
Leonardo Lai
Final presentation
September 24th, 2019

Reliable, flexible and secure logging
system for distributed workflows

Supervisor:
Marco Mambelli

LHC (Large Hadron Collider):
generates 1 PB/s of data

https://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-milestone

9/24/2019 Leonardo Lai | Final presentation

The need for HPC/HTC

Muon g-2 experiment:
18 Gb/s data acquisition rate

Gohn, Wesley. "Data acquisition for the new muon g-2 experiment at
Fermilab." Journal of Physics: Conference Series, 2015

DES (Dark Energy Survey):
produces 2.5 TB of images per night

https://www.darkenergysurvey.org/the-des-project/survey-and-operations/

2

https://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-milestone
https://iopscience.iop.org/article/10.1088/1742-6596/664/8/082014/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/664/8/082014/pdf
https://www.darkenergysurvey.org/the-des-project/survey-and-operations/

A growing demand for resources
(1966) Apollo
guidance
computer:
2MHz cpu
2KB ram

(1985) Cray-2
Supercomputer:
250 MHz cpu,
1.9 GFLOPS

(2002) Earth
Simulator:
640 nodes,
35.8 TFLOPS

(today) Cloud,
distributed, grid
computing:
Scalable!

9/24/2019 Leonardo Lai | Final presentation3

HTCondor is a specialized workload management system for compute-intensive jobs.

Users submit their jobs to HTCondor, which enqueues and runs them somewhere in
the grid, and eventually returns the result to the user.

9/24/2019 Leonardo Lai | Final presentation

HTCondor

https://research.cs.wisc.edu/htcondor/description.html

4

https://research.cs.wisc.edu/htcondor/description.html

Advantages:
• Transparent to the user
• Supports any kind of site
• The same Glidein can be

reused for multiple jobs
• Can handle sites failures

9/24/2019 Leonardo Lai | Final presentation

GlideinWMS

https://glideinwms.fnal.gov/doc.prd/index.html

5

A grid is actually made of many independent
sites, each with different characteristics.
Abstraction needed: GlideinWMS

GlideinWMS works on top of HTCondor
exploiting the concept of glidein, a way to
represent a resource in a HTCondor pool.
Under the hood, a glidein is a properly
configured HTCondor job that becomes
a HTCondor resource for
the virtual cluster.

https://glideinwms.fnal.gov/doc.prd/index.html

Everything eventually breaks, even software.

Monitoring

9/24/2019 Leonardo Lai | Final presentation

If so, you may want to know where and why it is failing, to hopefully
implement a fix for it (or blame someone else) → debugging

On the other hand, getting info from the system while it’s running is always
helpful, be it a critical message or just a minor update → monitoring

A flexible and reliable communication infrastructure is of key importance!

6

In GlideinWMS, there is currently a number of issues that justify a
revamp of the logging system:

• Glideins stdout/stderr format is heterogeneous, not ideal for parsing

• If a glidein gets killed, its stdout/stderr disappears with him

• Having multiple jobs or threads in the same glidein results in a messy
interleaved stdout/stderr

• Information becomes available only at the end of the glidein life

• A mechanism to broadcast this info to multiple listeners is lacking

Current issues

9/24/2019 Leonardo Lai | Final presentation7

Issue: format

9/24/2019 Leonardo Lai | Final presentation

New log
• homogeneous (JSON)
• complete
• parsable
• readable

8

Who

Why

What

stdout/stderr
missing subject

no timestamp

is it an error?

mixing info of different nature

Issue: concurrency

9/24/2019 Leonardo Lai | Final presentation

Possible solution: locking
Before accessing the resource (log file):

– if busy (others writing) -> WAIT
– if free (nobody writing) -> ENTER

When releasing the resource:
– NOTIFY those who are waiting, if any

9

In general, bad things happen if
multiple processes write the
same location at the same time!

Multi-glideins behave like this
when writing to log.

Problem
Time spent waiting is
basically time wasted.
Performance decrease
if many glideins write
frequently.

Issue: concurrency

9/24/2019 Leonardo Lai | Final presentation

Another solution…
Write always to different locations (files), a.k.a. shards.
All the shards will be eventually concatenated (coalesced) to a single log.

10

…another problem
What if one glidein starts merging the shards while others are writing them?

The solution (working!)
Based on 3 ideas:
• Sharding
• Minimal use of locks (hidden)
• Isolation (different kinds of operations are performed in distinct places)

Issue: concurrency

9/24/2019 Leonardo Lai | Final presentation11

logs

shards

merge

1) A write

2) B write

3) A & B write

4) A merge begin

5) B write

6) B merge (skip)

7) A merge end

…

LOGLOGLOG

8) B merge

A B

Note: this works because the Unix commands mv and mkdir are atomic!

