

Intelligent Low-level Signal Detection and Zero-Suppession in Raw LArTPC Waveforms through Deep Learning Techniques

- Lorenzo Uboldi
- Supervisor Michael Wang
- **Final report**
- 24 September 2019

DUNE

Deep Underground Neutrino Experiment is a LArTPC detector that aims to study:

- Neutrinos from accelerator
- Rare events neutrinos (Supernovae burst, proton decay)

The latter have intrinsic problems:

- lower energy, close to the limit of the detector
- to have higher chances to be detected need 100% live time

Solutions:

- Save all data and analyse offline (throughput ~ TB/s)
- Online data discrimination

Classical approach

For low energy events:

- Too much data from DAQ
- Signal and noise are almost indistinguishable

- Zero suppression method
- Events with charge collection below a fixed threshold are discarded

Very hard to detect low energy neutrinos (e.g.: from supernova burst)

New approach

Use machine learning. Benefits:

- We don't have to study and develop a method to discrimante signal
- The machine will learn itself what a signal is and what is not
- Sometimes the machine is able to undestand underlying features and correlations that we are not

Cons:

• We need labelled data (Monte Carlo must be accurate)

What is a "classical" neural network?

Advanced NN: Convolutional Neural Networks

- Convolutional NNs use convolution to take advantage of the space invariance and to extract features from data.
- Neurons are replaced by filters that are fitted to find features
- Each layer is made of many filters

2-dimensional CNN is the cutting edge technology for image recognition, object detection, selfdriving cars, ecc...

Waveforms are one dimensional

We use 1D Deep Convolutional Neural Network

Learning process

Supervised learning is the process where labelled data is given to a neural network and its weights are fitted to give the most accurate predictions as possible

🚰 Fermilab

The training process requires *a lot of data* to be sensitive. I used ~400000 waveforms for training.

Inference

For testing a model the labelled data is split:

- 80% for training;
- 20% for testing predictions performances

Results for monoenergetic 5 MeV neutrinos

Fast, light and robust CNN has been developed

Simulated waveforms have a minimum of 2000 electrons productions: Lower than actual zero suppression threshold

Next step: realistic dataset

- Data generated from 10,000 events
- Minimum collection of 2000
 electrons
- Neutrinos from the Supernova "marley" generator (Charge Current Neutrino)
- Radiological background is a mixture of Radon 222, Argon 39 and Krypton 85

Fermilab

Dataset

778979 waveforms picked randomly from 10000 events:

- 80% used for training and validation
- 20% for testing

‡ Fermilab

Strategy

- First neural network
 To discriminate any signal from noise
- Second neural network
 To discriminate neutrinos from background

Each NN has six convolutional layers developed to exploit the spatial invariance of the peak

Fermilab

Results

At the end 92.21 % of the neutrinos are saved

= 0.4 %

False negative:

Neutrinos

•

• Radiological = 95.6 %

Results

‡ Fermilab

14 24/09/19 Lorenzo Uboldi | Final report

Peak finding, data preparation

‡ Fermilab

Results

Another CNN was trained on labelled "windows" data Accuracy of more than 99%

Red line is the position of the peak given by the Monte Carlo

Fermilab

Last step: ICARUS data

ICARUS is a LArTPC detector part of SBN at Fermilab. It aims to study neutrino oscillations, sterile neutrino, ecc...

Problem: due to "hot" electronic the noise is very high, in particular middle induction panel has a really poor signal-noise ratio

Since ICARUS is a LArTPC detector as DUNE will be, why not to apply the developed method to it?

🛟 Fermilab

CNN method applied to ICARUS

- Actual algorithm stores all waveforms and performs a heavy computing de-convolution to extract signal from noise. Must run offline and needs huge storage space and a lot of time.
- Performance for events with less than 15000 collected electrons drops below 75% of accuracy
- The CNN trained on ICARUS data keeps an accuracy between 99.2% and 99.8% for events with collected electrons as low as 2000
- The NN for peak finding has an accuracy of 98%: the overall accuracy is higher than 97%!
- The inference speed is so high that there is no need to make it offline: a Nvidia Tesla K80 is actually faster than the detector throughput

Further Developement

For DUNE:

- Use a training set derived from a much bigger number of events in order to generalize better and being able to avoid sensitivity on statistical fluctuations
- Improve accuracy
- Design a specific hardware (FPGA or ASIC) for our CNN able to handle a huge throughput of data for live application (EdgeTPU by Google has been tested with no satisfying results)

For ICARUS:

- Include our method in LarSoft and perform more accurate tests and comparisons
- If it turns out to be robust and stable, include hardware and software in the DAQ for the CNNs predictions

