two operating modes: Standard operation mode
and Double-pulse mode.

• in the Standard operation mode a regular pattern of laser pulses is sent and used
offline to calibrate the calorimeters (Figure 2)

Figure 2: Standard operation mode: laser pulses are sent at the beginning, during and after the muon
fill.

• in the Double-pulse mode two consecutive laser pulses are sent to all crystals with
a delay that can vary up to several hundreds of µs. The goal is to measure the
calorimeter gain drop when two or more particles hit the same crystal.
There are two implementations of the Double-pulse mode:

– Short Term Double Pulse: the second pulse is delayed by 0÷80 ns with respect
to the first (Figure 3)

– Long Time Double Pulse: a test pulse is sent with a delay of 0÷60 µs from a
burst of pulses mimicking the initial splash of the incoming beam (Figure
4).

To monitor the laser intensity event-by-event, special detectors called Source Monitors
are used. Each Source Monitor consists of (Figure 5):

• two PIN diodes, used to monitor the intensity of the laser pulses (fast monitoring);
• one PMT with an Americium source embedded, used as an absolute monitor

(slow absolute monitoring).
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Figure 3: Short Term Double Pulse schematic structure.

Figure 4: Long Term Double Pulse schematic structure.
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Figure 5: Schematic structure of Source Monitors
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2. Reorganization of the trigger logic

Figure 6: Left: NIM logic (old). Right: FPGA logic (new).

Up to the end of July 2019, both the Americium and the laser triggers were handled
by NIM logic. My first task has been to replace it with FPGA logic (Fig. 6).

The input signals coming from the Laser Control Board, the Short Term and Long
Term Double Pulse are grouped into two categories, EVEN and ODD, depending on
which of the 6 lasers they belong.
The output signals providing the laser trigger are: (3x) Logic OR of all EVEN signals,
(3x) Logic OR of all ODD signals, while the output signals from the SMs are: (2x)
Logic OR of all the SM signals, Logic OR of 1, 2, 3 SM signals and Logic OR of 4, 5, 6
SM signals.
The Programmable Logic Unit CAEN DT5495 has been programmed with Sci-Compiler
as shown in Figure 7. The setup is shown in Figure 8.

The amplitude of the TTL output signal was measured to be less than 1.8 V, as
shown in Figure 10a. This was an issue since 1.8 V was lower the 3.3 V threshold
required by the acquisition system. After disassembling the DT5495 I found a set of
jumpers corresponding to the output signal impedences. Moving their position to 50Ω
termination, as shown in Figure 9, fixed the amplitude to standard TTL (Figure 10b).
The Sci-Compiler code in Fig. 7 was finally uploaded to the FPGA, that is now rou-
tinely working in the Laser Hut.
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Figure 7: Code used to update firmware of the FPGA.
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Figure 8: DT5495: experimental setup.

Figure 9: Different position of jumpers.
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(a) TTL output signal without 50 Ω termination. (b) TTL output signal with 50 Ω termination.

Figure 10: TTL output signal: before and after changing the position of the jumpers.
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3. Lost Muons Studies

During their path into the g-2 storage ring some of the muons are lost mainly because
of their interaction with collimators.1 These muons are mostly lost at early times, thus
distorting the standard exponential decay. The effect can be taken into account in the
final ωa fit with by including an additional factor Λ(t) [7] [8]:

N(t) = N0 e−t/τΛ(t) [1− A cos(ωt + ϕ)] (9)

3.1. Incorporating muon losses into the fitting function

Let define L(t) as the rate at which muons are lost from the ring. L(t) does not directly
enter the fitting function. In fact, each muon in L(t) would have eventually decayed
into a positron, and it is the absence of the later decay positrons that consitutes Λ(t) in
Equation 9. We are interested in the functional form of Λ(t), that can be determined
as shown in [8] and is:

Λ(t) = 1− KLM

∫ t

0
L(t′) et′/τdt′ (10)

where τ = γτ0 = 64.4 µs is the muon lifetime and KLM is an acceptance factor that can
be extracted from the fit of the ωa.

The goal of lost muons analysis is the determination of the lost muon spectrum L(t)
and of its exponentially weighted integral:

J(t) =
∫ t

0
L(t′) et′/τdt′ (11)

3.2. Calorimeter coincidences

Muons exiting the orbit curl inside the ring and can cross two or more calorimeters
(as sketched in Figure 11) without stopping or losing a significant fraction of their en-
ergy. So, to identify lost muons, we can use double, triple or quadruple coincidences
between calorimeters.