LOGLOG

Feature: remote logging

9/24/2019 Leonardo Lai | Final presentation12

We have the log finally, but it’s not where we need it!

The grid nodes are scattered across the globe, and we usually don’t have
access to those machines, especially if they belong to different parties.

The new logging system enables alternatives:
• send to the Factory: this is easy (just append

the log to stderr), but you need access rights
to the Factory machine

• send to a remote HTTP server: you specify the
server(s) URL and the log is forwarded there;
definitely handier!

Issue: security

9/24/2019 Leonardo Lai | Final presentation13

Logs are sent from the entry nodes to the log server over the Internet.
Without adopting security measures, an attacker could:
• read the content of the logs
• tamper the content of the logs
• craft arbitrary logs, claiming to be you

You need at least the following:
• Encryption: a secret key is needed to decrypt and read the message
• Authentication: the recipient can verify the identity of the sender

Entry node Log serverMalicious agent

LOG

Issue: security

9/24/2019 Leonardo Lai | Final presentation14

Overview:
• A JSON Web Token (JWT) certifies the identity of the entry node

– The Factory either issues and signs it, or receives it from a Frontend
• The token is sent to the entry node whenever a glidein spawns there,

exploiting HTCondor built-in encrypted file transfer
• When a glidein posts a log to the server, it must also include its token to

authenticate. The whole message (log + token) is encrypted with SSL

Factory Log serverLOG

Entry node
SSL/TLS

HTCondor
encrypted

file transfer

The new glidein logging channel is:

• Structured: the new format (JSON) is readable and easy to be processed
• Versatile: a line contains either a custom string or the content of a file
• Available: any script can use the logging functionalities
• Independent: decoupled from stdout/err, autonomous from the process
• Efficient: JSON is compact (space efficient). Also, the log are built

incrementally, thanks to a mechanism of sharding and coalescing
• Thread-safe: atomicity of the operations is guaranteed even in the

presence of multiple glideins or multiple processes
• Reliable: the logs can be sent to a remote server upon request, allowing

replication and centralized log management
• Secure: all data are transferred with cryptographic protocols

Summary

9/24/2019 Leonardo Lai | Final presentation15

The bash scripts need to share some sections of code (functions).
Two typical approaches:
• put the shared code in a standalone file; other scripts source it

– Pro: clean
– Cons: increased overhead when transfering files to grid nodes

• Heredoc: shared code in a string; the main script writes it to a file
– Pro: constant number of files
– Cons: messy, syntax highlighting spoiled, hard to test

Side activity: self-extracting scripts

9/24/2019 Leonardo Lai | Final presentation16

New approach: self-extracting scripts
the code is developed as standalone files, but the utility scripts are
archived, compressed and concatenated to the main one before the
transfer phase. On the receiving side, when the main script executes,
it is able to automatically strip, unzip and share these files.

Two paradigms for software testing:
• Static: check the code for potential defects (e.g. undeclared var)
• Dynamic: run the program and check if it works as expected

Side activity: scripts static analysis

9/24/2019 Leonardo Lai | Final presentation17

ShellCheck
ShellCheck is a linter for bash scripts, that is a tool that analyzes the code to
flag programming errors, bugs, stylistic errors, and suspicious constructs.

ShellCheck integration to the GlideinWMS CI platform is a work in progress.

9/24/2019 Leonardo Lai | Final presentation18

Example of log

9/24/2019 Leonardo Lai | Final presentation19

GlideinWMS

9/24/2019 Leonardo Lai | Final presentation20

GlideinWMS

9/24/2019 Leonardo Lai | Final presentation21

A UUID (Universally Unique Identifier)
is assigned to every glidein at the time
of its creation, to distinguish it from the
other glideins. Within the glidein, the
PID (Process ID) discriminates
between concurrent processes.

Sharding + identification

9/24/2019 Leonardo Lai | Final presentation

Glidein1
ceb10c17-e04d-4049

Process1
PID: 24751

Process2
PID: 33852

Glidein2
823cc5f4-bf6e-46b3

Process1
PID: 15328

Process2
PID: 29537

A number of mechanisms make sure that different glideins/processes do
not interfere with each other.

Every shard is basically a separate file, so that location is written once by
a single process.

Shards are carefully moved between folders during the various stages
(writing, merging, removal, …), in order to avoid undesirable scenarios
like removing a shard while it’s being written.

22

A new utility function called log_write, available to the glidein bash scripts,
adds a new log entry that contains either a string or a file.

log_write <invoker> <type> <content/file> <severity>

API: log_write

9/24/2019 Leonardo Lai | Final presentation

name of the
script writing
to the log

text or
file

string content
or file name,
depending on
the type

severity level:
debug, info,
warn, error

When invoked, log_write creates a new file (shard) for the entry, containing
all the above attributes plus some other metadata (timestamp, PID, …).
Files are compressed then UUencoded before being inserted in the shard.

23