Figure 11: Lost Muon triple coincidence event scheme. The yellow arrow represents the beam, the blue
one the lost muon.

Possible backgrounds for the lost muons measurement are the accidental coincidences

1Collimators are used to remove muons outside the 9 cm diameter storage region. They consist of
3mm-thick copper rings, with inner and outer radii of 4.5 cm and 5.5 cm.
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of positron energy deposits and positron showers debries reaching consecutive calorime-
ters.
The lost muons signature is given by:

• Timing: muons travelling at the speed of light cover the∼ 1.8 m distance between
consecutive calorimeters in ∼ 6.2 ns.
• Cluster hit multiplicity: differently from positron showers, Minimum Ionizing

Particles (MIPs), like 3.1 GeV muons, give a very localized energy deposit, in-
volving in most cases just 1 or 2 crystals in a calorimeter.
• Energy: according to the Bethe-Bloch equation, MIPs deposit a fixed amount of

energy (∼ 170 MeV) in the material they crossed.
• Cluster position: muon tracks arriving from the ring should hit the first calorime-

ter of the coincidence in the columns close to the ring: a coincidence starting from
the column furthest from the ring is most likely due to background.

4. Lost Muons preselection using real data

To familiarize with the g-2 software and with the data itself, I started the Lost Muons
study analyzing data from the 60h Dataset, intending to filter a sample of candidate
lost muons using calorimeter coincidences.
I defined the lost muons using the conditions reported in Table 1. In particular, the
cut on the cluster time was chosen because when the muon beam enters the magnetic
ring, it is scraped to reduce muon losses from the storage ring during the measure-
ment period [9].

Cluster time t > 10 µs
Number of cluster hits 1

Clusters time difference 4.2 ns < ∆t < 8.2 ns
Cluster energy E < 300 MeV

Table 1: Cuts used to filter calorimeter coincidences in 60h Dataset.

Figure 12 shows the number of coincidences along the ring (only the first calorimeter
in the coincidence is considered). To avoid double countings, an exclusive definition
of coincidence was used, so that, for example, a coincidence is considered as double if
none of its clusters belongs to a triple coincidence, and so on.
From figure 12 we see that the number of coincidences is not constant with the
calorimeter number: this is because muons encounter different materials along the
ring. Most of the muons are lost in the first half of the ring, since after the injection
all the particles with momentum and injection angle different from the designed ones
are lost. Then, the number increases right after the collimators. Muons lost due to
their impact with collimators is the subject of a dedicated study I performed with
MonteCarlo simulations in Sec. 5.1.

4.1. Energy and time analysis of the selected events

To check if the coincidences we are looking at belong to something that acts like a
muon, a dedicated energy and time analysis was made. In particular I checked that the
mean deposited energy in a single calorimeter was around 170 MeV, as expected from
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Figure 12: Number of coincidences for each calorimeter. The distributions are normalized to 1.

the Bethe-Bloch formula, and that the time difference between two calorimeters hits
was around 6.2 ns, i.e., the time in which a muon travelling at almost the speed of light
covers the distance between two adjacent calorimeters. As an example, Figures 13 and
14 show the distributions in the case of a double coincidence involving calorimeters 1
and 2 of the ring. I also checked that the muon loses almost the same amount of energy
in two consecutive calorimeters, as expected for a MIP. This was done measuring the
difference between the deposited energies in two adjacent calorimeters. As expected
the distribution is centered at 0 MeV, as shown in Figure 15.

Similar results were obtained also for triple and quadruple coincidences and for
each pair of adjacent calorimeters in a coincidence.
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Figure 13: Time difference distribution between calorimeters 1 and 2 hits for the selected lost muons.

Figure 14: Deposited energy in the first calorimeter of a double coincidence.

Figure 15: Difference between the deposited energies in two adjacent calorimeters.
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5. MonteCarlo simulations analyses

One of the purposes of the Lost Muons analysis is to understand the behaviour of a
muon that hits a collimator.

Figure 16: The g-2 storage ring layout. The 24 numbers represent the locations of the calorimeters,
while C2, C6 and C8 represent the location of the collimators.

For these studies we define a muon “lost” as soon as it exits the storage region. The
radius of the g-2 ring, i.e. the distance from the center of the ring to the center of the
storage region, is rMagic = 7112 mm, while the radius of the storage region (Fig. 17) is
rstorage = 45 mm.

Figure 17: Inside view of the g-2 ring: storage region.

Defining:
r =

√
x2 + z2 − rMagic (12)
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where x and z are the coordinates on the ring plane (as Figure 16 shows), we say that
a muon is lost if: √

r2 + y2 > rstorage (13)

We are interested to the lost muons that satisfy Eq. 13 and hit a collimator. In particular
we would like to study when and where a collimator is hit, the momentum of muons
that hit a collimator, and also if after hitting a collimator a muon hits two or more
calorimeters, and if so, how much energy it deposits in it. It is important to perform
these studies in MonteCarlo events since this could help us to improve the recognition
of lost muons in the real data.

5.1. "beam_gun_with_collimator“ simulation

I started analyzing an ad hoc MonteCarlo, where a single muon beam is simulated and
sent on purpose on a collimator. This first step was preferred in order to implement
and test a code running on something with a higher statistics, so as to decrease the
execution time.
In this simulation, all muons are generated with the magic momentum, and they all
hit C8 always at the same time (' 80 ns) and always in the same position.

Figure 18: Upper view of the g-2 ring, showing what lost muons hit outside the storage region.

After the muon hits a collimator, it can either decay or it can continue its path hitting
other material, like calorimeters and vacuum chambers. Figure 18 represents an upper
view of the g-2 ring, showing the trajectory of lost muons outside the storage region,
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in particular when they hit a collimator (in black), a vacuum chamber (in blue) or a
calorimeter (in red).
Collimators can be hit more than one time before the muon exits the storage ring:
sometimes after hitting C8, muons interact with C2 and C6 as shown in Fig. 19a and
19b and in 4% of the cases they hit C8 again as shown in Fig. 19c. In this type of plots,
r is calculated as in Eq. 12, while y is the vertical coordinate.

(a) C2 (b) C6

(c) C8

Figure 19: y and r of where C2, C6 and C8 are hit by a lost muon. (beam_gun_with_collimator
simulation)

The fraction of the momentum lost by the muons hitting a collimator is about 1%, as
shown in Figure 20.
After muons exit the storage region they will act as MIPs and they can hit more than
one calorimeter. In Figure 21a is shown the normalized distribution of the number
of calorimeters hit by lost muons in a multiple coincidence. This distribution is in-
teresting because in real data (see Sec. 3.2) lost muons are selected looking at triple
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Figure 20: Muons momentum when they hit C8 for the first time (blue line) and for the second time
(red line). (beam_gun_with_collimator simulation)

coincidences (with particular cuts on energy and cluster time), and in this particular
case only ∼ 10% of lost muons make a triple coincidence.
Let’s define REAL+SIG muons, in our MonteCarlo simulation, as those muons that hit
three adjacent calorimeters in a row.
Just as a first example of application, we can see how many collimators the REAL+SIG
muons hit before making a triple coincidence (Figure 21b). Of course, in this particular
simulation, there is always at least one collimator hit, but we see that sometimes, be-
fore the lost muon makes a triple coincidence, it hits even two collimators.
This and other aspects will be studied and discussed in Sec. 5.2, when there will be
more statistics.

(a) Distribution of the number of calorimeters hit by a
lost muon.

(b) Number of collimator hits by REAL+SIG muons

Figure 21: (beam_gun_with_collimator simulation)
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5.2. Run1 simulation

The beam_gun_with_collimator simulation was useful to study the features of the lost
muons that hit a collimator, but to properly characterize the lost muons I analyzed the
official MonteCarlo simulation of the Run1 that simulates typical events we would see
in real data.
The MC sample contained 6.7× 107 lost muons, a good amount of statistics to study a
lot more interesting features of lost muons events.
During Run1 datataking only two collimators were used, thus in this case lost muons
hit collimator C6 and C8. In particular, when a lost muon hits for the second time a
collimator, it does it more uniformly, as Figures 22b and 22d show.

(a) y and r of C6 when it is hit for the first time. (b) y and r of C6 when it is hit for the second time.

(c) y and r of C8 when it is hit for the first time. (d) y and r of C8 when it is hit for the second time.

Figure 22: y and r of where C6 and C8 are hit by a lost muon for the 1st and 2nd time.
(Run1 simulation)
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As in the beam_gun_with_collimator simulation, also in this case the fraction of the
momentum lost by the muons hitting a collimator is about 1%, as shown in Figure 23.

Figure 23: Muons momentum when they hit C8 for the first time (blue line) and for the second time
(red line). (Run1 simulation)

Since this time it is not simulated a mono-energetic single muon, but a muon beam
with a spread on the initial momentum, the distributions have a larger standard de-
viation from the center value. It can also be noticed a lower energy tail in both dis-
tributions: they are due to the those muons that turn several times around the ring
before hitting a collimator, and they lose energy hitting other parts of the ring, like
quadrupole plates.

Figure 24 shows the time-distance between two collimator hits as a function of the
second collimator hit. In some cases, a lost muon travels even ∼ 400 ring turns (!)
before hitting a collimator for the second time.

Figure 25 shows the normalized to unit distribution of the number of calorimeters hit
by lost muons in a multiple coincidence. About 14% of lost muons make a triple coin-
cidence.

We defined REAL+SIG muons lost muons that make a triple calorimeter coincidences.
Since in this simulation the muon beam is not sent on purpose on a collimator, now
it is interesting to see how many collimators a lost muon hits before making a triple
coincidence.
This is shown in Figure 26a. A zoom on the first microsecond is reported in Figure 26b.

20



Figure 24: Time-distance between two collimator hits as a function of the second collimator hit.
(Run1 simulation)

Figure 25: Distribution of the number of calorimeters hit by a lost muon. (Run1 simulation)
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(a) (b)

Figure 26: Number of collimators hit by REAL+SIG muons as a function of time. (Run1 simulation)

The most part of the lost muons exit the ring at early times without hitting a col-
limator. This time window is the scraping phase which, as discussed previously, for
real data we do not consider. After 10 µs almost all lost muons that made a triple
coincidence have previously hit a collimator. Of all the lost muons that make a triple
calorimeter coincidence only 0.007% survives after the 10 µs selection cut. This num-
ber is even smaller if we compare it with the total number of lost muons: considering
that only in the 14% of the cases a lost muon makes a triple coincidence, the fraction
of lost muons that we see cutting at 10 µs and looking at triple coincidences becomes
0.0005%. To properly study these lost muons we need more statistics.

Figure 27a shows the distribution of ∆tlost defined as the time-distance between when
a first calorimeter of a triple coincidence is hit and when the muon hits a collimator
for the first time. A zoom on the first microsecond is shown in Figure 27b.
Most of the REAL+SIG muons that hit a collimator make a triple calorimeter coinci-
dence after ∼ 100 ns. After few hundreds of nanoseconds, the distribution in Figure
27a decreases exponentially (notice the logarithmic scale on the y axis).

Figure 28 shows the total energy deposited Edep in all the calorimeters of a coincidence.
Reasonably, Edep increases linearly with the number of calorimeters hit. In Figure 29
there is a better view of how much energy is deposited in the crystals.
In the simulation, lost muons deposit about 120 MeV in each calorimeter they cross.
This is lower than the 170 MeV expected by the Bethe-Bloch Formula. The discrepancy
is acceptable for these purposes, and is a consequence of runtime optimizations.
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(a) (b)

Figure 27: Distribution of the time-distance between when a first calorimeter of a triple coincidence is
hit and when the muon hits a collimator for the first time. (Run1 simulation)

Figure 28: Energy deposited in all the calorimeters of a coincidence as a function of the total number of
calorimeters hit. (Run1 simulation)
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Figure 29: Distribution of the energy deposited in the crystals. (Run1 simulation)

6. Conclusions

These two months have been an extraordinary experience for me. I learned a lot
of things, from the notions of physics to hardware and software techniques. I also
improved my programming skills a lot.
I hope to have the opportunity to continue working on the analysis of Lost Muons as
many questions are still open. In particular, I would like to use the results obtained to
make a more accurate comparison between the data and MonteCarlo.

Finally, I would like to thank prof. Incagli and Anna for always being available to help
me, for all the things they taught me and above all for the patience they had with me.
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